
EasyChair Preprint
№ 3621

Positive Free Higher-Order Logic and its
Automation via a Semantical Embedding

Irina Makarenko and Christoph Benzmüller

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 22, 2020

Positive Free Higher-Order Logic
and its Automation via a Semantical Embedding

Irina Makarenko and Christoph Benzmüller

Freie Universität Berlin, Berlin, Germany
rna.mkr|c.benzmueller@gmail.com

Abstract. Free logics are a family of logics that are free of any exis-
tential assumptions. Unlike traditional classical and non-classical logics,
they support an elegant modeling of nonexistent objects and partial func-
tions as relevant for a wide range of applications in computer science, phi-
losophy, mathematics, and natural language semantics. While free first-
order logic has been addressed in the literature, free higher-order logic
has not been studied thoroughly so far. The contribution of this paper in-
cludes (i) the development of a notion and definition of free higher-order
logic in terms of a positive semantics (partly inspired by Farmer’s par-
tial functions version of Church’s simple type theory), (ii) the provision
of a faithful shallow semantical embedding of positive free higher-order
logic into classical higher-order logic, (iii) the implementation of this
embedding in the Isabelle/HOL proof-assistant, and (iv) the exemplary
application of our novel reasoning framework for an automated assess-
ment of Prior’s paradox in positive free quantified propositional logics,
i.e., a fragment of positive free higher-order logic.

Keywords: Knowledge representation and reasoning · Interactive and
automated theorem proving · Philosophical foundations of AI · Par-
tiality and undefinedness · Prior’s paradox.

1 Introduction

The proper handling of nonexistence and partiality constitutes a key challenge
not only for applications of formal methods in philosophy and mathematics
but also for computational approaches to artificial intelligence and natural lan-
guage [15, 17, 16]. In a so-called free logic, terms do not necessarily have to denote
existing objects allowing for theories involving both partial and total functions.
For that reason, free higher-order logics provide elegant solutions to the han-
dling of some well-known paradoxes in knowledge representation and reasoning,
many of which are beyond first-order logic. Moreover, free logics are well suited
to represent abstract objects and to support hypothetical reasoning with fictive
(and concrete) entities, and can therefore also be applied in metaphysics, ethics,
and law.

Modern interactive and automated theorem provers, however, are typically
developed for classical notions of logic, in which only total functions are sup-
ported natively. Instead of investing time and effort in the development of new

2 I. Makarenko and C. Benzmüller

theorem provers for free first-order and higher-order logics, a promising approach
for the implementation of such logics in existing higher-order theorem provers are
shallow semantical embeddings (SSEs) [5]. The contribution of this paper is four-
fold: We (i) developed a notion and definition of free higher-order logic in terms
of a positive semantics (partly inspired by Farmer’s partial functions version of
Church’s simple type theory [14]), (ii) provided a faithful shallow semantical
embedding of positive free higher-order logic into classical higher-order logic,
(iii) implemented this embedding in the Isabelle/HOL proof-assistant, and (iv)
applied our novel reasoning framework for an automated assessment of Prior’s
paradox [29] in positive free quantified propositional logics, i.e., a fragment of
positive free higher-order logic. Furthermore, we are currently integrating the
results reported in this paper in the LogiKEy framework [9] for expressive, plu-
ralistic normative reasoning.

Prior, coinciding with Kaplan [19], showed that paradoxes can arise quickly
in particular philosophical theories that include both sets and propositions. Ba-
con, Hawthorne, and Uzquiano [3] discovered that universal instantiation, or,
better, the rejection of it, is key to blocking certain paradoxes inherent in such
higher-order logics. Logics without existential assumptions, i.e., free logics, just
naturally reject the principle of universal instantiation. The family of paradoxes
considered by Bacon et al. is represented by what we will call Prior’s paradox in
this paper. Prior’s paradox states:

Q∀p. (Qp → ¬p) → ∃p. (Qp ∧ p) ∧ ∃p. (Qp ∧ ¬p) .

Reading Qp as, e.g., ‘Kaplan says at midnight that p’, Prior’s paradox implies
that if Kaplan says at midnight that everything Kaplan says at midnight is false,
then Kaplan has said a true and a false thing at midnight. We end up with a
logical self-contradiction that, as we will discuss and demonstrate later in this
paper, is indeed resolved in free higher-order logic.

The paper structure is as follows: Section 2 briefly recaps classical higher-
order logic (HOL), before positive free higher-order logic (PFHOL) is introduced
in Section 3. Section 4 presents a faithful embedding of PFHOL in HOL, and
Section 5 discusses its encoding in Isabelle/HOL. Section 6 applies the encoded
embedding to “solve” Prior’s paradox, and the last section concludes the paper.

2 Classical Higher-Order Logic (HOL)

Church’s simple type theory [13] is a classical higher-order logic defined on top
of the simply typed λ-calculus. Church’s original definitions, as generalized by
Henkin [18] to extensional type theory, the logical basis of most automated the-
orem proving systems for higher-order logic, are summarized below.

2.1 Syntax

The main components of Church’s type theory are types and terms; more pre-
cisely, typed terms. The set of simple types τ is freely generated from a set of

Positive Free Higher-Order Logic and its Automation 3

two base types, {o, i}, and the right-associative function type constructor →. In-
tuitively, o is the type of standard truth values, and i is the type of individuals.1
τ is thus defined by α, β := o | i | (α → β). τ o ⊊ τ , the set of simple types
of (goal) type o, is given by β := o | (α → β) (with α ∈ τ). τ i ⊊ τ , the set
of simple types of (goal) type i, is analogously given by β := i | (α → β) (with
α ∈ τ).

Starting with some nonempty countable sets of typed constant symbols Cα

and some nonempty countable sets of typed variable symbols Vα, the simply
typed terms of HOL are defined by the following formation rules (where α, β ∈ τ ,
Pα ∈ Cα, and xα ∈ Vα):

s, t := Pα | xα | (sα→β tα)β | (λxα. sβ)α→β .

We assume the following constant symbols to be part of our “signature”: ¬o→o ∈
Co→o, ∨o→o→o ∈ Co→o→o, =α→α→o∈ Cα→α→o, ∀(α→o)→o ∈ C(α→o)→o, and
ι(α→o)→α ∈ C(α→o)→α with α ∈ τ . These constant symbols, which we call logical
constants, have a fixed interpretation according to their intuitive meaning.2 For
example, the definite description (ι(α→o)→α(λxα. so)α→o)α denotes the unique
object x of type α ∈ τ satisfying so if such an object exists and some fixed
but arbitrary object of type α otherwise. It offers the possibility to define an
if-then-else operator as follows (with α ∈ τ):

iteo→α→α→α := λso. λxα. λyα. ι(λzα. (s → z = x) ∧ (¬s → z = y)) .

Further logical constants can be introduced as abbreviations, e.g., ∧ o→o→o :=
λxo. λyo.¬(¬x ∨ ¬y) and ∃(α→o)→o := λpα→o.¬∀(λxα.¬(p x)) with α ∈ τ .
Terms of type o are formulas, nonformula terms of type α ∈ τ o are called
predicates. Formulas whose leftmost nonparenthesis symbol is either equality or
some nonlogical constant or variable are called atomic formulas. A variable x is
bound in a term s if it occurs in the scope of the binder λ in s. x is free in s
when it is not bound in s.

Type information may be omitted if clear from the context. For each binary
operator op with prefix notation ((op s) t) we may fall back to its infix notation
(s op t) to improve readability. Likewise, the binder notation {∀, ι}(x. s) may be
used as shorthand for {∀, ι}(λx. s). In the remainder of this paper, a matching
pair of parentheses in a type or term may be dropped when they are not necessary,
assuming that, in addition to the generally known rules, s t, function application,
and λx. s, function abstraction, are left- and right-associative3, respectively, and
that application has a smaller scope than abstraction.
1 There is no serious restriction to a two-valued base set so that further base types

could be added [8].
2 The set of primitive logical constants could be a much smaller one, e.g., equality is

known to be sufficient in order to define all remaining logical constants of classical
higher-order logic apart from the description operator [6].

3 For an abstraction, being right-associative means that its body extends as far right
as possible. For instance, λx.s t corresponds to λx. (s t) and not (λx. s) t.

4 I. Makarenko and C. Benzmüller

2.2 Semantics

A frame D = {Dα : α ∈ τ } is a set of nonempty sets (or domains) Dα, such
that Di is chosen freely, Do = {T,F} where T ̸= F and T represents truth and F
represents falsehood, and Dα→β is the set of all total functions from domain Dα

to codomain Dβ . A standard model is a tuple M = ⟨D, I ⟩ where D is a frame
and I is a family of typed interpretation functions, i.e., I = {Iα : α ∈ τ }. Each
interpretation function Iα maps constants of type α to appropriate objects of
Dα. The logical constants =, ¬, ∨, ∀, and ι are interpreted as follows:
I(=α→α→o) := id ∈ Dα→α→o s.t. for all d, d′∈ Dα :

id(d, d′) = T iff d is identical to d′,

I(¬o→o) := not ∈ Do→o s.t. not(T) = F and not(F) = T,

I(∨o→o→o) := or ∈ Do→o→o s.t. or(v1, v2) = T iff v1 = T or v2 = T,

I(∀(α→o)→o) := all ∈ D(α→o)→o s.t. for all f ∈ Dα→o :

all(f) = T iff f(d) = T for all d ∈ Dα,

I(ι(α→o)→α) := desc ∈ D(α→o)→α s.t. for all f ∈ Dα→o :

desc(f) = d ∈ Dα if f(d) = T and for
all d′∈ Dα: if f(d′) = T, then d′= d,

otherwise desc(f) = e where e is a
fixed but arbitrary object in Dα.

gα is a variable assignment mapping variables of type α to corresponding objects
in Dα. Thus, g = {gα : α ∈ τ } is a family of typed variable assignments. g [x→d]
denotes the variable assignment that is identical to g, except for variable xα,
which is now mapped to dα. The value J sα KM,g of a HOL term sα in a standard
model M under variable assignment g is an object d ∈ Dα and defined as follows:JPα KM,g := I(Pα),Jxα KM,g := g(xα),J (sα→β tα)β KM,g := J sα→β KM,g(J tα KM,g),J (λxα. sβ)α→β KM,g := the function f from Dα into Dβ

s.t. for all d ∈ Dα: f(d) = J sβ KM,g[x→d].

A formula so is true in a standard model M under variable assignment g, denoted
by M, g ⊨ s, if and only if J so KM,g = T. A formula so is valid in M , denoted by
M ⊨ s, if and only if M, g ⊨ s for all variable assignments g. Moreover, a formula
so is (generally) valid, denoted by ⊨ so, if and only if so is valid in all standard
models M .

As a consequence of Gödel’s incompleteness theorem, Church’s type theory
with respect to the ordinary semantics based on standard models is incomplete.
However, Henkin [18] introduced a generalized notion of a model in which the
function domains contain enough but not necessarily all functions: In a standard
model, a domain Dα→β is defined as the set of all total functions from Dα to
Dβ . In a Henkin model (or general model) the domains Dα→β in the underlying

Positive Free Higher-Order Logic and its Automation 5

frame are some nonempty sets of total functions, Dα→β ⊆ { f | f : Dα → Dβ},
containing at least sufficiently many of them such that the valuation function
remains total.

For Henkin’s generalized notion of semantics, sound and complete proof cal-
culi exist [18, 1, 2]. Any standard model is obviously also a Henkin model. Hence,
any formula that is valid in all Henkin models must be valid in all standard
models as well. Therefore, the semantics employed in this paper are Henkin’s
general models. For truth, validity, and general validity in a Henkin model, the
above definitions are adapted in the obvious way.

For further details on the semantics of HOL, we refer to the literature [7, 6].

3 Positive Free Higher-Order Logic (PFHOL)

Free logic, a term coined by Lambert [21], refers to a family of logics that are free
of existential presuppositions in general and with respect to the denotation of
terms in particular. Terms of free logic may denote existent4 objects, but are not
necessarily required to do so. Quantification and definite descriptions are treated
as in classical logic, meaning that quantifiers and description operators range
over the existing objects only. In the following, we will pursue an inner-outer
dual-domain approach for the representation of the relationship between existing
and nonexisting objects. The inner-outer dual-domain approach postulates that
some domain D contains both existing and nonexisting objects whereas the
quantification domain E, a subdomain of D, contains solely the existing ones.

A free logic is known to be positive if it allows atomic formulas containing
terms that refer to nonexisting objects to be either true or false [32, 22]. For exam-
ple, even though isHuman(Pegasus) is, in general, denied, hasLegs(Pegasus)
may be regarded as a valid formula since the denotation of Pegasus is a mytho-
logical creature that is usually depicted in the form of a winged horse (with
legs).

3.1 Syntax

Except for terms, all definitions and terminology for PFHOL correspond to those
presented in Section 2.1 for HOL. Simply typed terms of PFHOL have essentially
the same structure as terms of HOL, but we additionally include the nonlogical
constant symbol E!α→o ∈ Cα→o in the “signature”. Apart from that, the in-
terpretation of the universal quantifier changes since free logical quantification
is traditionally limited to existing objects only. Moreover, not only quantifiers
have existential import: Definite descriptions of free logic denote a unique object
satisfying some property if and only if such an object exists and is defined [4].

4 In the paper at hand, the terms existent/existing and defined are used interchange-
ably even though a differentiation is advisable. The same applies to the terms nonex-
istent/nonexisting and undefined.

6 I. Makarenko and C. Benzmüller

⊥i

Di

Ei

T
Fo = F

Do = Eo

Fi→o

Di→o = Ei→o

Fig. 1. Schematics of domains Di, Do and Di→o

3.2 Semantics

The following proposal of a positive semantics for free higher-order logic com-
bines two sophisticated concepts that go back to Benzmüller and Scott [10] and
Farmer [14].

While a frame is defined exactly as in HOL, a subframe E = {Eα : α ∈ τ } is
a set of nonempty sets (or domains) Eα such that Eα ⊊ Dα for each α ∈ τ i and
Eα = Dα for each α ∈ τ o.5 We assume, inspired by Farmer, that ⊥α ∈ Dα\Eα

for all α ∈ τ i with ⊥α→β (d) := ⊥β for all d ∈ Dα. Furthermore, each domain
Dα with α ∈ τ o contains the element Fα defined inductively by Fo := F and
Fα→β (d) := Fβ for all d ∈ Dα. The purpose of these objects is to propagate the
nondenotation or falsehood of a term up through all terms containing it with ⊥i

symbolizing ‘the undefinedness’ among individuals. Their intended use will be
explained in the further course of this section. Exemplary schematics of some of
the domains can be found in Fig. 1. A standard model is a triple M = ⟨D,E, I ⟩
where D is a frame, E is a subframe, and I is a family of typed interpretation
functions, i.e., I = {Iα : α ∈ τ }. Each interpretation function Iα maps constants
of type α to appropriate elements of Dα. The nonlogical constant E! and the
logical constants =, ¬, ∨, ∀ and ι are interpreted as follows:
I(E!α→o) := ex ∈ Eα→o s.t. for all d ∈ Dα : ex(d) = T iff d ∈ Eα,

I(=α→α→o) := id ∈ Eα→α→o s.t. for all d, d′∈ Dα :

id(d, d′) = T iff d is identical to d′,

I(¬o→o) := not ∈ Eo→o s.t. not(T) = F and not(F) = T,

5 Restricting nondenotation to the domain of individuals, i.e., to define Ei ⊊ Di and
for all α ̸= i, Eα=Dα, is reasonable but complicates the definition of strict functions.

Positive Free Higher-Order Logic and its Automation 7

I(∨o→o→o) := or ∈ Eo→o→o s.t. or(v1, v2) = T iff v1 = T or v2 = T,

I(∀(α→o)→o) := all ∈ E(α→o)→o s.t. for all f ∈ Dα→o :

all(f) = T iff f(d) = T for all d ∈ Eα,

I(ι(α→o)→α) := desc ∈ E(α→o)→α s.t. for all f ∈ Dα→o :

desc(f) = d ∈ Eα if f(d) = T and for
all d′∈ Eα: if f(d′) = T, then d′= d,

otherwise desc(f) = ⊥α if α ∈ τ i and
desc(f) = Fα if α ∈ τ o.

As for HOL, gα is a variable assignment mapping variables of type α to corre-
sponding objects in Dα. The value J sα KM,g of a PFHOL term sα in a standard
model M under the variable assignment g is an object d ∈ Dα and evaluated as
follows:JPα KM,g := I(Pα),Jxα KM,g := g(xα),J (sα→β tα)β KM,g := J sα→β KM,g(J tα KM,g),J (λxα. sβ)α→β KM,g := the function f from Dα into Dβ

s.t. for all d ∈ Dα: f(d) = J sβ KM,g[x→d].

The application is hereby defined in a nonstrict manner. A strict function appli-
cation would be defined like this (with α → β ∈ τ i):

J (sα→ β tα)β KM,g :=

{ J sα→ β KM,g(J tα KM,g) if J tα KM,g ∈ Eα
6

⊥β else .

A strictly applied function results in undefined if one of its arguments is unde-
fined. In simple type theory, arguments are typically processed one after another.
To be able to pass the undefined state of a once applied argument through any
other possibly following arguments, the objects ⊥α were added to each relevant
domain Dα. ⊥α→β maps any argument of type α to ⊥β until ⊥i appears. This
way, undefinedness is transmitted until the evaluation of the application has
reached its end.7 Predicates, on the other hand, do not generally require such
a special treatment. In positive free logic, atomic formulas may denote truth or
falsehood even if one of the arguments is undefined. Otherwise, the objects Fα

could be used for transmitting falsehood.
The definitions of truth, validity, and general validity in PFHOL are equiv-

alent to the corresponding definitions in HOL. The partiality characteristic for

6 Farmer also checked the function itself for existence. But since the distinction be-
tween existing and nonexisting functions – in contrast to existing/nonexisting indi-
viduals – is unusual and not well-defined, this was left out.

7 Restraining applications like this could lead to malformed evaluations, i.e., evaluated
terms might not receive the actually intended value. For instance, the ite operator
must be handled separately when the then- or else-parts are meant to be undefined.

8 I. Makarenko and C. Benzmüller

free logic is implemented by a trick that exploits the objects ⊥α, enabling the
functions in each domain Dα→β to remain total. Hence, the generalization of
standard models to Henkin models is equally applicable to PFHOL.8

4 Embedding of PFHOL in HOL

To provide a shallow semantical embedding of PFHOL in HOL, the “signature”
of HOL has to be enriched with an additional nonlogical constant Eα→o ∈ Cα→o

denoting a unary predicate that enables an explicit distinction of existing and
nonexisting objects in the domain Dα. In addition, we include the object eα
in each domain Dα with α ∈ τ , which is meant to be the error object that is
returned by the definite description (ι(α→o)→α(λxα. so)α→o)α if no such object
exists. We redefine the interpretation of ι thus as follows:
I(ι(α→o)→α) := desc ∈ D(α→o)→α s.t. for all f ∈ Dα→o :

desc(f) = d ∈ Dα if f(d) = T and for
all d′∈ Dα: if f(d′) = T, then d′= d,

otherwise desc(f) = eα.

Obviously, for all α ∈ τ o: (∀xα. (Eα→o xα)o)o = T, and (Eα→o eα)o = F for
each α ∈ τ i. Then, a HOL term [sα] is assigned to each PFHOL term sα
according to the following translation function:9

[Pα] = Pα,

[xα] = xα,

[(E!α→o sα)o] = (Eα→o [sα])o,

[((=F

α→α→o sα)α→o tα)o] = ((=H

α→α→o [sα])α→o [tα])o,

[(¬F

o→o so)o] = (¬H

o→o [so])o,

[((∧F

o→o→o so)o→o to)o] = ((∧H

o→o→o [so])o→o [to])o,

[(∀F

(α→o)→o(λxα. so)α→o)o] = (∀H

(α→o)→o(λxα. ((E x)o →H

o→o→o [so])o)α→o)o,

[(ιF(α→o)→α(λxα. so)α→o)α] = (ιH(α→o)→α(λxα. ((E x)o ∧H

o→o→o [so])o)α→o)α,

[(sα→β tα)β] = ([sα→β] [tα])β ,

[(λxα. sβ)α→β] = (λxα. [sβ])α→β .

Note that operators of HOL and PFHOL are annotated with H and F , respectively.
The main trick of this translation is that the existential import of the uni-

versal quantifier and the description operator is secured by cleverly exploiting
8 As shown by Farmer and Schütte [31], it is possible to give a Henkin-style complete-

ness proof for free higher-order logic defined based on a partial valuation function.
9 A similar translation, although for free first-order logic, was provided and proved to

be sound and complete by Meyer and Lambert [26] and Benzmüller and Scott [10].

Positive Free Higher-Order Logic and its Automation 9

the additional predicate Eα→o as a guard. When mapping definite descriptions,
[(ιF(α→o)→α(λxα. so)α→o)α] could also be translated into

(iteH

o→α→α→α

(∃H

(α→o)→o(λxα.

(((Eα→o xα)o ∧H

o→o→o [so])o

∧H

o→o→o (∀
H

(α→o)→o(λyα.(((Eα→o yα)o →H

o→o→o [so])o

→H

o→o→o (yα =H

α→α→o xα)o)o)α→o)o)o)α→o)o

(ιH(α→o)→α(λxα. ((Eα→o xα)o ∧H

o→o→o [so])o)α→o)α

eα)α

using the if-then-else operator ite to ensure that the classical definite description
definitely returns the error object eα in case of no such existing object. But due
to our previously done redefinition of the classical description operator, this is
not really necessary here. Furthermore, it is noteworthy that any term ∃Fx. s is
translated into ¬H∀Hx. E x →H ¬Hs, which is the same as ∃Hx. E x ∧H s .

Next, we establish the faithfulness of this embedding.

Theorem 1. ⊨PFHOL so if and only if ⊨HOL [so] .

The proof of Thm. 1 is sketched in the appendix. For full details, see Makarenko [25].

5 Implementation in Isabelle/HOL

In this section, the encoding of the embedding from Section 4 in Isabelle/HOL [27]
is presented. The general syntax and semantics of Isabelle/HOL can be found
in the specified literature and is therefore omitted here. The encoding starts
with a declaration of the base type i for individuals while the type o of HOL is
associated with the predefined type bool in Isabelle/HOL.

typedecl i

Next, we introduce an existence predicate, E, for each of the base and compound
types. In the signature, the single quote in 'a indicates that this is a type variable,
meaning that the definition given hereupon is polymorphic.

consts fExistence :: "'a ⇒ bool" ("E")

Then, for each type, we define another new constant, e, and, in accordance with
the definitions in Section 4, we postulate e of type i to be nonexistent and e of
type bool to be False. Furthermore, True and False are declared as existent.

consts fUndef :: "'a" ("e")
axiomatization where fUndefIAxiom: "¬E (e::i)"
axiomatization where fFalsehoodBAxiom: "(e::bool) = False"
axiomatization where fTrueAxiom: "E True"
axiomatization where fFalseAxiom: "E False"

10 I. Makarenko and C. Benzmüller

The embedding of the logical constants =, ¬, and ∨ is straightforward. PFHOL
operators are presented in bold-face fonts to distinguish them from HOL opera-
tors.

definition fIdentity :: "'a ⇒ 'a ⇒ bool" (infixr "=" 56)
where "φ = ψ ≡ φ = ψ"

definition fNot :: "bool ⇒ bool" ("¬_" [52]53)
where "¬φ ≡ ¬φ"

definition fOr :: "bool ⇒ bool ⇒ bool" (infixr "∨" 51)
where "φ ∨ ψ ≡ φ ∨ ψ"

Now, for the embedding of the existential import of the universal quantifier, we
utilize the existence predicate E of the respective type exactly as discussed in
Section 4. Isabelle/HOL supports the introduction of syntactic sugar for binding
notations, which we adopt in the following definition in order to support the more
intuitive notation ∀x. P x instead of writing ∀(λx. P x) or ∀P .

definition fForall :: "('a ⇒ bool) ⇒ bool" ("∀")
where "∀Φ ≡ ∀x. E x ⟶ Φ x"

definition fForallBinder:: "('a ⇒ bool) ⇒ bool" (binder "∀" [8]9)
where "∀x. φ x ≡ ∀φ"

For encoding the PFHOL operator ι, we rely on Isabelle/HOL’s own definite
description operator THE. Unlike the embedding from Section 4, we must here
specify the object that will be returned if there is no unique object that has the
desired properties. We use Isabelle/HOL’s if-then-else operator for this.

definition fThat :: "('a ⇒ bool) ⇒ 'a" ("I")
where "IΦ ≡ if ∃x. E x ∧ Φ x ∧ (∀y. (E y ∧ Φ y) ⟶ (y = x))

then THE x. E x ∧ Φ x
else e"

definition fThatBinder:: "('a ⇒ bool) ⇒ 'a" (binder "I" [8]9)
where "Ix. φ x ≡ Iφ"

We also introduced binder notation for I. Further PFHOL operators are embed-
ded as abbreviations.

definition fAnd :: "bool ⇒ bool ⇒ bool" (infixr "∧" 52)
where "φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)"

definition fImp :: "bool ⇒ bool ⇒ bool" (infixr "→" 49)
where "φ → ψ ≡ ¬φ ∨ ψ"

definition fEquiv :: "bool ⇒ bool ⇒ bool" (infixr "↔" 50)
where "φ ↔ ψ ≡ φ → ψ ∧ ψ → φ"

definition fExists :: "('a ⇒ bool) ⇒ bool" ("∃")
where "∃Φ ≡ ¬(∀(λy. ¬(Φ y)))"

definition fExistsBinder :: "('a ⇒ bool) ⇒ bool" (binder "∃" [8]9)
where "∃x. φ x ≡ ∃φ"

For experiments and tests, and for the Isabelle/HOL sources, see Makarenko [25].10

10 The Isabelle/HOL sources are also available at https://github.com/stilleben/
Free-Higher-Order-Logic.

Positive Free Higher-Order Logic and its Automation 11

6 Automated Assessment of Prior’s Paradox

In our practical studies, we benefit from the fact that Isabelle/HOL integrates
powerful reasoning tools such as the model finder Nitpick [11] and the meta-
prover Sledgehammer [28], which, in turn, invokes third-party resolution provers,
SMT solvers, and higher-order provers as Satallax [12] and Leo-III [34]. Apply-
ing Sledgehammer together with our embedding of PFHOL in HOL to Prior’s
paradox, we end up with the following result.

axiomatization where fTrueAxiom: "E True"
axiomatization where fFalseAxiom: "E False"

lemma "(Q (∀p. (Q p → (¬p)))) → ((∃p. Q p ∧ p) ∧ (∃p. Q p ∧ (¬p)))"
using Defs by (smt fFalseAxiom fTrueAxiom)

The theorem is valid. But as can be clearly seen, the theorem is proved by using
the axioms fTrueAxiom and fFalseAxiom imposing that both truth values are
defined. We try it again without these.

lemma "(Q (∀p. (Q p → (¬p)))) → ((∃p. Q p ∧ p) ∧ (∃p. Q p ∧ (¬p)))"
nitpick [user_axioms=true, show_all, format=2]
oops

Nitpick found a counterexample for card i = 3:

Free variable:
Q = (λx. _)(True := True, False := True)

Constants:
E = (λx. _)(True := True, False := False)
E = (λx. _)(i1 := False, i2 := False, i3 := True)
e = i2

e = False

This time the model finder Nitpick actually found a countermodel. Observe that
in this countermodel one of the two truth values is undefined, namely False. This
coincides with the countermodel provided by Bacon, Hawthorne, and Uzquiano.
However, on a metaphysical level, it is highly questionable to shift even one of
the truth values into the undefined range. Bacon et al. themselves did not find
this approach for overcoming the paradox very promising and have constructed
other countermodels as a substitute, which we could not reproduce with our
embedding of PFHOL in HOL. For these countermodels, at least three different
truth values are needed, and hence trivalent or other many-valued free higher-
order logics should be used for that. Research has already been conducted in this
direction, which, so far, has concentrated mainly on using deep embeddings [35]
as opposed to adapting shallow ones [33].

An alternative option, already explored and implemented by Makarenko [25],
is to embed and automate the free semantics specially developed by Bacon et al.
to overcome this particular paradox. The semantical theory they introduced is a
positive free higher-order logic based on set theory where only (possible) worlds

12 I. Makarenko and C. Benzmüller

are taken as primitive, and the validity of propositions is then modeled as world
dependent. The embedding of this ‘modal’ positive free logic has proved useful
and adequate in dealing with the paradox, as was confirmed by verifying fur-
ther, more reasonable countermodels to Prior’s paradox. Moreover, it is worth
mentioning that there is currently a growing interest to further adapt the defini-
tions of Section 3 and the embedding of Section 4 to develop proper notions of
modal and intensional positive free higher-order logic and to embed them faith-
fully in HOL. An interesting application, and related ongoing work, includes
the exploitation of free logic machinery in Kirchner’s embedding of hyperinten-
sional second-order modal logic and abstract object theory in Isabelle/HOL [20,
Footnote 7 and Section 5] utilized for the encoding, assessment, and further
investigation of Zalta’s Principia Logico-Metaphysica [36].

7 Conclusion

Positive free higher-order logic and its characteristics of nonexistent objects and
partial functions have been faithfully represented in an adequately modified ver-
sion of simple type theory. A key point of the inner-outer dual-domain approach
is that partiality is only simulated instead of inherently accomodating it, such
that a classical logic environment could be maintained. Subsequently, our em-
bedding was implemented in Isabelle/HOL to support interactive and automated
reasoning. We applied this embedding to Prior’s paradox and reconstructed some
of the results Bacon, Hawthorne, and Uzquiano provided in dealing with the
theorem. This shows that certain paradoxes can fruitfully be addressed in free
higher-order logic. However, we were also able to verify that two-valued free logic
is not enough to resolve the issue. Our ongoing research has therefore also been
concerned with other variants of free logic. Traditionally, the family of free log-
ics involves not only positive free logic, but also negative [30], neutral [24], and
supervaluational [4] free logic whose semantics differ in the way how atomic for-
mulas with terms that refer to nonexistent objects are treated. Furthermore, free
many-valued logic or a logic with more than one notion and/or degree of nonex-
istence could be imagined. Some of these variants have already been successfully
embedded and tested in Isabelle/HOL, as for example negative free higher-order
logic and partly also supervaluational free higher-order logic [25], others are still
under development. Of special interest are in particular neutral free higher-order
logic and, as indicated in the previous section, many-valued (positive) free higher-
order logic. Obviously, a mixture between shallow and deep embedding appears
conceivable in this context and worth investigating. Fact is, nondenoting terms
have always been and will always be an intriguing subject in logic, and, consider-
ing the lack of theorem provers for free logic, the development of an appropriate
definition of free logic suited for embedding in HOL as well as the automation
of free logic via a semantical embedding seems more important than ever.

Acknowledgments. We thank the anonymous reviewers whose insightful com-
ments and suggestions have helped to improve this manuscript.

Positive Free Higher-Order Logic and its Automation 13

Appendix
For the proof of Theorem 1, we first need to elaborate how to transform a PFHOL
model M into a HOL model M ∗, and a PFHOL variable assignment g into a
HOL variable assignment g ∗. We assume that D ∗

α = Dα and C ∗
α \ {Eα→o} =

Cα\{E!α→o} for all α ∈ τ , and set eα= ⊥α for each α ∈ τ i and eα= Fα for each
α ∈ τ o. Then, M = ⟨D,E, I ⟩ corresponds to the model M ∗= ⟨D ∗, I ∗⟩ where I ∗

is a family of interpretation functions that assigns the standard interpretation
to the logical constants =, ¬, ∨, ∀ and ι of HOL as described in Section 2. For all
other constants Pα ̸= Eα→o, Pα ∈ C ∗

α : I ∗(Pα) = I(Pα). The nonlogical constant
Eα→o ∈ C ∗

α is interpreted as follows:
I ∗(Eα→o) := ex ∈ D ∗

α→o s.t. for all d ∈ D ∗
α : ex(d) = T iff d ∈ Eα.

We further assume V ∗
α = Vα for all α ∈ τ , and hence, for all xα ∈ V ∗

α and α ∈ τ ,
g ∗
α(xα) = gα(xα).

Next, we first need to establish the following lemma.

Lemma 1. For all PFHOL models M and PFHOL variable assignments g,

J sα KM,g = J [sα] KM∗,g∗ .

The detailed proof of this lemma can be found in Makarenko [25].

Theorem 1. ⊨PFHOL so if and only if ⊨HOL [so] .

Proof.

(→) The proof is by contraposition:

Assume ⊭PFHOL so . Then, there exists a PFHOL model M and a variable assignment
g such that J so KM,g = F . By Lemma 1, J so KM,g = J [so] KM∗,g∗ = F . Hence, ⊭HOL

[so] .

(←) Analogous to above by contraposition and Lemma 1.

Therefore, the embedding of PFHOL in HOL is sound and complete.

14 I. Makarenko and C. Benzmüller

References

1. Peter B. Andrews. General Models and Extensionality. Journal of Symbolic Logic,
37(2):395–397, 1972.

2. Peter B. Andrews. General Models, Descriptions, and Choice in Type Theory.
Journal of Symbolic Logic, 37(2):385–394, 1972.

3. Andrew Bacon, John Hawthorne, and Gabriel Uzquiano. Higher-Order Free Logic
and the Prior-Kaplan Paradox. Canadian Journal of Philosophy, 46(4-5):493–541,
2016.

4. Ermanno Bencivenga. Free Logics. In Dov M. Gabbay and Franz Günthner, editors,
Handbook of Philosophical Logic. Volume III: Alternatives in Classical Logic, pages
373–426. Springer Netherlands, Dordrecht, 1986.

5. Christoph Benzmüller. Universal (Meta-)Logical Reasoning: Recent Successes. Sci-
ence of Computer Programming, 172:48–62, 2019.

6. Christoph Benzmüller and Peter B. Andrews. Church’s Type Theory. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, summer 2019 edition, 2019.

7. Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase. Higher-Order Se-
mantics and Extensionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.

8. Christoph Benzmüller and Dale Miller. Automation of Higher-Order Logic. In
Dov M. Gabbay, Jörg H. Siekmann, and John Woods, editors, Computational Logic,
volume 9 of Handbook of the History of Logic, pages 215–254. Elsevier, North
Holland, 2014.

9. Christoph Benzmüller, Xavier Parent, and Leendert van der Torre. Designing Nor-
mative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Method-
ology, and Tool Support. Artificial Intelligence, 287:103348, 2020.

10. Christoph Benzmüller and Dana Scott. Automating Free Logic in HOL, with an
Experimental Application in Category Theory. Journal of Automated Reasoning,
pages 1–20, 2019.

11. Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A Counterexample Gen-
erator for Higher-Order Logic Based on a Relational Model Finder. In Matt Kauf-
mann and Lawrence C. Paulson, editors, First International Conference on Inter-
active Theorem Proving, volume 6172 of Lecture Notes in Computer Science, pages
131––146, Edinburgh, United Kingdom, Jul 11–14 2010. Springer Berlin, Heidel-
berg.

12. Chad E. Brown. Satallax: An Automatic Higher-Order Prover. In Proceedings of
the 6th International Joint Conference on Automated Reasoning, IJCAR’12, pages
111–117, Berlin, Heidelberg, 2012. Springer.

13. Alonzo Church. A Formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5(2):56–68, 1940.

14. William M. Farmer. A Partial Functions Version of Church’s Simple Theory of
Types. Journal of Symbolic Logic, 55:1269–1291, 1990.

15. Solomon Feferman. Logics for Termination and Correctness of Functional Pro-
grams. In Yiannis N. Moschovakis, editor, Logic from Computer Science, pages
95–127, New York, NY, 1992. Springer.

16. Raymond D. Gumb. Free Logic in Program Specification and Verification. In Edgar
Morscher and Alexander Hieke, editors, New Essays in Free Logic. In Honour of
Karel Lambert, volume 23, page 157–93. Springer Netherlands, Dordrecht, 2001.

17. Raymond D. Gumb and Karel Lambert. Definitions in Nonstrict Positive Free
Logic. Modern Logic, 7(1):25–55, 1997.

Positive Free Higher-Order Logic and its Automation 15

18. Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic,
15(2):81–91, 1950.

19. David Kaplan. A Problem in Possible Worlds Semantics. In Walter Sinnott-
Armstrong, Diana Raffman, and Nicholas Asher, editors, Modality, Morality and
Belief: Essays in Honor of Ruth Barcan Marcus, pages 41–52. Cambridge Univer-
sity Press, 1995.

20. Daniel Kirchner, Christoph Benzmüller, and Edward N. Zalta. Mechanizing Prin-
cipia Logico-Metaphysica in Functional Type Theory. Review of Symbolic Logic,
13(1):206–218, 2020.

21. Karel Lambert. The Definition of E! in Free Logic. Abstracts: The International
Congress for Logic, Methodology and Philosophy of Science, 1960.

22. Karel Lambert. Free Logic and the Concept of Existence. Notre Dame Journal of
Formal Logic, 1-2(8):133–144, 1967.

23. Karel Lambert. Philosophical Applications of Free Logic. Oxford University Press,
1991.

24. Scott Lehmann. ‘No Input, No Output’ Logic. In Edgar Morscher and Alexander
Hieke, editors, New Essays in Free Logic. In Honour of Karel Lambert, volume 23,
pages 147–155. Springer Netherlands, Dordrecht, 2001.

25. Irina Makarenko. Free Higher-Order Logic – Notion, Definition and Embedding in
HOL. Master’s thesis, Freie Universität Berlin, 2020.

26. Robert K. Meyer and Karel Lambert. Universally Free Logic and Standard Quan-
tification Theory. Journal of Symbolic Logic, 33(1):8–26, 1968.

27. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic. http://isabelle.in.tum.de/doc/
tutorial.pdf, 2019. Last accessed on December 30, 2019.

28. Lawrence C. Paulson and Jasmin Christian Blanchette. Three Years of Experience
with Sledgehammer, a Practical Link between Automatic and Interactive Theorem
Provers. Proceedings of the 8th International Workshop on the Implementation of
Logics, pages 131––146, 2015.

29. Arthur N. Prior. On a Family of Paradoxes. Notre Dame Journal of Formal Logic,
2(1):16–32, 1961.

30. Rolf Schock. Logics Without Existence Assumptions. Almqvist & Wiksell, Stock-
holm, 1968.

31. Kurt Schütte. Syntactical and Semantical Properties of Simple Type Theory. Jour-
nal of Symbolic Logic, 25(4):305–326, 1960.

32. Dana Scott. Existence and Description in Formal Logic. In Ralph Schoenman,
editor, Bertrand Russell: Philosopher of the Century, pages 181–200. Little, Brown
& Company, Boston, 1967. Repr. in [23], pp. 28–48.

33. Alexander Steen and Christoph Benzmüller. Sweet SIXTEEN: Automation via
Embedding into Classical Higher-Order Logic. Logic and Logical Philosophy,
25(4):535–554, 2016.

34. Alexander Steen and Christoph Benzmüller. The Higher-Order Prover Leo-III.
In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning. IJCAR 2018, volume 10900 of Lecture Notes in Computer Science,
pages 108–116. Springer, 2018.

35. Jørgen Villadsen and Anders Schlichtkrull. Formalization of Many-Valued Log-
ics. In Henning Christiansen, M. Dolores Jiménez-López, Roussanka Loukanova,
and Lawrence S. Moss, editors, Partiality and Underspecification in Information,
Languages, and Knowledge, pages 219–256. Cambridge Scholars Press, 2017.

36. Edward N. Zalta. Principia Logico-Metaphysica. http://mally.stanford.edu/
principia.pdf. Draft/Excerpt; last accessed on May 31, 2020.

