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Abstract Cough is a common symptom of respiratory dis-
ease, which produces a specific sound. Cough detection has
great significance to prevent, assess, and control epidemics.
This paper proposes CASCO (Cough Analysis System using
Short-Time Fourier Transform (STFT) and Convolutional
Neural Networks (CNN) in the WeChat mini Program), a
cough detection system capable of quantifying the number
of coughs through an audio division algorithm. This system
combines STFT with CNN, achieving accuracy, precision,
recall, and F1-score with 97.0%, 95.6%, 98.7%, and 0.97 re-
spectively in cough detection. The model is embedded into
the WeChat mini program to make it feasible to apply cough
detection on smartphones and realize large-scale and con-
tactless cough screening. Future research can combine audio
and video signals to further improve the accuracy of large-
scale cough screening.

Keywords Cough detection · Deep neural network · Audio
Signal Processing

1 Introduction

Cough is a common symptom associated with various res-
piratory diseases such as bronchitis, and asthma. It serves
as a powerful mechanism of the human body to expel for-
eign particles and clear secretions from the upper respiratory
tract, resulting in a specific sound that plays a significant role
in disease diagnosis [1].
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Respiratory diseases pose a significant threat to human
health worldwide [2]. As the details about the cough fre-
quency, intensity, and sound help physicians in their diag-
nostics of respiratory diseases, the field of automatic cough
sensor research has been established with various systems
achieving high precision and sensitivity. The Leicester cough
monitor consists of an audio recorder and a microphone and
detects the time-varying spectral features of cough sound
based on hidden Markov models [3]. Costa et al. [4] applied
a mechanomyography sensor on the abdominal region to de-
tect cough events. Doddabasappla et al. [5] achieved cough
detection using the multiband spectral summation features
of acceleration signal measured by a portable accelerome-
ter. Most of these automatic cough sensors are considered to
be uncomfortable to wear during daily activities, and their
expensive cost hindered the application of large-scale cough
screening.

Large-scale cough detection plays a pivotal role in epi-
demiological research, disease screening, and epidemic con-
trol efforts. The global impact of the COVID-19 pandemic,
which primarily affects the respiratory system, has resulted
in a significant number of confirmed cases worldwide, as re-
ported by the World Health Organization (WHO) by March
2, 2022 [6]. The emergence and dominance of the Omicron
variant, along with other COVID-19 variants, have further
exacerbated the health crisis and posed immense challenges
to human health and the global economy [7]. Given that
cough is a prominent symptom of COVID-19, there has been
a growing focus on developing large-scale and contactless
cough detection systems in research initiatives. These sys-
tems hold immense potential in facilitating early detection,
monitoring, and effective control of infectious diseases. By
enabling non-invasive and convenient screening, they can
contribute significantly to mitigating disease transmission,
informing public health strategies, and supporting timely in-
terventions. The development and implementation of such
systems are crucial steps toward safeguarding public health
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and minimizing the impact of future epidemics and pan-
demics.

In response to the distinct acoustic characteristics as-
sociated with cough events, several studies have made sig-
nificant strides in developing models that utilize cough au-
dio features for remote and contactless detection of cough
events. For instance, Islam et al. proposed an algorithm that
leverages acoustic features extracted from cough sound sam-
ples, combined with a deep neural network, for automated
and noninvasive diagnosis of COVID-19 [8]. Tena et al. fo-
cused on extracting time-frequency cough features from au-
dio signals and applied a supervised machine-learning algo-
rithm to identify the most relevant features for COVID-19
diagnosis [9]. Another notable study by Monge-Álvarez et
al. involved the construction of a machine hearing system
specifically designed for robust cough detection, incorporat-
ing short-term spectral features and the standard deviation
of short-term descriptors [10]. These advancements demon-
strate the potential of using cough audio analysis in develop-
ing efficient and accurate diagnostic tools, providing valu-
able insights for the detection and management of respira-
tory diseases.

The widespread use of smartphones has made large-scale
cough detection possible. Patients and medical profession-
als now have the convenience of capturing cough audio sig-
nals using the built-in microphone and voice recorder on
their smartphones, eliminating the need for additional spe-
cialized cough assessment devices. Notably, Hoyos-Barcelo
et al. proposed a cough detector on smartphones that lever-
ages local Hu moments as robust features, combined with an
optimized k-NN classifier [11]. Imran et al. built a COVID-
19 diagnosis app analyzing cough sound by an Artificial
Intelligence (AI)-based engine [12]. Most of the aforemen-
tioned studies utilizing AI algorithms failed to accurately
measure cough frequency and intensity.

One significant challenge in utilizing smartphones for
cough detection is the limited battery consumption of these
devices. Executing complex machine learning or deep learn-
ing algorithms directly on smartphones can quickly drain
the battery and hinder their practicality. Consequently, alter-
native approaches are necessary to overcome this limitation
and enable efficient cough analysis [13, 14]. One feasible
solution is to leverage the capabilities of external servers
for audio signal processing. With the widespread applica-
tion of 5G technology, it becomes increasingly feasible to
use smartphones solely for audio collection while offloading
computationally intensive tasks to remote servers [2]. The
high-speed and low-latency characteristics of 5G networks
facilitate seamless and efficient transmission of cough audio
signals from smartphones to external servers.

In this paper, we propose a novel cough detection system
called CASCO, which can calculate the number of coughs
by an audio division algorithm. This system combines STFT

with CNN, achieving an impressive accuracy rate of 97.0%
in classifying cough sounds and non-cough sounds. The in-
tegration of this system into the WeChat mini program en-
ables the deployment of cough detection on smartphones,
enabling widespread and contactless screening for coughs at
a large scale. Furthermore, by processing the audio recorded
on smartphones in an external server, we alleviate the is-
sue of high battery consumption associated with complex
algorithms, ensuring a smoother user experience. The sub-
sequent sections of this paper are organized as follows: In
Section 2, we outline the methodology and the specific pro-
cedure of cough detection system. In Section 3, we explain
the dataset we used and the training process, compare the ex-
perimental results in terms of performance metrics, and dis-
cuss the potential and limitations of the study. We conclude
the paper by summarizing the key findings and contributions
of the research.

2 Cough Detection System

The overall system architecture is shown in Fig. 1. The WeChat
mini program in a smartphone records sound when the “Start
recording” and “Finish recording” buttons are pressed. When
the “Detect cough” button is pressed, the recorded sounds
are transmitted to the server for further processing. At the
server, the audio division algorithm extracts the high parts
above the threshold from a long piece of audio. This process
divides the long audio into shorter segments, each contain-
ing only a single suspicious sound. Then STFT is applied to
the short audio to generate a spectrogram that serves as the
feature of the audio. Subsequently, the spectrogram is for-
warded to CNN, classifying cough samples and non-cough
samples. The server performs cough detection and counts
the number of coughs in the long audio. Finally, the output
results are displayed in the WeChat mini program for user
accessibility.

The details of detection and diagnosis classifiers are pre-
sented below.

2.1 Audio Division

To select a suitable threshold for extracting a single suspi-
cious sound, we use Otsu’s thresholding method in the au-
dio division algorithm. Otsu’s method is a global threshold-
ing algorithm, which can automatically generate the optimal
segmentation threshold based on the input signal [15]. For
the input audio signal, we suppose the number of points is
denoted as N , which are dichotomized into two classes: the
low part C0 and the high part C1, using a threshold at level
T . The proportion of points belonging to the low part in the
whole audio is denoted by ω0 and its average amplitude level
is µ0. Similarly, the proportion of points belonging to the
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Fig. 1: Pipeline of the CASCO cough detection system: a) record a long piece of audio to be detected via the WeChat mini
program; b) divide the long audio into several short sounds and extract features using STFT; c) classify cough sounds and
non-cough sounds through CNN; d) display the result and the number of coughs on the WeChat mini program.

high part in the whole audio is denoted by ω1 and its aver-
age amplitude level is µ1. Then the total average amplitude
level of the audio is given by:

µT = ω0µ0 + ω1µ1 (1)

We can easily verify the following relation for any choice of
T :

ω0 + ω1 = 1 (2)

To evaluate the class separability of the threshold at level
T , we introduce the following between-class variance used
in the discriminant analysis:

σ2
B = ω0 (µ0 − µT )

2
+ ω1 (µ1 − µT )

2

= ω0ω1 (µ1 − µ0)
2

(3)

In equation (3), it can be observed that the farther the
two means µ0 and µ1 are from each other, the larger the
between-class variance is, which indicates that the between-
class variance serves as an effective measure of differentia-
bility between classes. To determine the optimal threshold
T ∗ that maximizes the between-class variance, we employ
the following equation:

σ2
B (T ∗) = maxσ2

B(T ) (4)

After selecting a suitable threshold, we extract the high
parts above the threshold from a long piece of audio. This
process involves splitting the long audio into shorter seg-
ments, each containing only a single suspicious sound. The
length of the short segments is not fixed but adaptively deter-
mined based on the threshold and characteristics of the audio
signal. It is expected to implement the function of counting
the number of coughs. The processing steps of the audio di-
vision algorithm can be seen in Fig. 2.

Fig. 2: Processing steps of the audio division algorithm.

2.2 Feature Extraction

For automatic speech recognition, STFT has been consid-
ered to be an effective feature extraction method. The spec-
trogram generated by STFT can show the relationship of
time and frequency of audio signals, thus extracting features
of audio and then differentiating different audio signals [16].
The process of STFT is illustrated in Fig. 3. The STFT form
of signal x(t) can be defined by the following equation:

STFT(t, f) =

∫ ∞

−∞
x(τ)h(τ − t)e−j2πfτdτ (5)

where h(τ − t) means window function.
The audio signal is first pre-emphasized by a first-order

high-pass filter to improve the signal-to-noise ratio in the
high-frequency portion of the signal. After the audio signal
is framed and windowed, Fast Fourier Transform (FFT) is
applied to all the frames and generates spectrums. The am-
plitude values of the spectra are quantified and mapped to
different colors, providing a visual representation of the fre-
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quency content. Finally, the transformed multi-frame spec-
trums are stitched together in the time dimension to form a
final spectrogram of the audio signal.

We apply the STFT to the short audio to generate a spec-
trogram with time on the horizontal axis, frequency on the
vertical axis and color indicating amplitude as the feature of
the audio. The spectrogram generated through STFT enables
visual representation and facilitates accurate differentiation
of cough sounds.

2.3 Classification

Mapping the time-frequency spectrogram into a color repre-
sentation as the input to a CNN serves two main purposes:
1) Channel dimensions: By converting the time-frequency
spectrogram to a color image with three channels (R, G,
B), it aligns with the common CNN input format, such as
RGB images. This allows the CNN to process the spectro-
gram as image-like input, with height, width, and three color
channels, enabling the use of standard image-based CNN
architectures. CNNs excel in learning hierarchical features,
progressing from local patterns to global representations.
2)Feature representation: The STFT output consists of the
real and imaginary parts (or magnitude and phase), repre-
senting different aspects of the audio signal. By mapping
it to a color spectrogram, the CNN can potentially learn dis-
tinct features from different parts of the spectrogram. For in-
stance, the CNN can capture spatial patterns, temporal changes,
and frequency content from the color representation, leading
to a more comprehensive and distinctive feature representa-
tion for cough detection.

The generated spectrogram is then fed into the CNN to
decide whether the audio corresponds to a cough or not. An
overview of the used CNN structure is illustrated in Fig.
4. The CNN consists of eight layers: 5 convolutional lay-
ers, 2 fully connected layers, and a softmax classification
layer. In each convolutional layer, the Rectified Linear Unit
(ReLU) is utilized as the activation function. The first, sec-
ond, and fifth convolutional layers are connected to a 3×3
max-pooling layer, which is performed with a stride of 2.
The first convolutional layer takes in the 224×224×3 spec-
trogram as inputs and consists of 96 filters of kernel size
11×11, a stride of 4, and padding of 2. It is followed by
a 5×5 convolutional layer with a padding of 2. The last
three convolutional layers all have filters of size 3×3 and
padding of 1. The features are then passed to two fully con-
nected layers with 4,096 neurons each, which also employ
0.5 dropout regularization to avoid overfitting. Finally, the
last layer, comprising two neurons, takes the outputs from
the second fully connected layer and employs the softmax
function to classify the spectrograms as either cough or non-
cough. By utilizing this CNN architecture, we aim to capture
and learn the distinguishing patterns and characteristics of

Fig. 3: Processing steps of generating spectrogram by STFT:
a) the amplitude-time graph of the original signal; b) the sep-
arated signals after framing and windowing; c) multi-frame
spectrums with amplitude values mapped into colors; d) the
final spectrogram.

cough events, enabling accurate classification of cough and
non-cough spectrograms. The combination of convolutional
layers, max-pooling layers, fully connected layers, and the
softmax classification layer provides the necessary capacity
for CNN to effectively differentiate between cough and non-
cough audio samples.
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Fig. 4: Structure of the used CNN classifier: the network consists of eight layers, including five convolutional layers, two
fully connected layers and a softmax classification layer.

3 Experiments

3.1 Dataset Explanation

To train and build the proposed system, we create a dataset
consisting of cough samples and non-cough samples. The
dataset of cough samples comprises self-recorded cough-
ing audio, cough recordings sourced from the Environmen-
tal Sound Classification (ESC-50) dataset [17], and inpatient
cough recordings collected from individuals diagnosed with
respiratory diseases. The inpatient cough recordings were
collected from 24 patients, including 15 males and 9 fe-
males, in the respiratory disease department at Ruijin Hos-
pital [18]. The inpatient’s cough samples ranged in age from
48 to 85 years old and suffered from respiratory diseases
with symptoms of cough. The non-cough samples contain
self-recorded environmental audio and labeled environmen-
tal recordings from the ESC-50 dataset, including interior
sounds, exterior noises, natural sounds, and human (non-
speech) sounds [17]. Both the self-recorded samples and in-
patient cough recordings were recorded using mobile phone
microphones, incorporating background noise in these sam-
ples.

Before training, we apply the audio division algorithm
to split the long audio from the previously collected dataset
into shorter audio clips, each containing a single suspicious
sound. The preprocessed audio has durations ranging from
230ms to 670ms. In total, we obtain 13,529 samples, com-
prising 6,985 cough samples and 6,544 non-cough samples.
To facilitate the training process, we divide the dataset into
a training dataset and a testing dataset. The training dataset
consists of 5,588 cough samples and 5,235 non-cough sam-
ples, while the test dataset comprises 1,397 cough samples
and 1,309 non-cough samples.

3.2 Network Training

The convolutional network employed in this study is trained
using the Adam optimizer, which is a first-order gradient-
based optimization algorithm for stochastic objective func-
tions [19]. The Adam optimizer leverages adaptive estimates
of lower-order moments, making it well-suited for handling
large datasets and sparse gradients. To train the convolu-
tional network, the cross entropy loss function is utilized.
This loss function is commonly employed in classification
tasks and measures the dissimilarity between the predicted
probabilities and the true labels. An initial learning rate of
0.0002 is set, allowing the network to gradually adjust its
weights based on the optimization process.

During the training process, a batch size of 32 is uti-
lized. The batch size determines the number of samples pro-
cessed in each iteration, allowing for efficient utilization of
computational resources and improved generalization per-
formance. By carefully selecting these hyperparameters and
leveraging the capabilities of the Adam optimizer, we opti-
mize the performance of the convolutional network and en-
hance its ability to accurately classify cough and non-cough
samples.

3.3 Experimental Results

To evaluate and compare the performance of the system in
cough detection, two experiments are undertaken.

In the initial experiment, we assess the system’s perfor-
mance using True Positive (TP), False Negative (FN), False
Positive (FP), and True Negative (TN) values obtained from
the confusion matrix presented in Table 1. From this ma-
trix, we derive several performance metrics including accu-
racy, precision, sensitivity/recall, and F1-score. These met-
rics provide valuable insights into the effectiveness and re-
liability of the model when applied to the test dataset. The
calculation of these metrics is as follows:
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accuracy =
TP + TN

TP + TN + FP + FN
(6)

precision =
TP

TP + FP
(7)

sensitivity/recall =
TP

TP + FN
(8)

F1-score = 2 ∗
(

precision × recall
precision + recall

)
(9)

Table 1: Confusion matrix for cough detection.

True Class
Predicted Class

Cough Non-cough

Cough TP: 1379 FN: 18

Non-cough FP: 63 TN: 1246

Based on the classification results presented in Table 2,
the cough detection model demonstrates excellent perfor-
mance in distinguishing between cough events and non-cough
samples. The accuracy of the model is measured at 97.0%,
indicating a high level of overall correct classification. Ad-
ditionally, the recall (also known as sensitivity) is calculated
at 98.7%, which signifies the model’s ability to correctly
identify the majority of actual cough events. The precision
of the model stands at 95.6%, indicating the proportion of
correctly identified cough events among the total number of
predicted cough events. Moreover, the F1-score, which com-
bines both precision and recall, is calculated as 0.97. The
F1-score is a measure that balances the trade-off between
precision and recall, providing an overall assessment of the
model’s performance. These results demonstrate its poten-
tial as a reliable tool for large-scale and contactless cough
screenings.

In the second experiment, we conduct a comprehensive
comparative analysis to assess the effectiveness of the cough
detection model in comparison to machine learning and other
deep learning algorithms for cough classification. Consid-
ering the widely-used Mel-Frequency Cepstral Coefficients
(MFCC) as classical speech recognition features, we con-
struct a Support Vector Machine (SVM) model using MFCC
features to examine how a more complex machine learning
classifier performs in comparison to the CNN-based model.
Additionally, we train a model using the softmax (SM) func-
tion on the MFCC features to directly compare with CNN’s

classification layer. Furthermore, we build comparative deep
learning models utilizing ResNet [20] and VGG16 [21] ar-
chitectures.

The performance metrics of these comparative models
are summarized in Table 2, providing insights into their re-
spective accuracy, recall, precision, and F1-score. The re-
sults clearly demonstrate that the cough detection model out-
performs the SVM model employing MFCC features, ex-
hibiting a remarkable improvement of 2.1% in terms of ac-
curacy.

The main reasons for the superiority of STFT+CNN over
other combinations lie in its feature representation, deep learn-
ing architecture, and data representation. STFT extraction
captures rich time-frequency information, providing a com-
prehensive description of cough sounds, whereas MFCC only
considers Mel frequency information, and SM and VGG16
may not effectively utilize time-frequency information. CNN,
designed for image processing, excels in handling color spec-
trograms and can learn spatial, temporal, and frequency fea-
tures, facilitating accurate cough sound classification and
detection. The color spectrogram leverages the three chan-
nels to enhance feature diversity, while other combinations
might not fully exploit audio data characteristics. This com-
parative experiment highlights the superiority of the CNN-
based approach over traditional machine learning algorithms
and other deep learning architectures in accurately detecting
and classifying cough sounds.

3.4 Discussion

The remarkable accuracy achieved by the cough detection
model, surpassing that of the comparative models, clearly
demonstrates the immense potential of the system. How-
ever, the system’s capabilities extend beyond accurate detec-
tion. It also offers the ability to count the number of coughs
through the implementation of the audio division algorithm,
providing valuable information such as cough frequency and
intensity. This has various applications, including respira-
tory health monitoring, identifying cough outbreaks, and track-
ing medical interventions. For instance, in a healthcare set-
ting, the system could be deployed in hospitals or clinics to
monitor the cough frequency and intensity of patients with
respiratory conditions, enabling healthcare professionals to
gain insights into the severity and progression of their con-
ditions. One of the key advantages of the system is its in-
tegration with a WeChat mini program, enabling the imple-
mentation of cough detection on smartphones and facilitat-
ing large-scale, contactless cough screenings.

By processing the audio recordings on an external server,
the issue of high battery consumption typically associated
with continuous audio processing on mobile devices is mit-
igated. This opens up a wide range of possibilities for de-
ploying the system in various public settings, including hos-
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Table 2: Comparison of SM, SVM, CNN, ResNet, and VGG for cough classification.

Model Accuracy (%) Sensitivity/Recall (%) Precision (%) F1-Score

MFCC+SM 85.7 87.4 83.9 0.86

MFCC+SVM 94.9 97.1 93.1 0.95

STFT+CNN 97.0 98.7 95.6 0.97

STFT+ResNet 94.2 95.6 92.9 0.94

STFT+VGG16 95.4 97.8 94.1 0.95

pital wards, subway stations, and classrooms, where moni-
toring the frequency of coughs is essential. With the ability
to accurately assess coughing incidents, the system can con-
tribute to proactive measures in maintaining public health
and safety. Furthermore, the non-intrusive nature of the sys-
tem, coupled with its ease of deployment, allows for efficient
monitoring and analysis of coughing patterns in real time.
This information can aid in identifying potential outbreaks,
tracking the effectiveness of preventive measures, and pro-
viding early warnings in situations where the spread of res-
piratory illnesses is a concern.

The performance of the cough detection model is sub-
ject to certain limitations, which we acknowledge and aim
to address in future improvements. Two key factors affect-
ing model performance are given below:

Feature extraction method: In real-world environments, noise
poses a challenge to system accuracy, especially in cases of
confusion between cough and speech sounds. Low-amplitude
cough signals may be masked or overlooked by high-amplitude
background noise, affecting threshold selection and segmen-
tation. To overcome these limitations, future research can
employ novel noise suppression techniques to reduce the
impact of background noise on threshold selection. Utiliz-
ing multiple Otsu’s thresholds for multi-scale analysis can
detect cough signals with different amplitudes, reducing the
likelihood of missing low-amplitude cough signals [22]. Data
augmentation by adding various noise and low-amplitude
cough signals can enhance the model’s adaptability to dif-
ferent audio conditions and improve cough signal detection
accuracy. Moreover, considering the fusion of other signals,
such as video or sensor data, can provide comprehensive in-
formation about cough events, aiding in more accurate cough
signal detection and enhancing the model’s robustness to
various types of background noise.

Furthermore, the distance between the smartphone and
the user during cough sound recording can affect the volume
of the recorded signal. If users are at a considerable dis-
tance from the smartphone while recording cough sounds,
the cough volume may be lower, resulting in the potential

masking or reduced detectability of cough signals, especially
in environments with higher background noise. To address
this issue, multiple microphones or microphone arrays can
be employed to capture sound from different angles, and
adaptive volume control or dynamic gain adjustment tech-
niques can be introduced in the system. These measures en-
sure that cough sounds can be effectively captured under
various distances and environmental noise conditions, thereby
enhancing the reliability and robustness of cough signal de-
tection.

Additionally, we will continue to refine the models by
incorporating new feature extraction methods and exploring
advanced deep learning architectures. By combining multi-
ple feature extraction techniques, such as MFCCs and other
spectral or temporal features, we can capture a broader range
of characteristics related to cough events. This will help us
improve the discrimination between coughing and other sounds,
further enhancing the precision and reliability of the system.

Limited types of signals collected: The current system solely
relies on audio signals for cough detection. However, in cer-
tain situations where cough waveforms densely overlap, dis-
tinguishing individual cough events becomes challenging,
leading to inaccurate cough counting. To enhance system
performance, it is crucial to incorporate additional signals.
Coughing is often accompanied by specific movements and
physical cues, which can be valuable in understanding cough-
ing events comprehensively. By incorporating additional sig-
nals, we can gain a more comprehensive understanding of
coughing events. The integration of motion or video data
can provide valuable insights into the physical manifesta-
tions of coughing, such as body movements, hand gestures,
or facial expressions. These cues can contribute to more ac-
curate and reliable detection of cough events, reducing both
false negatives and false positives.

In future research, we will explore the fusion of audio
and image sequence data to develop a more robust and com-
prehensive cough detection system. By leveraging the com-
plementary nature of these modalities, we aim to achieve
even higher accuracy and reliability in detecting and analyz-
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ing cough events, contributing to the advancement of large-
scale and contactless cough screenings in various fields.

4 Conclusion

Cough detection plays a vital role in epidemiological re-
search, disease screening, and epidemic control. In this pa-
per, we present CASCO, an advanced cough detection sys-
tem that combines CNN with a WeChat mini program. The
system accurately detects cough events in real time and pro-
vides an automated count of the number of coughs. To train
the robust cough detection model, we construct a compre-
hensive dataset comprising self-recorded audio samples, la-
beled environmental recordings from the ESC-50 dataset,
and inpatient cough recordings from respiratory disease pa-
tients.

The WeChat mini program integrated into smartphones
serves as the primary interface for the system, allowing users
to record audio and view the cough detection results. The
recorded audio is then processed on an external server us-
ing the sophisticated cough detection model. An audio di-
vision algorithm is employed to extract high-intensity seg-
ments from the audio, isolating individual cough events. The
extracted segments are subsequently converted into spectro-
grams using STFT, capturing the distinctive time-frequency
patterns of cough sounds. These spectrograms are then fed
into the CNN model, which categorizes them as either cough
or non-cough samples.

Extensive evaluations demonstrate the outstanding per-
formance of the cough detection model, achieving an accu-
racy, recall, precision, and F1-score of 97.0%, 98.7%, 95.6%,
and 0.97, respectively. The integration of the system with the
WeChat mini program allows for large-scale and contactless
cough screenings, overcoming the limitations of traditional
detection methods. Additionally, processing audio on an ex-
ternal server reduces battery consumption while leveraging
the server’s computational power for faster and more accu-
rate detection.

In future work, we will focus on improving the noise ro-
bustness of the model and exploring new application sce-
narios for the CASCO cough detection system. The goal
is to develop a versatile and user-friendly solution that en-
hances public health monitoring through reliable and scal-
able cough detection.
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