
EasyChair Preprint

№ 440

A New Tiebreaker in the NEH heuristic for the

Permutation Flow Shop Scheduling Problem

Alexander J. Benavides

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 14, 2018

A New Tiebreaker in the NEH heuristic for the
Permutation Flow Shop Scheduling Problem

Alexander J. Benavides
Universidad Católica San Pablo, Arequipa, Perú.

Universidad Nacional de San Agustín de Arequipa, Perú.
ajbenavides@ucsp.edu.pe, ajbenavides@unsa.edu.pe

Abstract

The most efficient constructive heuristic so far for the Permutation Flow shop Scheduling
Problem (PFSSP) with makespan minimization criterion is the NEH heuristic. It iteratively
inserts a non-scheduled job into the position of the partial schedule that reduces the makespan.
It iterates until a complete schedule is produced. It usually produces a high number of ties
when selecting the best position, and the recent literature is proposing tiebreakers to improve
the results. In this paper we propose a new tiebreaker that is based on the estimation of the
variation of idle times produced with the insertion of the new job, and that takes into account the
reversibility property of the PFSSP. Computational results show that this tiebreaker outperforms
the state-of-the-art heuristics.

Keywords: Scheduling; Flow shop; Heuristics; NEH; Tiebreaker.

1 Introduction
The flow shop scheduling problem (FSSP) consists in finding a processing order for n jobs on m
sequential machines such that certain criterion is optimized. When all the machines are constrained
to the same processing order of jobs, the problem called the Permutation Flow Shop Scheduling
Problem (PFSSP). The PFSSP with the makespan minimization criterion is NP-Complete is one of
the most studied problems in the field of Operations Research (see [5, 6, 10, 13]). The constructive
heuristic NEH, proposed by Nawaz, Enscore, and Ham [9], is considered the most efficient even
nowadays. Many recent research publications are variants of this heuristic (e.g. [2, 3, 4, 7, 8, 11]).

In this paper, we propose a new tie-breaking mechanism for the NEH heuristic, and compare its
results to state-of-the-art heuristics. The rest of the paper is organized as follows: In the next section
we review the theoretical concepts of the PFSSP and we study the NEH heuristic and relevant
variants from the literature. Section 3 describes our new tiebreaker. Section 4 shows computational
results. Finally, Section 5 presents our concluding remarks and hints our next research steps.

The general Flow Shop Scheduling Problem does not impose the same processing order to all
machines. Even when the makespan may be reduced when considering different processing orders
on some machines [1, 12], this paper only considers the permutation version of this problem.

2 Problem Statement
This section starts reviewing the theoretical concepts of the problem. Section 2.2 explains the NEH
heuristic; and Sections 2.3 and 2.4 explain variants of the NEH heuristic from the literature.

2.1 The Permutation Flow Shop Scheduling Problem (PFSSP)
The PFSSP can be stated as follows: There are n jobs that must be processed on m machines, and a
processing order of the jobs must be found, such that the maximum completion time (or makespan,
or Cmax) is minimized. Such order is called a schedule, because it allocates the jobs to the machines
over time. The following conditions are assumed for the PFSSP: Each job can be processed on at
most one machine at a time, and no machine can process more than one job simultaneously. All
the jobs must follow the same machine sequence, and all the machines must process the jobs in
the same order. Job pre-emption is not allowed. Release times of jobs are 0. Set-up times are
either insignificant or considered within the processing time. In-process inventory is considered
unlimited. All machines are available for the scheduling time window.

To give a mathematical definition, let us assume that each operation ij of job j ∈ [n] on
machine i ∈ [m] has a given processing time tij . Let the variable xij be the starting time of
operation ij. Also let the variable yjj′ indicate the precedence order of jobs j and j′. Then, an
integer linear program for the PFSSP is

min. Cmax, (1)

s.t. xmj + tmj ≤ Cmax, ∀j ∈ [n], (2)

xij + tij ≤ x(i+1)j , ∀i ∈ [m− 1], j ∈ [n], (3)

xij + tij ≤ xij′ +M(1− yjj′), ∀i ∈ [m], j 6= j′ ∈ [n], (4)

yjj′ + yj′j = 1, ∀j 6= j′ ∈ [n], (5)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (6)

yjj′ ∈ {0, 1}, ∀j 6= j′ ∈ [n]. (7)

Constraints (2) define the makespan. Constraints (3) require a job to finish its process on a machine
before starting on the following one. Constraints (4) require two jobs j and j′ to be processed in
the order defined by the variable yjj′ . Finally, Constraints (5) enforce a linear ordering of the jobs.

The PFSSP has a reversibility property [11]. To explain this, let the bijection π : [n] → [n]
represent a permutation of the jobs, i.e. a partial or a complete solution for the PFSSP. The
reversibility property states that the makespan of a schedule π = (π(1), . . . , π(n)) for the direct
instance I (formed by the processing times tij for j ∈ [n] jobs and i ∈ [m] machines) is the same as
the makespan of the reverse permutation π′ = (π(n), . . . , π(1)) for the reverse instance I ′ (formed
by the processing times t′ij = tm−i+1,j for j ∈ [n] jobs and i ∈ [m] machines). Thus, it is equivalent
to approach the PFSSP of either the direct instance I or the reverse instance I ′.

2.2 NEH Heuristic with Taillard’s Acceleration
The NEH Heuristic was proposed by Nawaz, Enscore, and Ham [9], and it is still considered the
best performing constructive heuristic for the PFSSP [4, 5, 8]. The NEH Heuristic has two main
steps: First, determine an initial priority order π0 of the jobs and set the first job as the initial partial
schedule (π = {π0(1)}). Second, insert the next job π0(k) into the partial schedule at the position
that minimizes the makespan. The second step is repeated for k ∈ [2, n] until all jobs are scheduled.

The variants of the NEH heuristic in the literature differ on the selected initial priority order
within the first step and on the tie-breaking mechanisms during the insertion step. Those variants
are explained in Sections 2.3 and 2.4 respectively.

Let pij = ti,π(j) represent the processing time of the scheduled job π(j) on machine i. To
evaluate a partial schedule π = (π(1), . . . , π(k)), we must calculate the earliest completion time of

each job j on each machine i as

eij = max{ei,j−1, ei−1,j}+ pij , i ∈ [m], j ∈ [k], (8)

with ei,0 = e0,j = 0. The evaluation of a partial solution has a time complexity of O(km), and we
must evaluate k insertion positions to insert the k-th job. As k ∈ O(n), the time complexity of the
original NEH heuristic is O(n3m).

Taillard [15] proposed a method that reduces this time complexity to O(n2m) by calculating
the makespan of all insertion positions for the next job in one sweep. Let us assume that job l shall
be inserted into the partial schedule π = (π(1), . . . , π(k)), thus there are [k+ 1] insertion positions.
Taillard’s method first calculates the earliest completion times (or heads) for the partial solution
before the insertion with Equation (8). Analogously, it also calculates the time difference qij
between the makespan and the latest starting time (or tail) of each job j on each machine i as

qij = max{qi,j+1, qi+1,j}+ pij , i ∈ [m], j ∈ [k], (9)

with qm+1,j = qi,k+1 = 0. When job l is inserted after job π(j − 1), the head times ei,j−1 will not
change. Thus, they can be used to calculate the relative earliest completion time e′ij of job l if it is
inserted at position j on each machine i as

e′ij = max{e′i−1,j , ei,j−1}+ til, i ∈ [m], j ∈ [k + 1], (10)

with e′0j = 0. Finally, the makespan MCj of the schedule produced by the insertion of job l into
position j ∈ [k + 1] is

MCj = max
i∈[m]
{e′ij + qij}. (11)

The calculation of all the values of equations (8) to (11) takes O(km), and we must calculate those
values to insert each of the k ∈ [2, n] remaining jobs. As k ∈ O(n), the NEH heuristic with Taillard’s
acceleration has a time complexity of O(n2m).

2.3 Priority Rules for the Initial Order
First, let us recall three statistical measures on the processing times of job j: the average processing

time is AV Gj = 1
m

∑m
i=1 tij , their standard deviation is STDj =

√
1

m−1
∑m

i=1 (tij −AV Gj)2, and

their skewness is SKEj =
(

1
m

∑m
i=1 (tij −AV Gj)3

)/(√
1
m

∑m
i=1 (tij −AV Gj)2

)3

.

The original NEH heuristic [9] ordered the jobs by their non-increasing total completion times.
This is equivalent to order them by their non-increasing AV Gj . Dong, Huang, and Chen [2]
ordered the jobs by their non-increasing AV Gj +STDj . Liu, Jin, and Price [8] ordered the jobs by
their non-increasing AV Gj + STDj + abs(SKEj), where abs(SKEj) is the absolute value of the
skewness. Those different priority orders presented improvements within their publications, as we
show along our computational results.

2.4 Insertion Tiebreakers
When there are multiple insertion positions that produce the best possible makespan during the
second step of NEH, the original NEH heuristic [9] just selects the first one.

Ribas, Companys, and Tort-Martorell [11] applied NEH variants to the direct instance and the
corresponding reverse instance, retaining the best between the two produced schedules. Applying
a NEH variant to the corresponding reverse instance only changes the selected insertion position in
the case of ties. This approach reaches better results, but it also duplicates the computational time.

In the case of ties, Fernandez-Viagas and Framinan [4] minimize an approximation of the
variation in the the idle time as a tie-breaking criterion. To explain their approximation, let us
assume that job l shall be inserted into a partial schedule π = (π(1), . . . , π(k)), and that the relative
earliest completion time of job π(j) after the insertion of job l in position j ∈ [k + 1] is

e′′ij = max{e′′i−1,j , e′ij}+ pij , i ∈ [m], (12)

with e′′0j = 0 and e′′i,k+1 = e′i,k+1, because there is no job in the partial schedule π at position k + 1.
Their approximation of the variation in the idle time produced by the insertion of job l in position
j ∈ [k + 1] is

it(j) =

m∑
i=1

∆′i,j−1 + ∆′i,j −∆i,j−1, (13)

where the idle time before job l after it is inserted in position j is ∆′i,j−1 =
(
e′ij − til

)
− ei,j−1, the

idle time after job l after it is inserted in position j is ∆′i,j =
(
e′′ij − pij

)
− e′ij , and the idle time

between jobs in positions j and j − 1 before job l is inserted is ∆i,j−1 = (eij − pij) − ei,j−1. Thus,
their approximation is equivalent to

it(j) =
m∑
i=1

e′′ij − til − eij . (14)

Considering that
∑m

i=1 til is constant for any insertion position, it is also equivalent to

it′(j) =

m∑
i=1

e′′ij − eij . (15)

Finally, Fernandez-Viagas and Framinan [4] use Equations (12) and (15) to calculate their
approximation as

it′′(j) =

m∑
i=1

e′ij − eij + pij + max{e′′i−1,j − e′ij , 0}. (16)

In the case of ties, Liu, Jin, and Price [8] minimize the sum of weighted job completion times
and the variation over the gaps as a tie-breaking criterion. For the insertion position j ∈ [k + 1],
their metric is

LJPj =
m∑
i=1

wie
′
ij + α

m∑
i=1

abs(gij − ḡ), (17)

where wi is the weight assigned to machine i, the parameter α is the weight for the variation of
gaps, gij = Cmax − e′ij − qij is the gap after job l on machine i if it is inserted at position j, the
average of the gaps is ḡj = 1

m

∑m
i=1 gij , and qij and e′ij are defined in Equations (9) and (10).

Liu, Jin, and Price [8] use Equation (17) to compare two tied insertion positions j and j′

(j < j′), but they propose to compare the same number of jobs, thus they calculate the relative
completion times for all the jobs after the insertion in position j until position j′. This duplicates
their calculations without increasing the computational complexity. Besides, they determine the
machine weights wi according to a decreasing order of the gaps at each insertion position. Their
matlab implementation performs a call to the function sort each time it compares two tied insertion
positions. This do increases the computational complexity of the NEH heuristic to O(n2m2 log(m)
unwittingly.

3 Proposed Tiebreaker
The reversibility property of the PFSSP inspired us to design a new tiebreaker based on the
tiebreaker proposed by Fernandez-Viagas and Framinan [4]. We propose to use the minimization
of a weighted approximation of the iddle time variation of both direct and reverse instances as a
tiebreaker criterion. An unweighted approximation of the iddle time variation of both direct and
reverse instances using the Equation (14) is

DR′(j) =

m∑
i=1

e′′ij + q′′ij − 2til − eij − qij . (18)

For this approximation, we must calculate two relative tail times produced by the insertion of job l
at position j ∈ [k + 1]. The relative tail time q′ij of job l when inserted at position j for each
machine i is

q′ij = max{q′i+1,j , qi,j}+ til, i ∈ [m], (19)

with q′m+1,j = 0; and the relative tail time of job π(j − 1) after the insertion of job l in position j is

q′′ij = max{q′′i+1,j , q
′
i,j}+ pi,j−1, i ∈ [m], (20)

with q′′m+1,j = 0 and q′′i0 = q′i0, because there is no job in the partial schedule π at position 0.
We change the term 2til in Equation (18) for (pij + pi,j−1) considering that

∑m
i=1 til is constant

for any insertion position and that the idle times of the approximation might be influenced by the
times of the adjacent jobs. Thus, the proposed weighted approximation for the insertion of job l
into the partial schedule π in position j ∈ [2, k] is

DR(j) =

m∑
i=1

wi
(
α(e′′ij + q′′ij)− β(eij + qi,j−1)− γ(pij + pi,j−1)

)
, (21)

where wi is a weight in the range [1,m] assigned to machine i, and the three parameters α, β, and γ
are used to distinguish the influence of each term. Section 4.3 shows the calibration of
parameters α, β, and γ. The weight assigned to machine i is wi =

⌊
(m−1)(tmi−tmmin)

2

(tmmax−tmmin)
2

⌋
+ 1,

where tmi =
∑n

j=1 tij is the total processing time on machine i, and tmmin = mini∈[m]{tmi} and
tmmax = maxi∈[m]{tmi} are the minimum and the maximum of those times among the machines.

Neither DR(0) nor DR(k + 1) can be calculated because there is no job in positions 0 or k + 1.
Thus, we set DR(0) = DR(k+1) =∞, discarding the first and the last insertion positions, to avoid
the selections made by the original NEH heuristic for the direct and the reverse instances.

4 Computational Results
4.1 Experimental methodology
The constructive heuristics were implemented in C++17, compiled with the GNU C++ compiler
version 7.2.0 with optimization level 2, and run on a PC with an AMD Opteron 6238 processor
running at 2.9 GHz, and with 64 GB of main memory, using only one core in each execution.

We have tested the constructive heuristics on the 120 instances proposed by Taillard [16] and
the 480 instances proposed by Vallada, Ruiz, and Framinan [18], divided in 240 VRF-small and
240 VRF-large. These are the standard benchmarks in the literature. As the evaluated constructive
heuristics are deterministic, we perform each experiment once for each instance and NEH variant.

NEH variants differ in priority rules and tiebreakers. We refer to each priority rule by the last
statistical measure used to calculate it: PRAV G by Nawaz, Enscore, and Ham [9], PRSTD by

Dong, Huang, and Chen [2], and PRSKE by Liu, Jin, and Price [8]. We refer to each tiebreaker
by the initials of the authors that proposed them: TNEH by Nawaz, Enscore, and Ham [9], TFF by
Fernandez-Viagas and Framinan [4], TLJP by Liu, Jin, and Price [8], and TB for our proposal.

We present the quality of the results as the relative deviation RD = (Cmax − Cmax
∗)/Cmax

∗

from the best known value Cmax
∗, and as the average relative deviation (ARD) for groups of

instances. The best known values are those reported by Taillard [17] and by Vallada, Ruiz,
and Framinan [18]. We assess the performance of a heuristic h as the average relative time
ARTh =

(∑
∀i

CPUh,i−ACTi
ACTi

/
|I|
)

+ 1, over all instances i ∈ I, where CPUh,i is the computation
time of heuristic h performed on instance i, and ACTi =

∑
∀hCPUh,i/|H| is the average CPU time

for instance i over all heuristics h ∈ H. We also report the average time ATh =
∑
∀iCPUh,i/|I| for

each heuristic h.

4.2 Parameter setting for the tiebreaker
We performed the calibration experiments of the TB tiebreaker with the best priority rule (PRSKE)
on the benchmark of Taillard. The term with the largest value in Equation (21) is (e′′ij + q′′ij). The
other two terms are substracted from it. Thus, to calibrate the parameters α, β, and γ, we set
α = 100, and we test β ∈ [0, 100] and γ ∈ [0, 100] (10201 combined levels). Thirteen combinations
reached a percentual ARD below 2.75, and three of them below 2.74. The lowest ARD of 2.724 is
achieved with α = 100, β = 88, and γ = 25; thus we set these values for the rest of the experiments.

4.3 Comparison of tiebreakers
Table 1 shows ARDs for twelve NEH variants (with different combinations of priority rules and
tiebreakers) on the twelve size groups of Taillard’s benchmark. The best ARD for each group is
highlighted in gray. Among the priority rules, PRSKE achieves the best results for seven size
groups, PRSTD for four, and PRAV G for one. The best average results are achieved using the
PRSKE priority rule, confirming the results of Liu, Jin, and Price [8]. Among the tiebreakers, both
TLJP and TB achieve the best results for five groups each, and both TNEH and TFF for one group
each. The combination PRSKE and TB produces the best results for four size groups, and its ARDs
are less than 0.3% above the best results for other groups. The closest best combination is PRSKE
and TLJP , whose ARDs are less than 0.38% above the best results for each group. Results on VRF
benchmarks are similar: the combinations PRSKE with TLJP and PRSKE with TB closely produce
the best average results, and no combination has the best results for a majority of size groups.

Table 2 shows ARDs for twelve NEH variants on each benchmark. In general, PRSKE priority
rule produces the best average results for each tiebreaker. The combination PRSKE with TB
produces the best overall ARD of 3.021%, followed by the combination PRSKE with TLJP with an
overall ARD of 3.025%. PRSKE with TB produces the best ARD on Taillard’s benchmark, followed
by PRSKE with TLJP with less than 0.027% of difference. PRSKE with TLJP produces the best
ARD on VRF benchmarks, followed by PRSKE with TB with less than 0.008% of difference. The
results of both combinations PRSKE with TB and PRSKE with TLJP are closely the best.

Table 2 also shows average times (AT) for each benchmark. Priority rules are applied in the first
step before the iterative insertion phase, thus they show no strong effect on the runtime. There is a
small variation in the runtime among TNEH , TFF , and TB. This is because they all have the same
time complexity of O(n2m). Otherwise, TLJP doubles the time of other tiebreakers on VRF-large
benchmark, and it triples the time on the other benchmarks.

Figure 1 plots for each benchmark the ARDs vs. the ARTs presented in Table 2. The PRSKE
priority rule produces the best average results for each tiebreaker. Among the tiebreakers, TLJP

Table 1: Percentual ARDs for different priority rules and tiebreakers on Taillard’s benchmark (by size).

PRAVG PRSTD PRSKE

TNEH TFF TLJP TB TNEH TFF TLJP TB TNEH TFF TLJP TB

20 5 3.300 2.293 2.365 2.978 2.703 2.559 2.193 2.401 2.708 2.359 2.164 2.382
20 10 4.601 4.152 4.726 4.866 4.084 3.543 3.794 3.854 3.684 3.563 3.679 3.550
20 20 3.731 3.305 3.337 3.318 3.816 3.331 3.531 3.151 2.914 3.156 3.061 2.931
50 5 0.727 0.922 0.562 0.801 0.893 0.749 0.634 0.952 0.879 0.848 0.641 0.746
50 10 5.073 5.150 4.688 5.442 4.904 4.905 4.641 4.763 4.844 5.174 4.246 4.094
50 20 6.648 6.207 6.111 5.961 6.121 5.812 5.780 6.230 6.419 6.485 6.154 5.982

100 5 0.527 0.378 0.360 0.450 0.411 0.412 0.345 0.393 0.538 0.464 0.364 0.344
100 10 2.215 2.182 1.620 2.011 2.156 1.719 1.455 1.516 2.241 1.889 1.721 1.748
100 20 5.345 5.021 5.085 5.129 5.653 5.147 4.998 4.990 4.988 5.100 4.813 4.757
200 10 1.258 0.984 0.928 0.998 1.270 0.987 0.988 1.007 1.243 1.022 0.894 0.950
200 20 4.408 4.037 3.785 3.858 4.569 3.885 3.861 3.755 4.145 3.810 3.649 3.592
500 20 2.066 1.776 1.711 1.708 2.121 1.713 1.718 1.607 2.123 1.777 1.624 1.612

Table 2: Percentual ARD, ART and AT (in microseconds) for different priority rules and tiebreakers on all
benchmarks.

PRAVG PRSTD PRSKE

TNEH TFF TLJP TB TNEH TFF TLJP TB TNEH TFF TLJP TB

A
R

D Taillard 3.325 3.034 2.940 3.127 3.225 2.897 2.828 2.885 3.060 2.971 2.751 2.724
VRF-small 3.845 3.602 3.504 3.573 3.805 3.549 3.516 3.521 3.738 3.540 3.446 3.453
VRF-large 3.332 3.025 2.957 2.955 3.239 2.950 2.894 2.904 3.210 2.905 2.878 2.885

AT

Taillard 2.54 2.93 8.42 2.89 2.52 2.96 8.30 2.87 2.54 3.00 8.35 2.87
VRF-small 0.07 0.09 0.31 0.09 0.07 0.10 0.31 0.09 0.08 0.10 0.31 0.09
VRF-large 43.91 45.30 84.87 45.17 43.89 45.29 86.25 45.13 43.92 45.34 86.24 45.23

A
R

T Taillard 0.523 0.686 2.085 0.628 0.520 0.708 2.148 0.645 0.531 0.724 2.155 0.645
VRF-small 0.496 0.649 2.200 0.600 0.507 0.660 2.226 0.609 0.520 0.670 2.239 0.622
VRF-large 0.783 0.809 1.573 0.813 0.780 0.811 1.608 0.808 0.782 0.810 1.611 0.813

is clearly the least efficient. The combination PRSKE with TB is faster than PRSKE with TLJP ,
producing similar results. The combination PRSKE with TB also reaches better results than any
priority rule with either TNEH or TFF , using a comparable running time. The combination PRSKE
with TB shows the best trade-off between efficiency and quality of results.

0.5 0.7 1 1.4 2
2.7
2.8
2.9
3

3.1
3.2
3.3

ART

A
R

D

a. Taillard’s benchmark.

0.5 0.7 1 1.4 2

3.5

3.6

3.7

3.8

ART

A
R

D

b. VRF-small benchmark.

0.7 1 1.4

2.9

3

3.1

3.2

3.3

ART

A
R

D

c. VRF-large benchmark.

P
R

A
V
G

P
R

S
T
D

P
R

S
K

E

TNEH

TFF

TLJP

TB

d. Legend.

Figure 1: Computational efficiency for each NEH variant on each benchmark.

5 Conclusions
This paper presented a new tiebreaker (TB) for the NEH heuristic. It is based on the estimation
of the variation of idle times produced with the insertion of a new job, taking into account the
reversibility property of the PFSSP. The TB tiebreaker, when combined with PRSKE priority rule,
shows the best trade-off between efficiency and quality of results, outperforming other heuristics.

Our next research includes two aspects: the proposal of better priority rules based on
deconstructing known best schedules; and the evaluation of the proposed tiebreaker within state-of-
the-art metaheuristics such as the Iterated Greedy Algorithm proposed by Ruiz and Stützle [14].

References
[1] Alexander J. Benavides and Marcus Ritt. Two simple and effective heuristics for minimizing the

makespan in non-permutation flow shops. Computers & Operations Research, 66:160–169, 2016.
[2] Xingye Dong, Houkuan Huang, and Ping Chen. An improved NEH-based heuristic for the permutation

flowshop problem. Computers & Operations Research, 35(12):3962–3968, 2008.
[3] Shahriar Farahmand Rad, Rubén Ruiz, and Naser Boroojerdian. New high performing heuristics for

minimizing makespan in permutation flowshops. Omega, 37(2):331–345, 2009.
[4] Victor Fernandez-Viagas and Jose M Framinan. On insertion tie-breaking rules in heuristics for the

permutation flowshop scheduling problem. Computers & Operations Research, 45:60–67, 2014.
[5] Victor Fernandez-Viagas, Rubén Ruiz, and Jose M Framinan. A new vision of approximate methods

for the permutation flowshop to minimise makespan: state-of-the-art and computational evaluation.
European Journal of Operational Research, 257(3):707–721, 2017.

[6] Jose M Framinan, Jatinder ND Gupta, and Rainer Leisten. A review and classification of heuristics for
permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society,
55(12):1243–1255, 2004.

[7] Pawel J Kalczynski and Jerzy Kamburowski. An empirical analysis of the optimality rate of flow shop
heuristics. European Journal of Operational Research, 198(1):93–101, 2009.

[8] Weibo Liu, Yan Jin, and Mark Price. A new improved neh heuristic for permutation flowshop scheduling
problems. International Journal of Production Economics, 193:21–30, 2017.

[9] Muhammad Nawaz, E Emory Enscore, and Inyong Ham. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, 11(1):91–95, 1983.

[10] S Reza Hejazi and S Saghafian. Flowshop-scheduling problems with makespan criterion: a review.
International Journal of Production Research, 43(14):2895–2929, 2005.

[11] Imma Ribas, Ramon Companys, and Xavier Tort-Martorell. Comparing three-step heuristics for the
permutation flow shop problem. Computers & Operations Research, 37(12):2062–2070, 2010.

[12] Daniel Alejandro Rossit, Fernando Tohmé, and Mariano Frutos. The non-permutation flow-shop
scheduling problem: a literature review. Omega, 2017.

[13] Rubén Ruiz and Concepción Maroto. A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2):479–494, 2005.

[14] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049, 2007.

[15] Eric Taillard. Some efficient heuristic methods for the flow shop sequencing problem. European Journal
of Operational Research, 47(1):65–74, 1990.

[16] Eric Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Research,
64(2):278–285, 1993.

[17] Eric Taillard, 2004. URL: http : / / mistic . heig - vd . ch / taillard / problemes . dir /
ordonnancement.dir/flowshop.dir/best_lb_up.txt. Best known lower and upper bounds
of the PFSSP for Taillard’s instances.

[18] Eva Vallada, Rubén Ruiz, and Jose M Framinan. New hard benchmark for flowshop scheduling problems
minimising makespan. European Journal of Operational Research, 240(3):666–677, 2015.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt

	Introduction
	Problem Statement
	The Permutation Flow Shop Scheduling Problem (PFSSP)
	NEH Heuristic with Taillard's Acceleration
	Priority Rules for the Initial Order
	Insertion Tiebreakers

	Proposed Tiebreaker
	Computational Results
	Experimental methodology
	Parameter setting for the tiebreaker
	Comparison of tiebreakers

	Conclusions

