
EasyChair Preprint
№ 7904

Efficient Deep Learning Methods for
Identification of Defective Casting Products

Bharath Kumar Bolla, Mohan Kingam and Sabeesh Ethiraj

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 4, 2022

EFFICIENT DEEP LEARNING METHODS

FOR IDENTIFICATION OF DEFECTIVE

CASTING PRODUCTS

Bharath Kumar Bolla
1

, * Mohan Kingam
2,4

, Sabeesh Ethiraj
3

 1Salesforce, Hyderabad, India
 2bolla111@gmail.com

2Upgrad Education Pvt. Ltd., Mumbai, India

 1mohan.kingam@gmail.com

 3Command Hospital, Bangalore, India

 3sabeesh90@yahoo.co.uk

 4Hexagon Capability Center India Pvt. Ltd., Hyderabad, India

 4mohan.kingam@hexagon.com

Abstract. Quality inspection has become crucial in any large-scale

manufacturing industry recently. In order to reduce human error, it has

become imperative to use efficient and low computational AI algorithms to

identify such defective products. In this paper, we have compared and

contrasted various pre-trained and custom-built architectures using model

size, performance and CPU latency in the detection of defective casting

products. Our results show that custom architectures are efficient than pre-

trained mobile architectures. Moreover, custom models perform 6 to 9 times

faster than lightweight models such as MobileNetV2 and NasNet. The

number of training parameters and the model size of the custom architectures

is significantly lower (~386 times & ~119 times respectively) than the best

performing models such as MobileNetV2 and NasNet. Augmentation

experimentations have also been carried out on the custom architectures to

make the models more robust and generalizable. Our work sheds light on the

efficiency of these custom-built architectures for deployment on Edge and

IoT devices and that transfer learning models may not always be ideal.

Instead, they should be specific to the kind of dataset and the classification

problem at hand.

Keywords: Inference Time, Efficient Transfer Learning, Deep Learning

mailto:2bolla111@gmail.com

2

1 Introduction

Quality control is vital in many industries, especially those that use casting or

welding. Product quality affects customer satisfaction and loyalty. Inspection and

testing are vital parts of the manufacturing process because they help control

quality, reduce costs, prevent the loss, and locate defects. While most of these flaws

are detectable with the naked eye, human inspection is time consuming, error prone,

costly, and unreliable. Automated visual inspection solutions are helping companies

overcome these obstacles. Most of the manufacturing sectors have relied on various

non-destructive methodologies such as ultrasonic testing, magnetic particulate

control and real time. X-ray image analysis started to gain popularity before deep

learning methods like Convolution Neural Networks. Technological advancements

in high-resolution X-rays have increased the detection capacity through 3D-

characterization [1]. Gabor filters are another popular defect detection method. The

image can be decomposed into distinct components based on scale and orientation.

They are widely used in defect detection because they provide the most precise

spatial localization [2].

Despite their efficiency and robustness, deep learning-based models are difficult to

deploy on devices with limited memory, such as smartphones, tablets, and IoT

devices. In the industrial setting, hosting deep learning models in the cloud is

impractical due to latency and maintenance costs. The paper aims to evaluate both

custom models and transfer learning architectures to identify the best performing

model in evaluation metrics such as Accuracy, Recall, F1 scores, and model size.

Inference time on different sizes of datasets will also be calculated to identify faster

performing models suitable for deployment on IoT and Edge devices. Further,

augmentation techniques will be evaluated on the hypothesized best performing

custom model to establish their robustness and generalizability on augmented

datasets.

2 Literature Review

Computer vision is used to check for defects in different manufacturing products

made from steel, aluminuim, glass, fabric and polycrystalline materials [3]. Vision-

based defect detection detects internal flaws in aluminum alloy castings in addition

to external flaws. The defects can be seen in X-ray images of the affected

components, such as brake drums, gears, and the engine body. Combination of Deep

learning and X-ray images can be used to detect internal flaws in aluminum casting

parts [4].

3

With deep learning-based image tasks outperforming the average human inspection,

automated vision inspection systems for inspecting surface defects in casting

products [5] are becoming more common. AlexNet to MobileNet, Deep Neural

Networks have improved accuracy, decreased model parameters, the total number

of operations (flops), memory footprint, and computation time over the years

significantly. Accuracy as a function of parameter count, also known as information

density, is a performance metric that emphasizes a particular architecture's breadth

to maximize its parametric space utilization. This accuracy function revealed that

basic models like VGG and AlexNet are larger because they have not fully exploited

their learning capability. In contrast, more efficient models like ResNet,

GoogLeNet, and ENet have higher accuracy per parameter by training all neurons

on the given task [6].

Convolution Neural Networks are known for their ability to extract features. The

image's representation is learned by the convolutional layers, which can then be

used for classification, object detection, and recognition. Due to the difficulty of

obtaining a large enough dataset to make the model robust enough to be reused in

any type of image classification problem, we also train an entire CNN from scratch

on a very rare occasion [7]. The concept of transfer learning entails the use of

weighted pre-trained networks. Deep neural networks tend to overfit the training

dataset because they are complex networks with a large number of parameters.

To make a more compact representation, CNN uses the pooling layer. Pooling

reduces feature map height and width and reduces the parameter count [8]. The most

common pooling methods are max, average, and global average. The Max Pooling

layer reduces the output from the previous layer by selecting the maximum value in

each feature map. Thus, trying to extract the image's dominant feature. The pooling

layer considers a feature detected if any of the patches strongly believe it exists [9].

The Average pooling layer, on the other hand, takes the mean of all the weighted

values extracted, to determine the most prominent feature. Max pooling is more

popular than average pooling because it performs better as it ignores minor changes

by taking away the location flaws in the features [10]. Global average pooling is an

alternative to fully connected layers for pooling. Global average pooling can be

applied to feature maps to avoid overfiting and to make the model generic. It allows

the output layer to get the average vector from each feature map in the final

convolution layer, making the process more network-centric and aligned with the

output classification categories [11].

Data augmentation can be used to strengthen the model and compensate for class

imbalances. Techniques for enhancing data include flipping, rotating, and zooming.

4

Affine transformation shears the image while keeping the other vector constant.

This creates synthetic data and improves model robustness during training [12].

Most deep convolutional models have large parameters and are designed to improve

accuracy. However, these aren't readily suitable for edge or mobile devices. A new

class of efficient models have evolved for mobile and embedded vision applications

which are known as MobileNets [13]. These networks are mobile based models

which focuses on reducing the number of operations and the latency of the model.

MobileNets use depthwise separable convolutions to build light weight deep neural

networks. Another compressed network called NASNet is a mobile network built

with depth-dependent and grouped convolutions. Grouped convolution uses parallel

processing by splitting the filters into two groups, one for each input depth [14].

ResNet50 is another network which has proved that the complexity of the network

can be decreased even when more layers are added to it by training the model on

residuals. Other than mobile networks, ResNet50 is also a popular network that is

widely used producing the best compact model with high accuracy [15].

3 Research Methodology

3.1 Dataset description

The dataset consists of images depicting the front view of an impeller casting from

a castings manufacturing company. These images are RGB images consisting of

three channels and are divided into two folders consisting of train and test images

of two classes (Normal and Defective). The number of train and test images are

6633 and 715 respectively of size 300x300x3 pixels. Usig Image generators, all the

images are split into train, validation, and test containing 5307, 1326, and 715

images respectively.

3.2 Data Preprocessing - Reducing training parameters

The image data consists of three channels. The number of training parameters is

reduced by converting the image from RGB to grayscale (3 to 1 channel). This

conversion is done only with custom architectures as transfer learning architectures

such as Resnet, MobileNetV2, and NasNet require the input image to contain three

channels. The images are scaled using appropriate scaling techniques to ensure no

over representation of a particular set of pixels during model training.

5

3.3 Creation of train and customized test generators

The train generator and test generators are created using Tensorflow’s

ImageDataGenerator. Two different sets of train and test generators are created, one

each for with and without augmentation. Five additional test generators are created

with augmented and non-augmented datasets, each with different batch sizes

(1,10,50,100,715). This is done to calculate the inference time of the model in

predicting the different number of images.

3.4 Data Augmentation

Data augmentation techniques such as ZCA Whitening, Flipping (Horizontal and

Vertical), Rotating, and Zooming have been used to enhance the model's robustness.

Both standard and augmented test datasets were used to evaluate the effects of these

techniques on the model's overall performance.

3.5 Calculation of Inference Timings

Inference time for a specified number of images is calculated using the customized

test dataset with different batch sizes mentioned in Equation-1.

𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 =
𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

Equation 1. Inference Time Calculation

3.6 Model Size Reduction: Channel Pruning, GAP, Parameter Tuning

Three transfer learning models as MobileNetV2, NasNet, and Resnet50 and custom

model using augmentation and without augmentations, have been built to evaluate

the effect of these models on the inference time.

Paramater Tuning. The custom model was built to reduce the number of training

parameters. The input image is converted to a monochrome grayscale image,

thereby resulting in the reduction of training parameters in the first convalution

layer of the deep network.

6

Channel Pruning. The concept of channel pruning was used to achieve model

compression by sequentially reducing the number of output channels over

successive convolution layers without compromising on the model performance.

Further, the output of the last convolutional layer is a single neuron sigmoid

function layer, as opposed to a two neuron output in other models.

Global Average Pooling(GAP). GAP is added before the soft max layer to reduce

the number of neurons. Fig. 1 depicts the above mentioned methodologies.

Figure 1. Custom model flow diagram

3.7 Pre-Trained Architectures - ResNet50, MobileNetV2 & NasNet

The transfer learning architectures used here are trained using their original weights

used in the ImageNet Classification. The network's top layer is replaced with a two-

neuron custom softmax layer with binary Cross Entropy as the loss function. The

input image to the architecture is an RGB image with a three-channel dimension,

unlike the custom architecture, as these networks are pre-trained only on three-

channel images. The architectures are shown in Fig 2, Fig3, and Fig 4.

7

Figure 2. Transfer Learning Flow

3.8 Loss Function

 The loss function used here is the binary cross entropy loss with sigmoid output.

𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝐸 𝑙𝑜𝑠𝑠 =
1

𝑁
∑ −(𝑦𝑖 ∗ 𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − 𝑝𝑖))

𝑁

𝑖=1

Equation 2. Binary Cross Entropy loss function

3.9 Model Evaluation

We did model evaluation using model size and metrics such as Accuracy, Recall,

and F1 scores. Inference times on five different test datasets have been calculated

using different batch sizes using CPU as inference engine as images are processed

sequentially on a CPU.

8

4 Analysis

4.1 Dataset description

There are 5307, 1326, and 715 images in the train, validation, and test dataset. The

distribution of the classes is as follows. There is no significant class imbalance

present in the dataset, as seen in Figure 3

Figure 2. Data distribution

The visualization of the normal and the defective impellers in the RGB channel

and grey scale images are shown in Figure 4 and Figure 5.

Figure 3. RGB Images of the Impeller

Figure 4. Normal and Defective Impellers

2300

575 262

3007

751 453

0

2000

4000

Train Validation Test

Data distribution

Normal Defective

9

4.2 Compression of Models

The custom model has been built to reduce the number of training parameters.

Channel pruning has been done in custom architectures. In contrast, the original

network has been used in the case of transfer learning architectures as it is

impossible to change these pre-trained networks' architecture. The models are saved

using keras’s models.save functionality which saves the model in ‘.h5’ format,

which is more compressed than the original ‘.hdf5’ format. The network

architectures are summarized in the table below.

Models Total params Trainable

params

Non

trainable

Model

Size

MB

Custom model – Normal 5,865 5,801 64 0.08

MobileNetV2 2,260,546 2,226,434 34,112 9.52

NasNet 4,271,830 4,235,092 36,738 18.35

Resnet50 23,591,810 23,538,690 53,120 94.89

Table 1. Comparison of Model Sizes and Paramaters

On analysis of the model architecture, it is found that custom models have the least

file size (0.08MB) compared to the original architectures. The custom architectures

have the least number of training parameters (5865) due to the shallow network.

4.3 Data Augmentation

As mentioned in the research methodology sections, different augmentation

techniques have been tried out at model training and evaluated on the augmented

test dataset. Some of the augmentation techniques tried are shown in Figure 6

Figure 5. Augmentations showing rotation and zooming

10

4.4 Model architecture

Figure 6. Custom Architecture showing sequential pruning of number of channels

Custom Architecture. The model architectures for the custom and the transfer

learning models are explained in the succeeding paragraphs. Early stopping and

ReducedLRonPlateau have been used at the time of model training to ensure no

oscillation of the learning at the end of every epoch. The custom architecture

consists of a sequential reduction in the number of channels from 16 to 8 and

terminates at a global average pooling layer. The detailed architecture is shown in

Figure 7.

Transfer learning architectures. The topmost layer of the transfer learning models

is replaced with a custom softmax layer. The architectures of different pre-trained

architectures like MobileNet, NasNet etc. are shown in Figures 8, 9, and 10.

11

Figure 7. NasNet Architzecture Figure 8. MobileNet Architecture

Figure 9. Resnet50 Architecture

5 Results

The results of the experiments have been explained in three sections; model

evaluation, inference time analysis, and effect of augmentation on the best

performing model (Custom Model).

5.1 Model Evaluation

Performance of various model architectures including custom model and

transfer learning models are summarized in Table 2

12

Models

Accu-

racy

Re-

call

F1

Score

Preci-

sion

Total

params Size (MB)

Custom

Model 99.44 99.44 99.44 99.45 5,865 0.08

MobileNetV2 98.04 98.04 98.05 98.14 2,260,546 9.52

NasNet 99.3 99.05 99.3 99.31 4,271,830 18.35

Resnet50 99.16 99.16 99.16 99.16 23,591,810 94.89

Table 2. Model evaluation Metrics

Custom models achieve the highest evaluation metrics in terms of accuracy, recall,

and F1 score. The number of parameters is also the least in the custom model, with

a model size of just 0.08 MB. The inter-model performance ratios better represent

the performance gains of the custom model on the total parameters and the model

size in Table 3.

Models Parameter ratio Model size ratio

Custom model 1x 1x

MobileNetV2 386x 119x

NasNet 728x 229x

Resnet50 4022x 1186x

Table 3. The ratio of parameters and model size

5.2 Inference Time Analysis

The model trained on the standard test data set with batch size 32 has been evaluated

on five different test datasets, as shown in table 2. From the below findings we can

deduce that better the inference time lower the latency.

Models

Test

batch

1

Test

batch

10

Test

batch

50

Test

batch

100

Test

Batch

700

Custom model 0.0176 0.1344 0.3936 1.1853 12.6198

MobileNetV2 0.0456 0.3151 1.2970 2.6959 21.7204

NasNet 0.0572 1.1835 3.5687 3.5167 26.6517

Resnet50 0.1596 1.3304 3.5780 9.5807 76.7329

Table 4. Inference Timing of various models

13

Lightweight faster custom architecture. Custom models have the least inference

times on a CPU compared to other transfer learning models when evaluated on all

the different images (1,10,50,100,700), as shown in Table 2. Also, as seen in the

trend curves, the order of inference times from the least to the maximum is

“Custom model < MobileNetV2 < NasNet < Resnet50”

The reduced inference time is attributed to the factors such as Channel pruning

(Sequential reduction in the number of output channels), Single Class Output, and

Decreased Kernel dimension due to grayscale input. The model size is also the least

among all model architectures (0.08MB).

Figure 10. CPU Inference Time for Models on a varying number of images

The model's speed in terms of inference time is summarized in Table 5.

Model vs inference times

Single

Image

10

images

50

images

100

images

700

images

Custom model - Normal 1x 1x 1x 1x 1x

MobileNetV2 2.58x 2.34x 3.30x 2.27x 1.72x

NasNet 3.23x 8.81x 9.07x 2.97x 2.11x

Resnet50 9.02x 9.90x 9.09x 8.08x 6.08x

Table 5. Model inference Speeds

Custom Models perform 6 to 9 times faster than the conventional Resnet

architectures. Even among the lightweight architectures such as MobileNetV2 and

14

NasNet, the Custom model performs anywhere between 2 to 8 times faster,

indicating they are better suited for deploying this model on edge devices.

5.3 Augmentation on Custom model

The performance of the models is evaluated using F1 scores of models trained on

both augmented and non-augmented datasets and by evaluating them on both the

augmented/non augmented test datasets.

Models Acc Re F1 score Pre

Custom model – Normal 99.44 99.44 99.44 99.45

Custom model – Augmented 98.04 98.04 98.04 98.05

Custom model (Aug) - Normal test 99.16 99.16 99.16 99.17

Custom model (Aug) - Augmented test 98.18 98.18 98.17 98.2

Table 6. Custom Model Evaluation Metrics

Figure 11. Effect of augmentation on F1 scores of augmented/ non augmented models

The F1 score of the custom model on the standard dataset is 99.44% and against the

Augmented test dataset is 98.04%. Though the models trained on the augmented

dataset show a slightly lower F1 score on the standard dataset (99.16% vs. 99.44%),

they show higher performance on the augmented test dataset (98.17% vs. 98.04%).

Hence, augmentation techniques, though they do not significantly improve

accuracy, may still be chosen over non-augmented models as they are more robust

and not susceptible to changes in the training dataset.

15

6 Conclusion

The architectures of transfer learning models that use pre-trained weights are

typically larger. Even if they have a high level of accuracy across a large number of

datasets, they may not be ideal for use on computationally less powerful devices.

Compared to transfer learning models, custom models with a model size of just

0.08MB could perform better in terms of F1 scores on the given dataset. Inference

times on various images showed that the models performed much faster than

transfer learning models. The performance of augmented models was comparable

to that of non-augmented models; however, these models may be preferred because

they are more robust and may perform well on other test datasets. In terms of

implementation or deployment on smaller devices, the study establishes the

superiority of custom architectures over large scale or pre-trained models.

7 References

[1] M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, “Automatic localization

of casting defects with convolutional neural networks,” 2018, pp. 1726–

1735. doi: 10.1109/bigdata.2017.8258115.

[2] A. Kumar and G. K. H. Pang, “Defect detection in textured materials using

optimized filters,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 32, no. 5, pp. 553–570, 2002, doi:

10.1109/TSMCB.2002.1033176.

[3] T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A fast and robust

convolutional neural network-based defect detection model in product

quality control,” International Journal of Advanced Manufacturing

Technology, vol. 94, no. 9–12, pp. 3465–3471, 2018, doi: 10.1007/s00170-

017-0882-0.

[4] W. Du, H. Shen, J. Fu, G. Zhang, and Q. He, “Approaches for improvement

of the X-ray image defect detection of automobile casting aluminum parts

based on deep learning,” NDT and E International, vol. 107, no. May, p.

102144, 2019, doi: 10.1016/j.ndteint.2019.102144.

[5] K. Tout, “Automatic vision system for surface inspection and monitoring :

Application to wheel inspection To cite this version :,” 2018.

16

[6] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural

Network Models for Practical Applications,” pp. 1–7, 2016, [Online].

Available: http://arxiv.org/abs/1605.07678

[7] M. Huh, P. Agrawal, and A. A. Efros, “What makes ImageNet good for

transfer learning?,” pp. 1–10, 2016, [Online]. Available:

http://arxiv.org/abs/1608.08614

[8] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

[9] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2nd Int. Conf. Learn.

Represent. ICLR 2014 - Conf. Track Proc., pp. 1–10, 2014.

[10] J. K. Park, B. K. Kwon, J. H. Park, and D. J. Kang, “Machine learning-

based imaging system for surface defect inspection,” Int. J. Precis. Eng.

Manuf. - Green Technol., 2016, doi: 10.1007/s40684-016-0039-x.

[11] T. P. Nguyen, S. Choi, S. J. Park, S. H. Park, and J. Yoon, “Inspecting

Method for Defective Casting Products with Convolutional Neural Network

(CNN),” International Journal of Precision Engineering and

Manufacturing - Green Technology, 2020, doi: 10.1007/s40684-020-

00197-4.

[12] D. Mery, “Aluminum Casting Inspection Using Deep Learning: A Method

Based on Convolutional Neural Networks,” Journal of Nondestructive

Evaluation, vol. 39, no. 1, 2020, doi: 10.1007/s10921-020-0655-9.

[13] A. Howard et al., “Searching for mobileNetV3,” Proceedings of the IEEE

International Conference on Computer Vision, vol. 2019-Octob, pp. 1314–

1324, 2019, doi: 10.1109/ICCV.2019.00140.

[14] M. Tan et al., “Mnasnet: Platform-aware neural architecture search for

mobile,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 2019-June, pp. 2815–2823,

2019, doi: 10.1109/CVPR.2019.00293.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 770–778,

2016, doi: 10.1109/CVPR.2016.90.

