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Abstract: New method of 1-D to 2-D transformation of time series or one-

dimensional signals was proposed. The method is based on a binary transformation of 

the time series. Resulting binary points are considered as interacting pseudo particles. 

The transformation is carried out using moving window. In each position of moving 

window, the pseudopotential is calculated and is written in the central point of moving 

window. Two pseudopotentials were considered: Ising spin-spin potential and 

Coulomb potential. Both potentials equally well describe the features of time series 

dynamics. Potential calculations were carried out at different values of the width of the 

sliding window. The resulting potential curves were grouped together to create 2-D 

images. This 1-D to 2_D transformation was compared with continues wavelet 

transform (CWT). The comparison showed that potential transformation gives more 

detailed information of hidden patterns then CWT. 
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Introduction. One dimensional time series (TS) are the discrete sequences of 

different kind objects. Let us consider numerical time series (NTS). Relative location 



of points inside NTS may be considered as one-dimensional pattern. Two-dimensional 

gray scaled images are two-dimensional patterns of bytes. From the classical point of 

view TS is usually considered as addition of regular signal and noise [1]. In such 

approach the main problem is to get rid of noise. To solve the problem, one can use 

smoothing algorithms [2] and filters. Various information may be obtained using the 

continues or discrete wavelet transform [3-5]. Continues wavelet transformation 

(CWT) is the transformation of TS from 1-D to 2-D representation. Thus, this 

transformation widens the horizons of TS analysis. Discreet wavelet transformation 

(DWT) separates TS into several parts: approximation and details [3-5] Our point of 

view is that noise patterns sometimes contain significantly useful information. Patterns 

are mosaic of relative location of TS points. So, to analyze patterns one needs distance 

calculation. In image processing the distance transformation (DT) is widely used as a 

useful tool for pattern analysis [6]. DT proved to be useful in many practical 

applications. There are many different methods and distance measures which are used 

in DT calculations. Euclidian DT (EDT) is one of the popular distance measure [7]. 

The drawback of EDT algorithms is that EDT algorithms are slow-speed leading to 

different problems. For example, the problem of sparse object representation in discrete 

geometry. This problem was considered using DT in [8]. The DT algorithm was also 

used in [9] for automatic pattern recognition. The DT algorithm complexity was 

analyzed in [10], in which several effective algorithms were developed: Linear-time 

Legendre transform (LLT) algorithm, the parabolic envelope (PE) algorithm and non-

expansive proximal mapping (NEP) algorithm. It was shown in [10] that these 

algorithms have linear complexity and may be effectively used for DT processing of 

images. Nowadays the high-speed parallel computing and GPU computing are often 

used in DT calculation [11]. DT is useful in many practical applications. For example, 

in medical application DT is one of best means for discovering the similarity in image 

series [12]. It is rather important for inner organs slice-by-slice image analysis. Good 

results were obtained using together watershed algorithm and DT for blood cell image 

segmentation [13]. Watershed algorithm needs grayscale images. In [13] DT transform 

was used to transform binary image to gray-scale. Four distance measures were used: 



EDT, city-block, chessboard and quasi-Euclidean. It was found that chessboard DT 

measure had best results in watershed segmentation. 

In our present work we used DT for so called pseudopotential calculation. Let us 

assume that normalized TS was binarized, for example, on 0.5-level. Let us call points 

for which f(xi) > level as “white” points, otherwise “black” point. Sometimes they are 

called feature or background points. The “white” points in binary image may be 

considered as pseudo particles. These particles create pseudopotential field which 

value may be put into the central pixel of moving window (MW). In one pass of MW 

on the time series we get one potential curve corresponding to the chosen width of 

MW. By grouping together these curves for different values of MW-width one obtains 

1-D to 2-D transformation of TS. This transformation is like wavelet transform but has 

different nature. While wavelet depends on one parameter, potential transform depends 

of whole points configuration. We considered two kinds of pseudopotentials: Ising 

spin-spin interaction potential [14] and Coulomb potential. Other kinds of potential 

may be considered, for example, and Lennard-Jones potential [15,16] or Tersof [17] or 

Morse [15,16] potential. 

Potential transformation 

For potential transform one needs the TS preliminary processing and binarization. 

1. Preliminary processing. 

1.1. The first step of preliminary processing is the removal of trend. It is possible 

to model trend using both local or global smoothing or approximation. In our study we 

used local spline regression. We get the detrended TS as follows ( )i i iv a f a= − , where 

ai - initial TS, ( )if a  - trend. 

1.2. Second step is the removal of outliers. It is important to remove the outliers 

because they are more anomalies and are not related to the patterns. To remove outliers 

we use the following algorithm: (a) calculation of global average and standard 

deviation; (b) deleting from TS points with values greater then, two standard 

deviations: arg(| | 2 ), [ ]i kk v vσ= > = , where [ ] – means “delete”, σ - standard 

deviation; (c) new calculation of global average and standard deviation; (d) 
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2. Binarization 

Binarization is the transformation of TS into binary points 
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where L – binarization level. 

Let us name points, for which 1kb =  “white” points and otherwise “black” points. 

3. Potential transformation 

The potential transformation is performed using so called moving window (MW). 

The MW moves along TS from one point to another. The potentials are calculated only 

for “white” binary points inside MW. In the present work we used two kinds of 

potential: distance dependent potentials (Coulomb potential) and distance independent 

Ising spin-spin potential [14]. 

3.1. Ising potential transform (IPT) 

In Ising model the spin-spin interaction is considered only between nearest spins 

[14]. Let us assume that “white” points have spin 1iS =  and “black” points have spin 

1iS = − . The total Ising potential is equal to the summation of all two-particle 

interactions: 
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where: MW – moving window; c – central point of moving window; t, q – “white” 

points inside moving window; tqr  - distance between points t and q; R – limits of Ising 

interaction; J – energy constant (in calculation J = 1). 

In every position of MW, the total potential of spin interaction between particles is 

assigned to central point. The resulting TS was called Ising potential transform (IPT). 



If R = w (width of MW), then ( )sin 
1

( 1)
2I g tq tqU c n n= − , where tqn  is the number 

of “white” points inside MW. 

3.2. Coulomb potential transform (CPT). 

The algorithm (CPT-algorithm) uses total Coulomb potential of interactions 

between “white” binary points ( ) ( ) 1
ij

iji j i j

U p V r
r< <

= =  , where: ijr - distance between 

two binary points. We compute the total interaction between “white” points as follows: 
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where: { }; , ,G i j c i j c MW= ≠ ≠ ∈  MW – moving window; c – central point of moving 

window. 

Other kinds of potential may be used, for example, Lennard-Jones potential 

[15,16]: 
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where ijr  - distance between binary points, ε, σ - potential parameters, rc – cut off 

distance (potential limits). The parameter ε defines the strength of the interaction and 

σ is a length scale. The interaction repels points at close range, then attracts, and is 

eventually cut off at some limiting distance rc. 

Assuming 1, cr wε σ= = =  and taking d as half MW width we get the following 

calculating equation for total Lennard-Jones potential: 
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where w – is the width of moving window. 

We assume that using another kind of particle interaction, for example, the Morse 

potential or Tersoff potential [15-17], one may get another hidden pattern. 



For each position of MW, the potential values of different binary slices constitute 

potential vector. We used this vector for statistical indices calculation which we 

consider as TS structure signatures. We calculated the following normalized statistical 

indices: 

Each individual potential curve corresponding to a chosen window width may be 

analyzed using following statistical indices: 
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where p – potential vector, n – number of TS points. 

Normalized standard deviation: 
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Normalized skewness: 
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Normalized kurtosis: 
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Results 

As example for potential transformation let us consider time series of stock prices 

of platinum of London Metal Exchange. The data was obtained on the website 

https://www.quandl.com/data/LME. The data cover the interval from 1990 to 2018. 

Fig.1 show the initial TS and its spline approximation. 



 

Fig.1. Initial TS – black and spline approximation - red: stock prices of platinum of 

London Metal Exchange from 1990 to 2018 

 

Big outlier is located near 2500 day. Next step is trend removal. The resulting 

detrended TS is shown in Fig.2. 

 

 

 



 

Fig2. Detrended TS. 

 

It is clear from Fig.2 that outlier problem is not solved. Clearing detrended TS and 

normalizing it as is described in section 1.2 we get cleared TS shown in Fig.3. 

   

a                                                                          b 

Fig.3. Normalized cleared TS and its histogram 

 

Cleared TS was used in potential calculation. One of the Ising potential curves 

and one of the Coulomb potential curves are shown in Fig.4. 



 

a                                                                     b 

Fig.4. Potential curves for d = 200: a – Ising potential; b – Coulomb potential 

 

As it is clear from Fig.4 the curves are very similar. Potential values, of course, 

are significantly different but both potentials equally well describe the specific features 

of time series dynamics. Small differences take place in the magnitude of the peaks 

which is may be due to the different scales of the curves. 

Let us consider results of 1-D to 2-D potential transformation. Corresponding 

images are shown in Fig.5. For comparison in Fig.6 CWT is shown. 
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Fig.5. TS potential transformation: a – Ising potential; b – Coulomb potential 

 

Fig.6. Continues wavelet transform of time series (Daubechies wavelet was used) 



 

From the comparison of Fig.5 and Fig.6 follows that CWT do not show specific 

features of time series as clear as potential transformations. So, the potential 

transformation may be considered as effective additional tool to wavelet analysis. 

Conclusion 

New method of analysis of time series was proposed. The method uses potential 

transformation of time series. The essence of the potential transformation is the 

following. The first is the binarization of the time series. As a result, points are divided 

into two classes. Points of each class were considered as interacting pseudo particles. 

The potential is calculated for the interaction between points of one of the two classes. 

The potential was calculated using two interactions: Ising spin-spin interaction and 

Coulomb interaction. Moving window was used to calculate the potential value for 

every point of time series. 

The results show: 

1. Both potential transformations give similar results. 

2. Specific points of the time series are better detected by a potential 

transformation than by using continues wavelet transform. 
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