F $\frac{\text { EasyChair Preprint }}{\text { № } 11415}$

New Criterion for the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

New Criterion for the Riemann Hypothesis

Frank Vega ${ }^{1 *}$
${ }^{1 *}$ Research Department, NataSquad, 10 rue de la Paix, Paris, 75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. Let $\Psi(\boldsymbol{n})=\boldsymbol{n}$. $\prod_{q \mid n}\left(1+\frac{\mathbf{1}}{q}\right)$ denote the Dedekind Ψ function where $\boldsymbol{q} \mid \boldsymbol{n}$ means the prime \boldsymbol{q} divides \boldsymbol{n}. Define, for $\boldsymbol{n} \geq \mathbf{3}$; the ratio $\boldsymbol{R}(\boldsymbol{n})=$ $\frac{\Psi(n)}{n \cdot \log \log n}$ where \log is the natural logarithm. Let $N_{n}=2 \cdot \ldots \cdot q_{n}$ be the primorial of order \boldsymbol{n}. There are several statements equivalent to the Riemann hypothesis. We state that if for each large enough prime number $\boldsymbol{q}_{\boldsymbol{n}}$, there exists another prime $\boldsymbol{q}_{n^{\prime}}>\boldsymbol{q}_{\boldsymbol{n}}$ such that $\boldsymbol{R}\left(\boldsymbol{N}_{n^{\prime}}\right) \leq \boldsymbol{R}\left(\boldsymbol{N}_{\boldsymbol{n}}\right)$, then the Riemann hypothesis is true. In this note, using our criterion, we prove that the Riemann hypothesis is true.

Keywords: Riemann hypothesis, prime numbers, Riemann zeta function, Chebyshev function

MSC Classification: 11M26, 11A41, 11A25

1 Introduction

The Riemann hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In mathematics, the Chebyshev function

A Millennium Prize Problem

$\theta(x)$ is given by

$$
\theta(x)=\sum_{q \leq x} \log q
$$

with the sum extending over all prime numbers q that are less than or equal to x, where \log is the natural logarithm. Leonhard Euler studied the following value of the Riemann zeta function (1734) [1].

Proposition 1 We define [1, (1) pp. 1070]:

$$
\zeta(2)=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where q_{k} is the k th prime number (We also use the notation q_{n} to denote the nth prime number). By definition, we have

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}},
$$

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6},
$$

where $\pi \approx 3.14159$ is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

The number $\gamma \approx 0.57721$ is the Euler-Mascheroni constant which is defined as

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(-\log n+\sum_{k=1}^{n} \frac{1}{k}\right) \\
& =\int_{1}^{\infty}\left(-\frac{1}{x}+\frac{1}{\lfloor x\rfloor}\right) d x .
\end{aligned}
$$

Here, $\lfloor\ldots\rfloor$ represents the floor function. In number theory, $\Psi(n)=n$. $\prod_{q \mid n}\left(1+\frac{1}{q}\right)$ is called the Dedekind Ψ function, where $q \mid n$ means the prime q divides n. We say that Dedekind $\left(q_{n}\right)$ holds provided that

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right) \geq \frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta\left(q_{n}\right)
$$

A natural number N_{n} is called a primorial number of order n precisely when,

$$
N_{n}=\prod_{k=1}^{n} q_{k}
$$

A Millennium Prize Problem

We define $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ for $n \geq 3$. Dedekind $\left(q_{n}\right)$ holds if and only if $R\left(N_{n}\right) \geq \frac{e^{\gamma}}{\zeta(2)}$ is satisfied.

Proposition 2 Unconditionally on Riemann hypothesis, we know that [2, Proposition 3. pp. 3]:

$$
\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

Proposition 3 For all prime numbers $q_{n}>5$ [3, Theorem 1.1. pp. 358]:

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)<e^{\gamma} \cdot \log \theta\left(q_{n}\right) .
$$

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [4]. In 1916, they also introduced the two symbols Ω_{R} and Ω_{L} defined as [5]:

$$
\begin{aligned}
& f(x)=\Omega_{R}(g(x)) \text { as } x \rightarrow \infty \text { if } \limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0 \\
& f(x)=\Omega_{L}(g(x)) \text { as } x \rightarrow \infty \text { if } \liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)}<0
\end{aligned}
$$

After that, many mathematicians started using these notations in their works. From the last century, these notations Ω_{R} and Ω_{L} changed as Ω_{+}and Ω_{-}, respectively. There is another notation: $f(x)=\Omega_{ \pm}(g(x))$ (meaning that $f(x)=$ $\Omega_{+}(g(x))$ and $f(x)=\Omega_{-}(g(x))$ are both satisfied). Nowadays, the notation $f(x)=\Omega_{+}(g(x))$ has survived and it is still used in analytic number theory as:

$$
f(x)=\Omega_{+}(g(x)) \text { if } \exists k>0 \forall x_{0} \exists x>x_{0}: f(x) \geq k \cdot g(x)
$$

which has the same meaning to the Hardy and Littlewood older notation. For $x \geq 2$, the function f was introduced by Nicolas in his seminal paper as [6, Theorem 3 pp. 376], [7, (5.5) pp. 111]:

$$
f(x)=e^{\gamma} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1-\frac{1}{q}\right) .
$$

Finally, we have the Nicolas Theorem:

Proposition 4 If the Riemann hypothesis is false then there exists a real b with $0<b<\frac{1}{2}$ such that, as $x \rightarrow \infty$ [6, Theorem 3 (c) pp. 376], [7, Theorem 5.29 pp. 131]:

$$
\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)
$$

Putting all together yields a proof for the Riemann hypothesis.

2 Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there exist some implications in case of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 1 If the Riemann hypothesis is false, then there exist infinitely many prime numbers q_{n} such that Dedekind $\left(q_{n}\right)$ fails (i.e. Dedekind $\left(q_{n}\right)$ does not hold).

Proof The function g is defined as [2, Theorem 4.2 pp. 5]:

$$
g(x)=\frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1+\frac{1}{q}\right)^{-1} .
$$

We claim that Dedekind $\left(q_{n}\right)$ fails whenever there exists some natural number $x_{0} \geq 5$ for which $g\left(x_{0}\right)>1$ or equivalent $\log g\left(x_{0}\right)>0$ and q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. It was proven the following bound [2, Theorem 4.2 pp .5]:

$$
\log g(x) \geq \log f(x)-\frac{2}{x}
$$

By Proposition 4, if the Riemann hypothesis is false, then there is a real number $0<$ $b<\frac{1}{2}$ such that there exist infinitely many natural numbers x for which $\log f(x)=$ $\Omega_{+}\left(x^{-b}\right)$. Actually Nicolas proved that $\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)$, but we only need to use the notation Ω_{+}under the domain of the natural numbers. According to the Hardy and Littlewood definition, this would mean that

$$
\exists k>0, \forall y_{0} \in \mathbb{N}, \exists y \in \mathbb{N}\left(y>y_{0}\right): \log f(y) \geq k \cdot y^{-b}
$$

The previous inequality is also $\log f(y) \geq\left(k \cdot y^{-b} \cdot \sqrt{y}\right) \cdot \frac{1}{\sqrt{y}}$, but we notice that

$$
\lim _{y \rightarrow \infty}\left(k \cdot y^{-b} \cdot \sqrt{y}\right)=\infty
$$

for every possible values of $k>0$ and $0<b<\frac{1}{2}$. Now, this implies that

$$
\forall y_{0} \in \mathbb{N}, \exists y \in \mathbb{N}\left(y>y_{0}\right): \log f(y) \geq \frac{1}{\sqrt{y}}
$$

Note that, the value of k is not necessary in the statement above. In this way, if the Riemann hypothesis is false, then there exist infinitely many natural numbers x such that $\log f(x) \geq \frac{1}{\sqrt{x}}$. Since $\frac{1}{\sqrt{x_{0}}}>\frac{2}{x_{0}}$ for $x_{0} \geq 5$, then it would be infinitely many natural numbers x_{0} such that $\log g\left(x_{0}\right)>0$. In addition, if $\log g\left(x_{0}\right)>0$ for some natural number $x_{0} \geq 5$, then $\log g\left(x_{0}\right)=\log g\left(q_{n}\right)$ where q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. The reason is because of the equality of the following terms:

$$
\prod_{q \leq x_{0}}\left(1+\frac{1}{q}\right)^{-1}=\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

and

$$
\theta\left(x_{0}\right)=\theta\left(q_{n}\right)
$$

according to the definition of the Chebyshev function.

3 Main Insight

This is the main insight.

Lemma 2 The Riemann hypothesis is true whenever for each large enough prime number q_{n}, there exists another prime $q_{n^{\prime}}>q_{n}$ such that

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right) .
$$

Proof By Lemma 1, if the Riemann hypothesis is false and the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for each large enough prime number q_{n}, then there exists an infinite subsequence of natural numbers n_{i} such that

$$
R\left(N_{n_{i+1}}\right) \leq R\left(N_{n_{i}}\right),
$$

$q_{n_{i+1}}>q_{n_{i}}$ and Dedekind $\left(q_{n_{i}}\right)$ fails. By Proposition 2, this is a contradiction with the fact that

$$
\liminf _{n \rightarrow \infty} R\left(N_{n}\right)=\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)} .
$$

By definition of the limit inferior for any positive real number ε, only a finite number of elements of $R\left(N_{n}\right)$ are less than $\frac{e^{\gamma}}{\zeta(2)}-\varepsilon$. This contradicts the existence of such previous infinite subsequence and thus, the Riemann hypothesis must be true.

4 Main Theorem

This is the main theorem.

Theorem 1 The Riemann hypothesis is true.

Proof By Lemma 2, the Riemann hypothesis is true whenever

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for large enough prime numbers $q_{n^{\prime}}>q_{n}$. That is the same as

$$
\frac{\prod_{q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}{\log \theta\left(q_{n^{\prime}}\right)} \leq \frac{\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)}{\log \theta\left(q_{n}\right)}
$$

and

$$
\frac{\prod_{q \leq q_{n^{\prime}}}\left(1+\frac{1}{q}\right)}{\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)} \leq \frac{\log \theta\left(q_{n^{\prime}}\right)}{\log \theta\left(q_{n}\right)}
$$

which is

$$
\log \log \theta\left(q_{n^{\prime}}\right)-\log \log \theta\left(q_{n}\right) \geq \sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)
$$

A Millennium Prize Problem

after of applying the logarithm to the both sides and distribute the terms. That is equivalent to

$$
1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)} \geq \frac{\sum_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}
$$

after dividing both sides by $\log \log \theta\left(q_{n^{\prime}}\right)$. This is possible because of the prime number $q_{n^{\prime}}$ is large enough and thus, the real number $\log \log \theta\left(q_{n^{\prime}}\right)$ would be greater than 0 . We can apply the exponentiation to the both sides in order to obtain that

$$
\exp \left(1-\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right) \geq\left(\prod_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

and

$$
e \geq \exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right) \cdot\left(\prod_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

We can take an arbitrary large enough prime $q_{n^{\prime}}$ such that

$$
\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)} \approx 0
$$

Certainly, we could have

$$
\exp \left(\frac{\log \log \theta\left(q_{n}\right)}{\log \log \theta\left(q_{n^{\prime}}\right)}\right) \approx 1
$$

for an arbitrary prime number $q_{n^{\prime}}$ much greater than q_{n}. For large enough prime $q_{n^{\prime}}$, we have

$$
e=\left(\log \theta\left(q_{n^{\prime}}\right)\right)^{\frac{1}{\log \log \theta\left(q_{n^{\prime}}\right)}}
$$

since $e=x^{\frac{1}{\log x}}$ for $x>0$. Hence, it is enough to show that

$$
\log \theta\left(q_{n^{\prime}}\right) \gg \prod_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)
$$

where \gg means "much greater than". That is equal to

$$
e^{\gamma} \cdot \log \theta\left(q_{n^{\prime}}\right) \gg e^{\gamma} \cdot \prod_{q_{n}<q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right) .
$$

By Proposition 3, we know that

$$
e^{\gamma} \cdot \log \theta\left(q_{n^{\prime}}\right)>\prod_{q \leq q_{n^{\prime}}} \log \left(1+\frac{1}{q}\right)
$$

So, we deduce that

$$
1 \gg e^{\gamma} \cdot \prod_{q \leq q_{n}} \log \left(1+\frac{1}{q}\right)^{-1}
$$

which is trivially true since

$$
\lim _{n \rightarrow \infty}\left(e^{\gamma} \cdot \prod_{q \leq q_{n}} \log \left(1+\frac{1}{q}\right)^{-1}\right)=0
$$

5 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are considered to be true under the assumption of the Riemann hypothesis and some of them that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. In general, a proof of the Riemann hypothesis could spur considerable advances in many mathematical areas.

Statements and Declarations

Ethics approval and consent to participate

'Not applicable'.

Consent for publication

The author agrees that if the manuscript is accepted for publication in the Journal, then this one will be published under the Journal's Copyright Policy, including the Agreement therein.

Availability of data and materials

'Not applicable'.

Competing interests

'Not applicable'.

Funding

'Not applicable'.

Declaration of Generative AI and AI-assisted technologies in the writing process

'Not applicable'.

Authors' contributions

The single author wrote and reviewed the main manuscript text.

Acknowledgment

Many thanks to Patrick Solé and Michel Planat for their support.

References

[1] R. Ayoub, Euler and the Zeta Function. The American Mathematical Monthly 81(10), 1067-1086 (1974). https://doi.org/10.2307/2319041
[2] P. Solé, M. Planat, Extreme values of the Dedekind ψ function. Journal of Combinatorics and Number Theory 3(1), 33-38 (2011)
[3] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357-372 (2007). https://doi.org/10.5802/jtnb. 591
[4] G.H. Hardy, J.E. Littlewood, Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions. Acta mathematica 37(1), 193-239 (1914)
[5] G.H. Hardy, J.E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Mathematica 41, 119-196 (1916)
[6] J.L. Nicolas, Petites valeurs de la fonction d'Euler. Journal of Number Theory 17(3), 375-388 (1983). https://doi.org/10.1016/0022-314X(83) 90055-0
[7] K. Broughan, Euler's Totient Function (Cambridge University Press, 2017), Encyclopedia of Mathematics and its Applications, vol. 1, pp. 94-143. https://doi.org/10.1017/9781108178228.007

