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Abstract: Natural disasters are capable of extending disastrous consequences and effects on the functionality of 

infrastructure systems and result in intense systemic and socio-economic losses. According to financial restrictions, 

it is essential to optimize decisions regarding mitigation, preparedness, response, and recovery practices for these 

systems. This necessitates accurate and efficient measures to assess the infrastructure system reliability. Machine 

learning has been the focus of attention in recent decades, and the influence of the Artificial Neural Networks 

(ANN) is definitely notable as the most extensively used models of machine learning in the assessment of 

infrastructure. This review provides damage detection assessment of seismic performance of reinforced concrete 

(RC) bridges by using machine learning methods. A multi-layered perceptron (MLP) with a back-propagation (BP) 

algorithm neural network was implemented to predict the seismic performances of the designated bridges. ANN 

models were developed, trained and tested in a MATLAB and Python program. A training set and a validation set 

of bridges were produced from the dynamic response of different RC bridges. The method is performed on the 

collected feature measurements on a railway RC bridge during the dynamic response of bridge structures, which 

were brought together in a numerical experiment using a three dimensional finite element model for this study. 

Thus, the next step consists of the design and unsupervised training of Artificial Neural Networks that are used as 

the mentioned input data. The results indicate that the proposed method is productive and capable of capturing 

physical complexities for the dynamic damage detection force on the RC bridge prediction task. Therefore, the 

results will be compared to analytical and exact deflection. The outcomes revealed that an appropriately trained 

neural network could consistently predict permanent earthquake-induced seismic deformation of the RC bridges. 

The bridges fragility analysis to calculate failure probability was another achievement that was created by using 

nonlinear analysis (NA) and ANNs. Nonlinear response history analysis was achieved in order to calculate the 

seismic performances of the bridges. The consequences of this study demonstrate that ANNs are suitable tools for 

predicting damage detection of seismic performances of RC bridges. It was also shown that efficiency stresses of 

the reinforcements are one of the important sources of uncertainty in fragility analysis of RC bridges.  It is evident 

from this evaluation that ANNs have been successfully applied to many infrastructure engineering areas like 

prediction, risk analysis, decision-making, resources optimization, classification, and selection, etc.  The neural 

network based approach demonstrates signs of being highly successful in verifying the response of bridges and 

buildings subjected to seismic evaluation. Based on the results of case studies, it is evident that ANNs perform 

better than those similar to conventional methods. 

Keywords: Seismic evaluation, Dynamic analysis, RC bridge, Artificial Neural Network, FEM, Deep Learning, 

Damage detection  

 

 



I. INTRODUCTION 

Many recently built buildings might need strengthening in order to have high performance 

while being exposed to close-fault ground motions. Fiber Reinforced Polymers are believed to 

be sustainable replacement, since they can be quite an easy option and quickly installed. In 

addition, they contain nearly zero maintenance demand and minimum life cycle costs. The 

target of this research is to measure and evaluated the efficiency of Artificial Neural Networks 

(ANN) in determining the three dimensional dynamic response of FRP strengthened RC 

buildings under near-fault ground motions. In order to reach this aim, an ANNs model is offered 

and prepared to evaluate the base shear force, base bending moments and roof displacement of 

buildings in two directions. The FEA analysis results of the dynamic response of RC buildings 

under near-fault earthquakes yield a training set of 168 and a validation set of 21 buildings. We 

have attempted to demonstrate that the neural network based approach is extremely successful 

in determining the response [1]. The seismic response of a structural building system is linked 

to a number of factors such as its configuration, dynamic features and the features of the applied 

ground motion.  

It is compulsory to replicate these factors to make them as similar to reality as possible, 

so vividly and correctly vividly and correctly foreseeing the seismic performance or 

vulnerability of a given structural system using experimental or analytical techniques is a 

possibility. Seismic responses of reinforced concrete structures have been investigated using 

various methodologies which conclude a vast intricacy specifically in analyzing the real 

building on account of the deficiencies of complete data related to excitation, creation of a 

theoretical model, modeling the dynamic loads, carrying out an analysis and inferring the 

hypotheses to the actual system [2]. Civil engineering structures are on their way out and put to 

use after their life expectancy, simultaneously enduring heavier traffic loads as a result of the 

enlarging claims of transportation amplitude. Bridges are a crucial link in modern transport 

networks, making it the right opportunity to develop vigorous and dependable structural damage 

detection systems that can certify the bridges operate in secure conditions. The method is 

performed on the collected feature measurements on a railway RC bridge during the dynamic 

response of bridge structures, which were collected in a numerical experiment implementing a 

three dimensional finite element model. Furthermore, the next step consists of the design and 

unsupervised training of Artificial Neural Networks which are being used as the mentioned 

input data [3]. 

Recently, Artificial Neural Network (ANN) models have been become widely 

obligatory for numerous relevant civil engineering realms including geotechnical engineering, 

water resources and structural engineering. With due consideration of almost every single case, 

an ANNs is a versatile system that is able to change its structure based on inner and outer 



information that overflows throughout the network. This can be arranged to obtain different 

patterns in data or to archetype the multiplex relationships between inputs and outputs. The 

main objective of the inquiry is to evolve a complex relationship among the design parameters 

for punching shear strength of the flat plate based on a developed Back-Propagation Neural 

(BPN) network algorithm [4]. Over the past few years, ANNs have been manipulated favorably 

to model almost all dimensions of geotechnical engineering problems and were extensively used 

in pavement engineering to discover the patterns between the input data and the output outcome. 

As indicated in the literature, ANNs have been immensely utilized to predict the axial and lateral 

load capacities in the compression and uplift of pile foundations [5]. In order to investigate the 

compound stringent pavements structure, finite element analysis will provide the most precise 

solution. The finite element methods have reached protrusion in complex structures such as 

rigid pavements due to their ability to efficiently model different axle configurations and 

complex boundary conditions. However, in order to obtain the mechanistic empirical design 

purpose, the design requires numerous iterations and analyses for multiple axle loads, which 

necessitates a long duration to reach the optimum design. This issue can be solved by 

developing and training an artificial neural network that would immediately foretell the rigid 

pavement responses to axle loads in a short duration [6]. During the last decades, neural 

networks in structural dynamic and earthquake engineering problems have experienced great 

advancements, which can be considered for applying neural networks in determining the static 

and dynamic parameters of structures[7].  

ABAQUS, which is an example of general finite element programs, has also been 

wielded impressively for the analysis of pavement structure [8]. In applying the finite element 

method, selecting the correct form of elements might have a significant impact on the desired 

accuracy. The finite element method can have the highest efficiency in the modeling of those 

systems with specific dimensions since we propose the layered method with the assumption of 

the infinity of layers in the radial direction. The finite element method for the nonlinear analysis 

of pavement has many advantages to the programs based on layered system theory. ANNs is a 

kind of mathematical tool, which creates a mapping between a set of input numbers and output 

numbers. Generally, the highest ranked use of the artificial neural network method is to analyze 

rigid pavements [9]. One of the most terrifying concerns of civil engineering is the prediction 

and assessment of dynamic seismic responses of infrastructures (bridges or structures) linked 

and related to earthquakes. Seismic dynamic responses of R/C structures have been examined 

using various methodologies, and many complication in the analysis of real buildings appear as 

result of deficiencies in incomplete data related to excitation, creating an idealized model, 

modeling the dynamic load, performing an analysis and extrapolating the predictions to the real 

system. Considering reasoning and interpretative experience from the analyst, the new 

generation of programs inclined to capture the knowledge or experience of expert analysts that 



is necessarily required for these situations. Thus, the prediction and evaluation of seismic 

responses of structures necessitated substantial knowledge of conceptual design, structural 

details, mathematical models and analysis presumptions. Despite the extensively developing 

computational methods, the dynamic analysis of structures in 3D is far from acceptable level 

from a structural engineering point of view. Hence, a new methodology is required to defeat 

these barriers. ANNs has been applied as an alternative method for more realistic estimation of 

seismic behavior of reinforced concrete (RC) plane frame structures. ANN is an enhanced data 

modeling able to capture and represent multifaceted relationships between inputs and outputs. 

It seems to provide a means of coping with many multi-variety problems in which an accurate 

analytical model does not exist or at least was extremely demanding and would take a lot of 

time to advance. ANN is also an alternative method and a tool for modeling complex 

phenomena in different areas of research and engineering practice[10]. 

Here, ANN-based metamodels are used to estimate the reaction of a comprehensive FEM 

to appraise the conjecture put forth by making use of the ANN metamodels in substituting the 

details [11]. FEM Artificial Neural Network (ANN) empirical regression models are 

implemented as fast-running surrogates of the Finite Element Models (FEMs) that are usually 

chosen for the simulation of the system structural response. 

 

II. BACKGROUND & LITERACTURE REVIEW  

The seismic vulnerability assessment of current reinforced concrete (r/c) buildings is 

one crucial issues in infrastructures like bridges. As a result, it has been the subject of prevalent 

research worldwide. The outcome of this extensive research is the advancement of methods, 

used to assess the assessment the seismic vulnerability of existing buildings, in addition to 

estimating their seismic damage condition as a result of future earthquakes. The existing 

methods implemented  for the solution of the two problems previously mentioned can be 

categorized into two general groups: (a) methods that can approximate the seismic performance 

of individual buildings and (b) methods that can quickly assess the seismic vulnerability of 

groups of buildings with typical structural features [12]. The approaches of the first class are 

related to linear and nonlinear analytical procedures adequate for specific buildings for which 

initial investigations assert a detailed assessment of their seismic susceptibility assessment or 

their pre-seismic strengthening or post-seismic retrofitting is necessary. As a result of their 

innate complicated nature, these methods are time consuming but undoubtedly required for 

buildings reckoned to be seismically vulnerable buildings which have suffered seismic damages 

or old bridges considered without the supplies of seismic codes or for buildings thought to be 

significant. The first category includes method which are mainly based on the Finite Element 

Method (FEM)) having been adopted and explained  in modern seismic codes[13]. 



Any reduction in sustainability, inflexibility and magnitude that has adverse functional 

impact on the structures or contains affections that might cause damage to serviceability and 

safety and possibly result in failure is designated as damage in structural systems. We classify 

the damage into four different and at the same time mutual-based definitions: identification 

consisting of determining of the presence of damage in the structure,   determination of the 

severity of damage and calculation the remaining service life of the structure. ANNs are 

considered to be a strong method in structural dynamism and are also powerful tools used to 

solve many real life problems that are inspired by the human brain, which has been applied to 

damage identification. Natural frequencies and mode forms were applied as inputs to the ANN 

for damage identification. Applicability and efficiency of the ANN in determining the extremity 

and locating damage of the joints in truss bridges was proven in this study. Park proposed a 

sequential methodology for damage detection in beam by making use of time-modal features 

and ANNs[14]. In this research study, the first natural frequency of a cracked column under 

different compression loads was estimated by an analytical method and applied as inputs and 

the crack size, crack location and compression load of the column were selected as outputs of 

the ANNs. Given the results of testing designs on a numerical sample of a trained ANNs, the 

authors found that BPNN is a beneficial tool used to predict the practical compressive force to 

the column, and the crack size-location on the cracked column. Natural frequencies were used 

to identify the location and depth of cracks in a clamped-free beam and a clamped-clamped 

plane frame by Suh, who presented a technique of combining the neural network with a genetic 

algorithm for dynamic damage calculation[15]. Damage assessment of a bridge structure was 

investigated based on the estimated modal parameters using ANN [16]. As inputs to the neural 

networks, the ratios of the resonant frequencies were used and after damage and the mode 

shapes were used after damage. It was found that the predicted damage locations and severities 

compared fine with the imposed deflection on the infrastructures. In addition, many other 

research studies have attempted to apply ANNs in identifying  structural engineering 

damages[17][18][19]. This research focus on the numerical modal analysis based on a finite 

element simulation used to generate modal parameter data to train ANNs for the aim of 

predicting damage severity. This study presents the finite element modeling of a bridge girder 

structure using DIANA as a robust and efficient software package [20]. A number of damaged 

scenarios are developed and the numerically obtained natural frequencies of the undamaged and 

damaged bridge model first five modes have been adequately used as the training samples for 

the ANNs. Mousavi (year) has focused on ANFIS, MLP, WNN, EPS, DT, RF, CART, and 

ANNs as some of the most popular ML modeling methods for flood prediction. The major ML 

methods used for flood prediction and the number of related articles in the literature over the 

past 100 year are given in Figure 1. This figure was designed to notify which ML methods 

gained popularity among hydrologists for civil engineering within the past decade[21]. 



 

 

 

 

 

 

 

 

 

 

Figure 1. Major ML methods used in Civil Engineering [21]. 

  

III. CHARACTERISTICS AND DATABASE OF DYNAMIC LOADS 

STRUCTURE 

We have witnessed great efforts made for predicting the wave characteristics by physical 

modeling and using traditional engineering methods in the past few years, including 

complicated deterministic equations. In this research, ANNs technology has been adopted to 

assist in the prediction of wave characteristics. This study aims at establishing an alternative 

approach for the prediction of seismic characteristics (Dynamic response & Deflection period) 

which is the ANNs. The database was generated using numerical models. 

The following goals have been set for this study: 

 Examining the accuracy of various structured ANNs for the prediction of seismic 

damages characteristics predicted by numerical methods. 

 Recommending the most effective and acceptable ANNs model for the bridges 

engineering practice 

 Incorporating the written program to an existing 3-D finite element program (FEM) 

 

 



Definition of the Computational Problem 

 

Description of the mathematical formulation of R/C  bridges and buildings' seismic response problem: 

 

 Models which simulate the R/C  bridges buildings and their seismic damage level 

  Parameters which have used for the assessment of the influence of Earthquakes and Vibration on b 

 Computational methods which are used for R/C bridges' seismic damage assessment 

 

 

Fig. 2. Steps for designing training data set. 

 

First Approach to Definition of the problem Data 

 

Initial selection of the parameters which will be utilized for the definition and solution of the 

 problem of R/C bridges and infrastructures damage assessment using ANN :  

 

 Input Parameters: Generally are classified to structural, seismic and soil parameters 

 Output Parameters: Describes the seismic damage state [Damage Index (DI)] 

ANNs ' Training Data  

 

Formation of the set of input and vectors on the basis of the initially selected input and output parameters conducting 

the following steps: 

 

 Selection of characteristic types of R/C bridges ("actual" buildings) and ground motions 

 Criterion: Coverage of a wide range for the values of the selected structural, seismic, soil parameters 

 Evaluating  and making use of of the selected bridges (following the provisions of pre-selected seismic 

codes) 

 Calculation of the seismic Damage Index of the selected buildings due to the selected ground motions 

(Performing static or dynamic nonlinear analyses) 

 Assessement of the seismic Damage Index of the selected bridges due to the selected ground motions 

(Performing static or dynamic nonlinear analyses) 

 processing of the extracted consequences  Formation of the set of input and target vectors 



The first five natural frequencies are proposed to act as the inputs of the ANNs to predict 

damage severity. Finite element analysis was performed with different damage scenarios to 

determine the natural frequencies as dynamic properties of the bridge girder. Numerical 

modeling was performed using an undamaged bridge girder   to obtain the modal frequencies 

in the first stage. Then, the introduction of different severities of damage at various locations 

along the bridge girder has lead to the creation of various damage scenarios. Later on, the results 

of the numerical modal analysis will be applied as training data for the ANNs algorithm. The 

ANNs will be capable of giving outputs in terms rigorous damage using the first five natural 

frequencies only and only by incorporating the training data [22]. 

 

 

 

Figure 3. The important loads act on Infrastructures 

 

           The FEM software ABAQUS was used to develop a numerical 3D model of a single-

track railway bridge [23]. The structure includes a concrete deck, two steel girder beams 

that support the deck and steel cross bracings used to link the girders. The deck and girder 

beams were modeled as shell elements and the cross bracings were modeled as truss 

elements. All the elements of the bridge are presumed to be rigidly connected to each other. 

If two different incidents are considered, then we will be able to replicate the damage in the 

bridge: in damage case 1, a section of the bottom flange of one girder beam is eliminated in 

an endeavor to show a damage situation in which a fatigue crack exists. The cut out section 

includes of dimension of longitudinal length l by the flange width, indicating a scenario in 

which a propagating crack has come to its critical depth (about 30% of the flange’s width 

or less) causing a sudden rupture through the whole flange width. In damage case 2, one 

bracing is removed which is in equal agreement with reducing its elastic modulus in the 

Loads on 
offshore 
structure

Functional loads

Constant Static 
loads

Dynamic loads

Enviromentel 
loads

Wind load

Wave load

Earthquake load

Fatigue loads



model to approximately zero. Considering that girder beam and bracings are connected by 

high-tension bolts, this can reflect a situation where there is looseness in the bolted 

connection [24]. Resulting in bracing functioning to become inadequate. The locations of 

the accelerometers that are installed on the top of the bridge deck are represented by Figures 

1 to 6: three aligned with the train track and three aligned with the girder beam in which 

damage takes place in DC1. The method proposed for structural assessment is meant to 

identify current damage from the measured vibration of the bridge. Dynamic loads typically 

come from traffic, which is expected to be continuous while the bridge is in service. In the 

numerical model, traffic induced vibration was simulated by means of the passage of a train 

with a fixed configuration, crossing the bridge with a speed in the range of [70–100] km/h, 

and increments of 0.1 km/h. Overall, simulation of 300 different train passages was carried 

out and the related measurement data sets were collected and saved. The moving axle loads 

were modeled as a series of constant moving forces with short time steps adhering to vehicle 

motion. 

 

IV. Artificial Neural Network  

Artificial Neural Network (ANN) is a technique that uses existing experimental data to 

foretell the behavior of similar material under various testing conditions. The ANNs has 

appeared as a beneficial concept from the field of artificial intelligence, and has been 

successfully used in modeling engineering problems over the past decade, specifically those 

related to the mechanism behavior of composite materials. Neural networks can be used as a 

powerful regression tool. They are highly nonlinear and can capture complex interactions 

among input/output variables in a system without any prior knowledge about the nature of these 

interactions [25]. ANNs was originally introduced as simplified models of brain-function [26]. 

The human brain is composed of billions of interconnected neurons. These are cells having 

specialized members that permit the transmission of singles to neighboring neurons [23]. The 

concept of neurons, transfer functions and connections are the fundamental elements that ANNs 

are based on. The uniformity of different structures of ANNs can be found in various research 

studies [27]. The majority of the variation stems from various learning rules, as well as how 

these rules modify a network’s typical topology. Generally, most applications of ANNs can be 

divided into the following four categories: 

 

 Prediction: Uses input values to predict some output. The backpropagation network 

model is mostly used for engineering predictions [28].  This is a powerful mechanism 

for establishing nonlinear transfer functions between a number of continuous valued 



inputs and one or more continuously valued outputs. Essentially, the network uses 

multi-layer perception architecture and obtains its name from the way it processes 

errors while training [29]. In the present study, we also build an ANN model to predict 

wave characteristics based on this model.  

 Classification:   Uses input values to determine the classification. This model is 

generally used for pattern recognition [30]. 

 Data association: Used simulation for the classification, while also recognizing data 

that contains errors [31]. 

 Data filtering: Analyzes input data and makes it smooth for the output [32]. 

A neural network is characterized by 3 different main actions, which are listed as [33]: 

(1) Its pattern of connections between the neurons   

(2) Its method of determining the weights on connections 

(3) Its activation function. 

 Among the applied neural networks, the feed forward neural networks (FFNN) are the 

most common used method in resolving several engineering restrictions. The FFNN method 

contains of a layer being fully linked to the preceding layer by weights [34]. Fig. 4 illustrates 

the common three-layer feed forward type of an artificial neural network. 
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Fig. 4. Schematic representation of three-layer feed forward artificial neural network 



 

         At the present time, this interactive network developed of backpropagation architecture 

has become popular, valuable, and simple to learn even for complicated models, such as multi-

layered networks.  The greatest strength of ANNs is in its dealing with nonlinear solutions to 

indefinite problems. The professional back-propagation network has an input layer, an output 

layer, and at least one hidden layer [35].  

         The BP algorithm is one of the most popular ANNs algorithms. It is claimed that BP 

algorithm could be packed up to four major steps. Once the weights are chosen computation, of 

the required corrections is done by the back propagation algorithm. The algorithm can be 

conveyed in the following four steps:  

 Computation of feed-forward  

 Back propagation to the output layer 

 Propagation to the hidden layer 

 Weight updates 

 

V. ANNs  for Seismic & Dynamic Analysis 

Finite Element Analysis (FEA) was used to produce the training and testing set of ANN 

models. A training and validation data set of RC bridges will be derived from the results of FEA 

analysis results of the dynamic response of RC bridges by shifting parameters (the input 

parameters of ANNs) including accelerations and axle loads, concrete compressive strength, 

reinforcement ratio, size of column, column shape, width of slab, effective depth of tension 

reinforcement, slab shape, peak acceleration, shear wall, story height, max width of bay in X, 

Y direction and etc., under the near-fault earthquakes. On the other hand, the output will be a 

dimensional dynamic response in terms of roof displacement, base shear forces and base 

bending moments, precisely when compared with the results of conventional methods like FEA 

[36]. The ANNs implemented in this research is a Multilayer Perceptron (MLP), with an 

architecture based on an alignment of nodes existing in one hidden layer and one output layer. 

The input layer transfer information from the outside into the first hidden layer and the process 

goes forth until reaching the output layer. While elements in the same layer are not 

interconnected, each unit in a layer is connected to all the nodes of the next layer. It is a feed-

forward ANNs since the signals only circulate in the direction moving from the input into the 

one hidden layer and then to the output layer. With regard to the learning rule, a back 

propagation algorithm with a sigmoid transfer function was used as a first stage to investigate 

the power of the ANNs [37]. Since the damage condition is not seriously influenced by the 



bearing factor, the remaining three groups are employed to train the neural network. Hence, 

these factors are: the superstructure, piers and foundations, and seismicity. The categorization 

of the superstructure, in addition to piers and foundations, are put forth in Tables 1 and 2. The 

incidental numbering after each item listed in the tables will be put to use for the neural network 

input nodes [22]. 

Table 1: Superstructure Specifications 

Classification Element Seismic condition 

Superstructure 

Bridge type 

bridge 

Characteristics 

I 

Prestress 

beam (I) 

B Box 

beams  

F: Collapsed superstructure  

 

A: Intense Dynamic Seismic  

Bridges
,s

 Concrete: 

Substantial spalling or falling concrete  

 Rigid frame bridge 

 Truss bridge  

 Arch bridge  

 Cable bridge 

Suspension bridge  

 

Girder 

Steel bridge: Broking  truss  

Broking bottom flange or buckling  

Support 

Type 

Simple support  

Continued  

B: Middle Dynamic  Seismic  

Bridges
,s

 Concrete:  large cracking on a concretes 

superstructure 

Materials 

R RC  

R PC  

S Steel  

Steel bridge: Deformation shapes of truss or other 

members 

Deformed bottom flange  

Plan shape 
L Line bridge  

G curved bridge  

 

C: Small Dynamic seismic 

Vertical 

Configuration 

𝑆𝑙𝑜𝑝𝑒 ≤ 2% 

2% < 𝑆𝑙𝑜𝑝𝑒 ≤ 6%(2) 

6% < 𝑆𝑙𝑜𝑝𝑒 

Concrete bridge: Minor cracking on a concrete girder 

Steel bridge: Localized light deformation or buckling 

of a member 



slope 

𝐴 75 <  𝜃 ≤ 90(1) 

𝐵 60 < 𝜃 ≤ 75(2) 

𝐶 𝜃 ≤ 60 

D: No Dynamic  seismic  

No damage 

 

Table 2: Foundation Specification  

Classification  Seismic condition 

Piers and 

Foundation 

Pier type 

W Wall column  

S Single column 

M Multiple column  

N No pier  

F: Disintegrate columns, piers  

A: Big hazard 

Concrete: Cracked and deformation of columns or 

piers 

Overturned or tiled abutments 

Steel: Fracture or Crack  

Abutment 

Gravity Abutment  

Cantilever Abutment  

Wall-type 

  

B: Middle Dynamic Seismic  

Concrete: Deformation of members(Building od 

Bridges) 

Partial bulging out of reinforcements and spalling 

of cover concrete 

Materials 

R Rc  

S Steel  

 

Massive fracture on abutments 

Steel: Remaining deflection be less  0.03Lb 

Shape 

C Circular  

R Rectangular  

E Ellipse  

P Polygon  

C: Small Dynamic Seismic  

Concrete: Horizontal  cracks  that effects to 

Colums 

Body 
Solid  

Hollow  

Steel: Remaining deflection be than 0.01Lb. 

D: There is not any deflection  

Height 

A 20m<h  

B 10m<h<20m  

C h<10m  

 



Table 3: Inputs characteristics X and Y direction 

 No. Inputs Symbol 

1 bridge Length Lb 

2 bridge Width Wb 

3 No. of columns Nc 

4 No. of beams NB 

5 Minimum dimension of column along X direction Wcmin 

6 Maximum dimension of column along X direction Wcmax 

7 bridge Height Hb 

8 Story Height Hs 

9 No. floors Nf 

 

 No. Inputs Symbol  

1 bridge Length  L 

2 bridge Width W 

3 No. of  bridges columns Nc 

4 No. of bridges beams NB 

5 Minimum dimension of column in Y direction Dcmin 

6 Maximum dimension of column in Y direction Dcmax 

7 bridge Height  H 

8 Story Height H 

9 No. of floor Nf 

 

The ANNs implemented in this study is a Multilayer Perceptron (MLP) constructed on 

the basis of an arrangement  of nodes in one hidden layer and one output layer. The input layer 

transfer data from the outside into the first hidden layer and the process goes forth until reaching 

until the output layer. Each unit in a layer is linked  to all the nodes of the next layer, while 



elements in the similar layer are not interconnected; i.e., it is a feed-forward ANNs since the 

signals only spread in the direction moving from the input into the one hidden layer and then to 

the output layer. Considering the learning rule, a back propagation was used to explore the 

power of the ANNs with a sigmoid transfer function as an initial stage. 
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Fig. 5 Schematic shape of ANN model 

 

An adequately trained ANNs necessitates that the phenomenon to be modeled is 

recognized as well as possible, in order to accurately choose the parameters that clarify it or 

have an impact on it. It is also very notable to have an efficient database that contains as many 

characteristic cases of the phenomenon being considered also involving the defining parameters 

a. An ANNs model was generated for simulating the ductility as shown in Fig. 3. Inputs of 

ANNs models include of 14 data sets in terms of general properties of buildings and 

earthquakes.  

 

Table 4: Inputs Features for buildings during  ANN Models 

Symbolizations Inputs 

Ap Peak acceleration 

Sw Shear wall 

Ix Total moment of inertia (in x direction) 

Iy Total moment of inertia (in y direction) 

Hn Story height 



Hb Story height of base floor 

Lx Max width of bay in x direction 

Ly Max width of bay in y direction 

Bx Widths of building in plan in x direction 

By Widths of building in plan in y direction 

N Number of stories 

Nbx Number of bay in x direction 

Nby Number of bay in y direction 

Tp Pulse period 

 

VI. CONCLUSION AND DISCUSSION 

The current study summarizes various ANNs models used for predicting the strength of 

concrete. The various software used for devising the ANNs model and the complementary 

theories to ANNs are reviewed. This paper gives a thorough insight of ANNs model 

applicability to predict the strength of concrete. Changes in dynamics properties are due to 

deterioration and reduction in structural stiffness such as the natural frequencies and mode 

shapes. During the research, neural networks make used to deduce knowledge from the natural 

frequencies of damaged structures at various points. Details of the study were described using 

ANNs to prediction of damage severity in a model steel girder bridge. The dynamic tests carried 

out on the damaged and undamaged test structure indicated that a decrease in stiffness during 

the damage resulted in a decrease in natural frequencies for various modes. The numerically 

generated natural frequencies of the first five modes of the undamaged and damaged bridge 

model were successfully applied as the training samples for the ANNs. According to the results, 

the ANNs was able to predict the damage severity with an average percentage error of 6.8 % 

and 8.25%, respectively for training and testing. In addition, the results indicate a particularly 

satisfactory coefficient of correlation between the identified and numerical data and generated 

that the developed ANNs model can be implemented as efficient   tool to identify the severity 

of damage in the bridge girder model. Therefore, it can be inferred that ANNs trained with only 

natural frequencies derived from a numerical modal analysis as inputs can be adequately applied 

to evaluate the extent of damage in a structure [22]. 

 



 

Fig. 6 Damage Index  identified with ANN & target data [22]. 

 

As confirmed by a statistical values, the proposed ANNs model is adequate for 

predicting the dynamic response of buildings, considering the roof displacement, base shear 

forces and base bending moments, precisely comparison to the results of FEA. The results for 

R2 are 0.999689, 0.99057, 0.97895 and 0.942561 for the periods, roof displacements, base shear 

force and base bending moment respectively and indicate an acceptable correlation. As ANNs 

requires no simplifying assumption, preliminary modeling or calibration, its advantages to FE 

analysis are now relatively clear [1]. 

 

 

Fig. 4 Accuracy of ANN method for training and testing set by IDARC and ANN [1]. 

 



 

Fig. 5  Assessments of displacement for roof during  two directions;  x ,  y by IDARC and ANN  [1]. 

 

 

Fig. 6 shear stress during two directions;  x,  y by IDARC and ANN [1]. 



 

 

Fig. 7 Illustration bending stress during in two directions;  x,  y by IDARC and ANN [1]. 

 

306 bridge-earthquakes were considered in the final stage. The MLP neural networks 

considered in this study consist of input layer vectors, hidden layers and an output vector. 70% 

of the numerical results have been selected and the remaining 30% are employed to test 

reliability and validation of ANNs in order to train them. To obtain efficient and effective neural 

networks, numerous structures of MLP neural networks were analyzed. After obtaining the best 

structure of a neural network, the one selected was used for generating new data. A total number 

of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, 

probabilistic seismic safety analyses were conducted. Therefore, the bridges fragility analysis 

was generated using numerical results, neural predictions and a combination of numerical and 

neural data [4]. 



 

Fig. 8. Illustration the damage assessments by NTHA &  trained Artificial Neural Network[12]. 

 

Fig. 8 depicts the predictability of the optimum networks when the criterion of min (MSE) is 

chosen  for the testing sub-set. More precisely, the diagrams of this figure are concerned with 

the four optimum networks that are related to the four evaluated combinations of training 

algorithms and activation functions of the neurons of the hidden layer. In these diagrams, the 

MIDR (Maximum Interstorey Drift Ratio) values that were estimated using NTHA (Nonlinear 

modeling and analysis) are plotted against the MIDR values predicted by the optimum networks 

for all samples of the entire data set. The main conclusion is depicted in Fig. 8, that is, the 

network which has 18 neurons with the logsig activation function in the hidden layer and was 

trained using the LM algorithm (henceforth “N1LM-log/lin-18” network) yields the best 

predictions about the expected MIDR values (Fig. 8a). Specifically, the “N1-LM-log/lin-18” 

network extracts MIDRANN values, which are the best associated with relative MIDRNTHA 

values (R=0.9745). Another notable conclusion obtained from Fig. 8 is that the correlation 

between MIDRNTHA and MIDRANN values is more acceptable in the range (MIDR=0–

1.5%). All points of the data set in this range with slight deviations, extremely  near the straight 

diagonal reference line [12]. 
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