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We introduce a call-by-need variant of PCF with a binary probabilistic fair choice operator. We define
its operational semantics and contextual equivalence as program equivalence, where the expected
convergence is only observed on numbers. We investigate another program equivalence that views
two closed expressions as distribution-equivalent if evaluation generates the same distribution on the
natural numbers. We show that contextual equivalence implies distribution-equivalence. Future work
is to provide a full proof of the opposite direction.

1 Introduction

Pure, lazy functional programming languages like Haskell allow a clean mathematical treatment of pro-
grams, like equational reasoning. They usually have a large set of correct program transformations.
Implementations of those languages use a call-by-need strategy for program execution, i.e. they com-
bine lazy evaluation with sharing to avoid duplicated evaluation of subexpressions (see e.g. [2, 1] for
call-by-need lambda-calculi). Probabilistic programming uses programs to express probabilistic and/or
stochastic models as a program (see e.g. [4]). Reasoning on such programs means also reasoning on
those models. Combining lazy evaluation and functional programming with probabilistic programming
thus seems to be a worth-wile investigation. In previous work [16], we introduced an untyped prob-
abilistic call-by-need lambda-calculus and analyzed its contextual semantics. We showed method and
techniques to prove correctness of program transformations. In this work, we report on work in progress
on a slightly different setting where a typed calculus that includes natural numbers and the nat-type is
investigated. Our focus is to consider the evaluation of expressions type nat and to show properties of
the corresponding probability distribution on numbers that is expressed by such a probabilistic program.

Thus we consider a probabilistic variant of PCF [15, 6], a monomorphically typed lambda-calculus
with natural numbers, successor- and predecessor-operations, a branching construct (if-then-else),
a fixpoint-operator to express recursion, a let-construct to implement sharing, and binary fair choice
(s⊕ t) that randomly chooses between s and t – both with probability 0.5.

For an expression s, summing the probabilities over all successful evaluations results in expected
convergence. As program equivalence we use contextual equivalence [14] w.r.t. expected convergence
which holds for two expressions s,t if the expected convergence of expression C[s] is the same as the
expected convergence of expression C[t] for any program context C.

On type nat, the type of natural numbers, one can also observe the expected convergence per value
(i.e. per number) which defines a (discrete) probability distribution on all natural numbers. Two expres-
sions of type nat are distribution-equivalent if they induce the same probability distribution. Our main
goal of this work in progress is to analyse the relation between distribution-equivalence and contextual
equivalence. As a first result we show that contextual equivalence implies distribution-equivalence (see
Theorem 3.11). We conjecture an implication for the opposite direction, but its proof is ongoing work.
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A context lemma restricts the necessity to take into account all contexts for proving contextual equiv-
alences by restricting the regarded contexts to reduction contexts (see [13, 18] for context lemmas in other
calculi). We argue that a context lemma holds in the typed setting (see Theorem 3.7). As a direct conse-
quence, some program transformations can be shown to be correct without any effort. In Proposition 3.8
we formulate these correctness results. In this extended abstract, most of the proofs are omitted. They
can either be derived in analogous way as in the previous work (for an untyped setting) [16], or they are
work-in-progress (we will clearly state, when we can only conjecture a statement).
Related work. Early investigations into probabilistic program calculi are [17, 8]. Operational semantics
for a probabilistic lambda-calculus were defined in [11], including call-by-name and call-by-value se-
mantics, but no call-by-need semantics. Contextual equivalence is defined analogously to our definition
in [10, 3] for call-by-name and call-by-value calculi. In [9] operational semantics, contextual equiva-
lence, expressive power and termination of a typed call-by-value PCF are discussed. In [19], contextual
equivalence for an untyped call-by-value lambda-calculus with continuous random variables is analyzed
and program transformations are shown correct. In contrast, the distributions induced by our binary
choice operator are discrete. In the categories used by [9], our calculus is a randomized lambda-calculus
(it performs random evaluation of the choice operator), while the calculus of [19] is a Bayesian lambda-
calculus, since it has sampling and conditioning operators to build continuous probabilistic models.
Outline. In Section 2 the syntax and operational semantics of our language are introduced as well as
contextual equivalence, distribution-equivalence in Section 3, the context lemma, correctness of trans-
formations and the relation between contextual and distribution-equivalence are discussed.

2 Syntax and Semantics

2.1 Syntax, Typing, and Operational Semantics

We define the syntax of probabilistic call-by-need PCF, which we call ProbPCFneed.

Definition 2.1 (Syntax of Expressions and Types). Let Var be an infinite, countable set of variables. We
use x,y,z,xi,yi,zi for variables of Var. The syntax of expressions s,t,r ∈ Expr and types τ,ρ,σ ∈ Typ is
given by the following grammar:

s,t,r ∈ Expr ∶∶= x ∣ λx.s ∣ (s t) ∣ (s⊕ t) ∣ let x = s in t ∣ if r then s else t
∣ fix s ∣ pred s ∣ succ s ∣ n where n ∈N

τ,ρ,σ ∈ Typ ∶∶= nat ∣ τ → ρ

The expressions include the lambda-calculus (variables, abstractions, applications), let-expressions
to share expressions, the binary probabilistic operator ⊕, naturals n = 0,1,2 . . . (of type nat), with opera-
tions pred and succ to compute the predecessor and the successor of a number, a fixpoint-operator fix,
and branching via if-then-else-expressions. Besides basic type nat, there are function types τ → ρ .

Abstractions and let-expressions introduce variable binders, where in λx.s the scope of bound vari-
able x is body s, and in (let x = s in t) the scope of the bound variable x is the in-expression t. As usual
this defines notions of bound and free variables, of bound and free variable occurrences, and a notion
of α-renaming (i.e. consistent renaming of binders and their corresponding bound variable occurrences
in the scope the binders). Expressions s and t are said to be α-equivalent, if there are α-renamings
that make s and t syntactically equal. We use the distinct variable convention and thus assume that the
free and bound variables of an expression are pairwise distinct and that all variables on binders are pair-
wise distinct. The distinct variable convention can always be satisfied by applying α-renamings (with
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NAT
n ∶ nat

PRED
s ∶ nat

pred s ∶ nat
SUCC

s ∶ nat

succ s ∶ nat
APP

s ∶ τ → ρ,t ∶ τ
(s t) ∶ ρ

ABS
s ∶ τ

λx.s ∶ Γ(x)→ τ

FIX
s ∶ ρ → ρ

(fix s) ∶ ρ
VAR

x ∶ Γ(x)
PROB

s ∶ ρ,t ∶ ρ
(s⊕ t) ∶ ρ

LET
t ∶ τ,s ∶ ρ,ρ = Γ(x)
(let x = s in t) ∶ τ

IF
r ∶ nat,s ∶ τ,t ∶ τ

(if r then s else t) ∶ τ

Figure 1: Type check rules

fresh variable name). We also assume that reduction rules or transformations rules implicitly perform
α-renaming to obey the distinct variable convention.

For simplicity, we use a type checking system with already fixed (built-in) types of variables, instead
of using a type derivation system (with a flexible type environment). So let Γ ∶ Var → Typ be a global
typing system that determines the type of every variable.
Definition 2.2 (Typing). A typing judgment s ∶ τ means that s has type τ . The typing rules of ProbPCFneed

are shown in Fig. 1. We say that a closed expression s is well-typed iff s ∶ ρ for some type ρ .
In the following, we use (term) contexts, i.e. expressions that have a hole [⋅]. A general context C

has its hole at an arbitrary expressions position, i.e. general contexts are defined by the grammar:

C ∶∶= [⋅] ∣ λx.C ∣ (C s) ∣ (s C) ∣ (C⊕ s) ∣ (s⊕C) ∣ let x = s in C ∣ let x =C in s
∣ if C then s else t ∣ if r then C else s ∣ if r then s else C ∣ fix C ∣ pred C ∣ succ C

A surface context is a context, where the context hole is not below an abstraction. For a context C and
an expression s, we write C[s] for substituting the hole of C with expression s. Concerning typing, a
context C can have any type that can be given to the expression C[x], where x is a fresh variable. Since
this is non-deterministic we label the context hole with the corresponding hole type, and write C[⋅σ ] for
the context with hole type σ . Thus, a context is well-typed iff it type checks with the extra rule:

CTXT
C[x] ∶ τ,
C[⋅σ ] ∶ τ

where x does not occur in C and Γ(x) = σ

Clearly, if C[⋅σ ] ∶ τ and s ∶ σ , then C[s] ∶ τ .
For defining the standard reduction, we introduce A-, LR-, and R-contexts. The A-contextd are usual

call-by-name evaluation contexts adapted to the constructs of the language (i.e. treating fix, succ, pred,
and if-then-else as operators strict in their first argument) while LR-contexts represent an outer en-
vironment consisting of let-expressions. The reduction contexts R combine LR- and A-contexts such
that the hole-position can go into the in-expressions of let, and also into a right-hand-side of a let-
binding if it is needed – i.e. the bound variable occurs in a reduction context. The flat A-contexts A1 are
A-contexts with hole-depth 1

A ∶∶= [⋅] ∣ (A s) ∣ if A then s else t ∣ pred A ∣ succ A ∣ fix A
A1 ∶∶= ([⋅] s) ∣ if [⋅] then s else t ∣ pred [⋅] ∣ succ [⋅] ∣ fix [⋅]

LR ∶∶= [⋅] ∣ let x = s in LR
R ∶∶= LR[A] ∣ LR[let x = A in R[x]]

A value in probabilistic call-by-need PCF is a natural or an abstraction. A weak head normal form
additionally allows an outer LR-context.

Values: v ∶∶= n ∣ λx.s WHNFs ∶ w ∶∶= LR[v]
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Standard reduction of probabilistic call-by-need PCF is a small-step reduction that respects sharing:

Definition 2.3 (Standard reduction). The standard reduction of probabilistic call-by-need PCF is denoted
by

srÐ→ and defined by the following rules:

(sr,fix) R[fix λx.s]→ R[(λx.s) (fix λx.s)]
(sr, lbeta) R[(λx.s) t]→ R[let x = t in s]
(sr,succ) R[succ n]→ R[m] with m = n+1
(sr,pred) R[pred n]→ R[m] with m =max(0,n−1)
(sr, if -0) R[if 0 then s else t]→ R[s]
(sr, if -not-0) R[if n then s else t]→ R[t] if n /= 0
(sr,probl) R[s⊕ t]→ R[s]
(sr,probr) R[s⊕ t]→ R[t]
(sr, lflata) R[A1[(let x = s in t)]→ R[let x = s in A1[t]]
(sr, llet) LR[let x = (let y = s in t) in R[x]]→ LR[let y = s in let x = t in R[x]]
(sr,cp) LR[let x = v in R[x]]→ LR[let x = v in R[v]]

We apply standard reductions only to typed expressions. For a standard reduction step s
srÐ→ t, we some-

times write s
sr,labÐÐ→ t where (sr, lab) is the name of the applied reduction rule, e.g. s

sr,cpÐÐ→ t. With
sr,+ÐÐ→ we

denote the transitive closure of
srÐ→, and with

sr,∗ÐÐ→ we denote the transitive-reflexive closure.

Rule (fix) evaluates the fixpoint-operator and requires the argument to be an abstraction, rule (lbeta)
evaluates the application of an abstraction to an argument, where the argument is shared by a new let-
binding to avoid duplication of the argument. Rule (cp) copies a let-binding into a referenced position,
but only if i) the expression is needed, and thus the referenced position is in a reduction context, and ii)
the expression is already successfully evaluated, and thus it is a value (a natural number or an abstrac-
tion). If the expression is not a value, the reduction will evaluate the left-hand side of the let-binding
(that is the reason why the construction of R-contexts is quite complicated). Rules (succ) and (pred)
evaluate the successor and predecessor of a natural number, where pred 0 is evaluated to 0. Rules (if -0)
and (if -not-0) evaluate the if-then else-expression. Rules (lflata) and (llet) adjust let-expression
w.r.t. applications, if-then-else, succ, pred, fix and let-bindings by moving them over the corre-
sponding construct. Rules (probl) and (probr) are the only source of non-determinism of the reduction,
they evaluate a ⊕-expression by either choosing the left or the right argument. For now, this is com-
pletely non-deterministic, we will add probabilities to this decision in the next subsection. We say that a
standard-reduction is a prob-reduction if it is a probl- or probr-reduction.

Note that for every typed expression, either no standard reduction is applicable (if s is a WHNF, or
an open expression of the form R[x]), or s is of the form R[r1⊕r2] and there are exactly two possibilities

for the standard reduction: s
sr,problÐÐÐ→ R[r1] and s

sr,probrÐÐÐÐ→ R[r2], or there is exactly one standard reduction
applicable to s (i.e. s

srÐ→ t, but there is no t′ with s
srÐ→ t′ and t /= t′).

Definition 2.4 (Convergence). For an expression s, we say that s converges, denoted as s ↓w, iff there is
a reduction sequence s

∗Ð→w, where w is a WHNF.

While for open expressions the reduction may get stuck, for closed well-typed expressions we have
the following lemma (where we omit the proof):

Proposition 2.5 (Progress). If s ∶ ρ is closed and s /srÐ→, then s is a (closed) WHNF.

By inspecting the type rules together with the reduction rules, we obtain:
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Proposition 2.6 (Type preservation). If s ∶ ρ and s
srÐ→ t. Then t ∶ ρ .

Definition 2.7. Let s be an expression. A sequence of standard reductions s
sr,∗ÐÐ→ t where t is a WHNF is

called an evaluation of s. We write Eval(s) for the set of all evaluations of expression s. For a reduction
sequence s

sr,a1ÐÐ→⋯ sr,anÐÐ→ t, with PS(s
sr,a1ÐÐ→⋯ sr,anÐÐ→ t) we denote the subsequence of labels ai . . . ,ak that

are constructed from the sequence a1, . . . ,an by removing all labels a j with a j /∈ {probl,probr}. We call
the sequence the prob-sequence of the reduction sequence.

Since standard reduction has unique redexes and it is only non-deterministic for prob-reduction, the
prob-sequence together with the start-expression s uniquely identifies an evaluation of s. Thus, to identify
a single evaluation s

sr,∗ÐÐ→ t in the set Eval(s), we write s«Lt ∈ Eval(s), where L = PS(s
sr,∗ÐÐ→ t).

Example 2.8. Let f = (λu.(0⊕succ u)) and let g = fix f . To illustrate standard reduction, we show
two evaluations of g (note that there are infinitely many):

g
sr,fixÐÐ→ f (fix f ) sr,lbetaÐÐÐ→ let u = fix f in (0⊕succ u) sr,problÐÐÐ→ let u = fix f in 0

g
sr,fixÐÐ→ f (fix f ) sr,lbetaÐÐÐ→ let u = fix f in (0⊕succ u) sr,probrÐÐÐÐ→ let u = fix f in succ u
sr,fixÐÐ→ let u = f (fix f ) in succ u

sr,lbetaÐÐÐ→ let u = (let u1 = fix f in (0⊕succ u1)) in succ u
sr,lletÐÐÐ→ let u1 = fix f in let u = (0⊕succ u1) in succ u

sr,problÐÐÐ→ let u1 = fix f in let u = 0 in succ u
sr,cpÐÐ→ let u1 = fix f in let u = 0 in succ 0

sr,succÐÐÐ→ let u1 = fix f in let u = 0 in 1
For the first evaluation, the prob-sequence is probl and for the second one the prob-sequence is

probr,probl. For the expression g, any prob-sequence of any evaluation is of the form probr∗,probl,
since the evaluation ends by choosing the a left argument of the current ⊕-expression and it proceeds
with the successor by choosing the right argument.

2.2 Weighted Reduction and Expected Convergence

Our operational semantics is non-deterministic, but it does not track the probability of different evalua-
tions or results (in form of the WHNFs). To track the probabilities we introduce weights:

Definition 2.9 (Weighted Expressions and Reduction). A weighted expression is a pair (p,s) where
p ∈ (0,1] is a rational number and s is an expression. Let (p,s) be a weighted expression. A weighted
standard reduction step

wsrÐ→ (or
wsr,aÐÐ→ to make the rule explicit) on (p,s) is defined as follows:

(p,s) wsr,aÐÐ→
⎧⎪⎪⎨⎪⎪⎩

(p,t) iff s
sr,aÐÐ→ t and a /∈ {probl,probr}

( p
2 ,t) iff s

sr,aÐÐ→ t and a ∈ {probl,probr}

We use
wsr,∗ÐÐ→ and

wsr,+ÐÐÐ→ for the reflexive-transitive, or transitive closure of
wsrÐ→.

An evaluation of (p,s) is a sequence (p,s) wsr,∗ÐÐ→ (q,t) where t is a WHNF. We use the same notations
as for non-weighted expressions. Thus, the sequence of labels a for each prob-reduction

wsr,aÐÐ→ together
with the weighted expression (p,s) uniquely identifies an evaluation of (p,s)).

Example 2.10. We reconsider the expression g from Example 2.8, i.e. let f = (λu.(0⊕succ u)) and let
g = fix f . We show two weighted evaluations of (1,g).
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(1,g) wsr,fixÐÐÐ→(1, f (fix f )) wsr,lbetaÐÐÐÐ→ (1,let u = fix f in (0⊕succ u)) wsr,problÐÐÐÐ→ ( 1
2 ,let u = fix f in 0)

(1,g) wsr,fixÐÐÐ→ (1, f (fix f )) wsr,lbetaÐÐÐÐ→ (1,let u = fix f in (0⊕succ u))
wsr,probrÐÐÐÐ→ ( 1

2 ,let u = fix f in succ u) wsr,fixÐÐÐ→ ( 1
2 ,let u = f fix f in succ u)

wsr,lbetaÐÐÐÐ→ ( 1
2 ,let u = (let u1 = fix f in (0⊕succ u1)) in succ u)

wsr,lletÐÐÐ→ ( 1
2 ,let u1 = fix f in let u = (0⊕succ u1) in succ u)

wsr,problÐÐÐÐ→ ( 1
4 ,let u1 = fix f in let u = 0 in succ u)

wsr,cpÐÐÐ→ ( 1
4 ,let u1 = fix f in let u = 0 in succ 0) wsr,succÐÐÐÐ→ ( 1

4 ,let u1 = fix f in let u = 0 in 1)
Definition 2.11 (Expected Convergence). For a weighted expression (p,s) we denote with Eval(p,s)
the set of evaluations of (p,s), where single evaluations in the set are written (p,s)«L(q,t), i.e. if
(p,s)«L(q,t) ∈ Eval(p,s) then there is an evaluation (p,s) wsr,∗ÐÐ→ (q,t) where (q,t) is the resulting
weighted WHNF and L = PS(s

sr,∗ÐÐ→ t). The expected convergence EXCV(s) of an expression s is the
(perhaps infinite) sum of all weights of WHNFs that are reachable from (1,s), i.e.

EXCV(s) = ∑
(1,s)«L(q,t)∈Eval(1,s)

q.

For a number n, the expected value convergence of s on value n EXVCV(s,n) is the (infinite) sum:

EXVCV(s,n) = ∑
(1,s)«L(q,LR[n])∈Eval(1,s)

q,

i.e. only evaluations resulting in expressions of the form LR[n] (where n is a number) are taken into
account. In contrast in EXCV(s) any WHNF t is taken into account as a result.

The notions of expected convergence and also expected value-convergence are well-defined, that is,
the limit ∑(1,s)«L(q,t)∈Eval(1,s)q always exists and is unique. In particular, its value is independent of the
enumeration of the countable set Eval(s). For a rigorous proof, in another calculus, see [16].

The following lemma holds, since both expressions of the equation define the same infinite sum:
Lemma 2.12. For all expressions s ∶ nat: EXCV(s) =∑∞i=0 EXVCV(s, i)
Example 2.13. For s = (λx.((succ x)⊕ (pred x))) (0⊕1), the expected convergence is EXCV(s) =
1. The expected value convergences are EXVCV(s,0) = 1

2 , EXVCV(s,1) = 1
4 , EXVCV(s,2) = 1

4 and
EXVCV(s, i) = 0 for all i > 2.

3 Equalities

Contextual preorder and equivalence observe the expected convergence of expressions in any program
context. For the preorder, the expected convergence is never decreased and for contextual equivalence,
the expected convergence is the same for both expressions inside any context.
Definition 3.1 (Contextual Preorder and Equivalence). Let s,t ∶∶ σ be equally typed expressions. If for
all contexts C[⋅σ ] ∶ nat, we have EXCV(C[s]) ≤ EXCV(C[t]), then s ≤c t. We define s ∼c t iff s ≤c t and
t ≤c s. The relation ≤c is called contextual preorder, and ∼c is called contextual equivalence.
Example 3.2. Refuting an equivalence s ∼c t (and thus showing s /∼c t) can be done by a single context C
that acts as a counter-example, i.e. EXCV(C[s]) /= EXCV(C[t]). For instance, for n,m ∈ N0 with n < m
and the context C ∶= if predn [⋅] then 0 else (fix λx.x) (where predn is the n-fold application of
pred) we have EXCV(C[n]) = 1 but EXCV(C[m]) = 0, since fix λx.x diverges.
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It is straightforward to show that ∼c is an equivalence relation and that ≤c is a preorder. Since both
relations are compatible with contexts, we have:

Proposition 3.3. The relation ∼ is a congruence, and the relation ≤c is a precongruence.

Remark 3.4. Call-by-value and call-by-name variants of our language would have different operational
and also contextual semantics. For instance, in a call-by-value language (λy.1) � is contextually equiv-
alent to �, where � is a non-terminating expression, for example (fix λx.x). In ProbPCFneed the ex-
pressions are not equivalent, since the former expressions evaluates to the WHNF let y = � in 1 and the
latter diverges. In deterministic languages, call-by-need evaluation can be seen as an efficient implemen-
tation of the call-by-name semantics. In our probabilistic (and hence non-deterministic) setting, this is no
longer true, since the semantic changes: for instance, let add be a function implementing addition, then
((λ x.add x x) (1 ⊕ 2) evaluates in call-by-name to 2,3,4 (where 2 and 4 have probability 1

4 , and 3 has
probability 1

2 ) while in ProbPCFneed only the results 2 and 4 are possible (both with probability 1
2 , since

the argument (1 ⊕ 2) is evaluated only once and the result is shared for the computation of (add x x).

Remark 3.5. Contextual equivalence would slightly change if also convergence on other types like
function types is observed. An example are the expressions λx.� and �. These cannot be distinguished,
since in the case the reduction uses one of these expressions, evaluation does not terminate. This is an
indication that the η-law may hold in our formulation of the contextual equivalence. Thus the reduction
strategy is slightly different to the ones in lazy functional programming languages like Haskell [5] where
a seq-operator is available to enforce strict evaluation of any expression.

Showing that two expressions are contextually equivalent requires to reason about any context C
and thus it is harder than refuting equivalences and requires additional tools and techniques. In the next
section we show that a context lemma holds which is an important tool.

3.1 Context Lemma

For an expression s, we define EXCV(s,k) as the (perhaps infinite) sum of all weights of WHNFs that
are reachable from (1,s) where at most k prob-reductions are used (in contrast, in EXCV(s) any number
of prob-reductions is allowed). For instance, for expression g from Examples 2.8 and 2.10, we have
EXCV(g) = 1, but EXCV(g,0) = 0 (since at least one prob-reduction is necessary to reach a WHNF),
EXCV(g,1) = 1

2 (since with one prob-reduction only one WHNF is reachable), EXCV(g,2) = 3
4 (since

with two prob-reductions a further WHNF is reachable), EXCV(g,3) = 7
8 , asf.

While the bound on the number k is helpful for inductive proofs (since one can perform induction on
this number), the following lemma shows how to transfer results with bounds to the limit: it shows that
preservation of expected convergence for any bound on the prob-length implies preservation of expected
convergence. The additional parameter d allows some difference between the evaluations of s and t.

Lemma 3.6. Let s,t ∶ τ such that ∀k ≥ 0 ∶ ∃d ∶ EXCV(s,k) ≤ EXCV(t,k+d). Then EXCV(s) ≤ EXCV(t).

The proof is similar to [16, Lemma 3.3] for a different probabilistic lambda-calculus.
Now we can state the context lemma for ProbPCFneed. It is proved for a related language in [16],

and the proof can be transferred to our setting. Here we use multi-contexts, i.e. expressions with several
(or no) holes. We only consider multi-contexts where all holes are of the same type. Thus, we write
C[[⋅1,σ ], . . . ,[⋅N,σ ]] for a multi-context with N ∈N0 holes – all of type σ . A multi-context is well-typed
with type ρ iff C[x, . . . ,x] ∶ ρ for fresh variable x with Γ(x) = σ .

Theorem 3.7 (Context Lemma). Let N ≥ 0, let σ be a type and for 1 ≤ i ≤ N, let si,ti be expres-
sions of type σ , such that ∀k ≥ 0, ∀ reduction contexts R[⋅σ ], of type σ → nat there exists d ≥ 0 ∶
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(fix) fix λx.s→ (λx.s) (fix λx.s)
(lbeta) ((λx.s) t)→ let x = t in s
(succ) (succ n)→m with m = n+1
(pred) (pred n)→m with m =max(0,n−1)
(if -0) if 0 then s else t → s

(if -not-0) if n then s else t → t if n /= 0
(lflata) A1[(let x = s in t)]→ let x = s in A1[t]
(llet) let x = (let y = s in t) in r

→ let y = s,x = t in r
(cp) let x = v in C[x]→ let x = v in C[v]

Figure 2: Program Transformations

EXCV(R[si],k) ≤ EXCV(R[ti],k+d). Let C[⋅1,σ , . . . , ⋅N,σ ] ∶ nat be a multicontext with N holes. Then
the inequation EXCV(C[s1, . . . ,sN]) ≤ EXCV(C[t1, . . . ,tN]) holds.

In the proof of the context lemma, one first shows that for all k ≥ 0 there exists a d such that
EXCV(C[s1, . . . ,sN],k) ≤ EXCV(C[t1, . . . ,tN],k+ d). Then Lemma 3.6 is applied in a final step. For
the former a part, the proof is by induction on the lexicographically ordered) tripel (k, l,N) where k is
the bound on the number of prob-reductions, l is the maximal length of the evaluations of C[s1, . . . ,sn]
that use at most k prob-reductions, and N is the number of holes in C.

3.2 Program Transformations

A program transformation
TÐ→ is a binary relation on equally typed expressions, it is correct if it does

not change the semantics of a program. Since in our setting programs are semantically equal iff they are

contextual equivalent, we define correctness of a program transformation by
TÐ→ ⊆ ∼c. The context lemma

will be very helpful in arguing on the correctness of reduction rules as program transformations. In Fig. 2
generalisations of standard reductions are shown.

Proposition 3.8. The context lemma immediately implies that all of the transformations (fix), (lbeta),
(succ), (pred), (if -0), (if -not-0), (lflata) are correct.

Proof. This holds, since for any reduction context R and any of the formerly mentioned transformations

s
TÐ→ t, R[s]→ R[t] is always a standard reduction step (that is not a prob-reduction). Thus we have that

EXCV(R[s],k) = m iff EXCV(R[t],k) = m. This shows the precondition of the context lemma for N = 1
(and where d is always 0). The context lemma shows that s ∼c t holds.

Proving correctness of the transformations (llet) and (cp) requires more sophisticated techniques,
but we are convinced that their correctness can be proved in a similar way as we proved correctness for
similar transformations in [16]. However, we leave the rigorous proof as future work.

Also transformations related to the ⊕-operator can be shown correct. For instance, commutativity
(s⊕ t) → (t ⊕ s) can be shown correct by using the context lemma and the observation that R[s⊕ t]
standard reduces to R[s] or R[t] (both with probability 1

2 ) and the same holds for (t⊕ s). Also the law
(s⊕ s)→ s is a correct program transformation, that can be shown correct by the context lemma.

The associativity law (r⊕ (s⊕ t)) → ((r⊕ s)⊕ t) is not correct, since probabilities are changed.
However, the adjusted (distributivity) transformation (r⊕(s⊕ t))→ ((r⊕ s)⊕(r⊕ t)) is correct: for the
left expression and any reduction context R:

EXCV(R[(r⊕(s⊕ t))],k) = 1
2

EXCV(R[r],k−1)+ 1
4

EXCV(R[s],k−2)+ 1
4

EXCV(R[t],k−2).
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For the right expression and any reduction context R:

EXCV(R[((r⊕ s)⊕(r⊕ t))],k) = 2 ⋅ 1
4

EXCV(R[r],k−2)+ 1
4

EXCV(R[s],k−2)+ 1
4

EXCV(R[t],k−2).

Since EXCV(s0,k) ≥ EXCV(s0,k′) for any expression s0 and k ≥ k′, the equations imply

EXCV(R[((r⊕ s)⊕(r⊕ t))],k) ≤ EXCV(R[(r⊕(s⊕ t))],k) and
EXCV(R[(r⊕(s⊕ t))],k) ≤ EXCV(R[((r⊕ s)⊕(r⊕ t))],k+1)

for all k ≥ 0. The context lemma for N = 1 holes shows contextual equivalence of the expressions. Also,
the transformation ((r1⊕ s1)⊕(r2⊕ s2))→ ((r1⊕ s2)⊕(r2⊕ s1)), is correct, which again can be proved
by the context lemma. In [16], worked-out proofs for a related (untyped) calculus can be found.

A transformation proved in [19] for a strict probabilistic programming language with let is let x =
txin let y = ty in s → let x = tx in let y = ty in s if x does not occur free in ty. We conjecture
that this transformation is also correct in ProbPCFneed. The context-lemma together with checking the
overlaps appears to be sufficient to show equivalence. However, in a call-by-value language, the above
transformation changes the order of the effects that appear while evaluating tx and ty, while in our call-
by-need language, the order is the same (whether tx and/or ty are evaluated and the order depends on
whether and/or when the evaluation of s demands the value of x and y).

3.3 Distribution-Equivalence

We are also interested in the following operational equality of expressions that identifies expressions as
equal iff they generate the same probability distribution on natural numbers:
Definition 3.9 (Distribution-Equivalence). Let s,t ∶ nat be two closed expressions. Then s and t are
distribution-equivalent, written s ∼d t, iff for all n ∈N0: EXVCV(s,n) = EXVCV(t,n).
Example 3.10. We reconsider Example 2.8, i.e. g=fix f where f = (λu.(0⊕succ u)). The expression g
produces natural numbers i with probability 1

2i+1 , i.e. g produces 0 with probability 1
2 , 1 with probability 1

4
asf. We claim that this sequence, even if obtained through an infinite sum, is characteristic for contextual
equivalence. Another example is (0⊕1)+2∗(0⊕1) and (0⊕1)⊕(2⊕3) where + and ∗ are encodings
of addition and multiplication. The first expression corresponds to throwing sequentially 2 coins, and the
second to throwing a 4-sided dice with probability 0.25. Both expressions are distribution-equivalent.

A result on the contextual equivalences is:
Theorem 3.11. Let s,t ∶ σ be two typed expressions with s ∼c t. Then for any context C[⋅σ ] ∶ nat, the
generated distribution is the same for C[s] and C[t], i.e. C[s] ∼d C[t].

Proof. Let n be some number, and let Cn be a context that recognizes the number n, i.e. Cn[⋅nat] =
if [⋅nat] == n then 0 else bot (where bot is an expression of type nat that diverges, e.g. bot = fix λx.x
with Γ(x) = nat). The context Cn can be programmed in ProbPCFneed. The context Cn[C[⋅σ ]] is now
used to extract the probabilities. We know that Cn[C[s]] ∼c Cn[C[t]], and more detailed, it follows that
EXVCV(Cn[C[s]]) and EXVCV(Cn[C[t]]) are exactly the respective probabilities EXVCV(s,n) and
EXVCV(t,n), which must be equal since s,t are contextually equivalent.

The issue is whether the converse holds. We do not yet have a proof but there is some hope that the
method in [7], which was already extended to non-deterministic call-by-need calculi with let in [12] can
be adapted. Thus we formulate a conjecture:
Conjecture 3.12. If the distribution of closed expressions s,t ∶ nat in the empty context is the same
(i.e. s ∼d t), then s,t are contextually equivalent.
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4 Conclusion

We introduced a monomorphically typed call-by-need functional language with fair probabilistic choice.
We defined contextual equivalence and distribution-equivalence. Besides showing a context lemma and
correctness of program transformations, we showed that contextual equivalence implies distribution-
equivalence. For the opposite direction, we formulated a conjecture and leave its proof as future work.
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