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Abstract. As we deploy autonomous agents in safety-critical domains,
it becomes important to develop an understanding of their internal mech-
anisms and representations. We outline an approach to imitation learning
for reverse-engineering black box agent policies in MDP environments,
yielding simplified, interpretable models in the form of decision trees. As
part of this process, we explicitly model and learn agents’ latent state
representations by selecting from a large space of candidate features con-
structed from the Markov state. We present initial promising results from
an implementation in a multi-agent traffic environment.
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1 Introduction

Data-driven learning is state-of-the-art in many domains of artificial intelligence
(AI), but raw statistical performance is secondary to the trust, understanding
and safety of humans. For autonomous agents to be deployed at scale in the
real world, people with a range of backgrounds and remits must be equipped
with robust mental models of their learning and reasoning. However, modern
learning algorithms involve complex feedback loops and lack semantic grounding,
rendering them black boxes from a human perspective. The field of explainable
artificial intelligence (XAI) [5] has emerged in response to this challenge.

Most work in XAI focusses on developing insight into classification and re-
gression systems trained on static datasets. In this work we consider dynamic
problems comprising agents interacting with their environments. We present our
approach to interpretable imitation learning (I2L), which aims to model the pol-
icy of a black box agent from analysis of its input-output statistics. We call the
policy model interpretable because it takes the form of a binary decision tree,
which is easily decomposed and visualised, and can be used for both factual and
counterfactual explanation [3]. We move beyond most current work in the imita-
tion learning literature by explicitly learning a latent state representation used
by the agent as the basis for its decision making. After formalising our approach,
we report the initial results of an implementation in a traffic simulator.

? Supported by an EPSRC/Thales industrial CASE award in autonomous systems.
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2 I2L Framework

Preliminaries Our I2L approach is applied to agents that operate in Markov
Decision Process (MDP) environments. At time t, an agent perceives the current
Markov state st ∈ S. We then assume that it maps this state into an intermediate
representation xt = φ(st) then selects an action from the discrete space A via
a deterministic policy function at = π(xt). The next Markov state st+1 is a
function of both st and at. Modelling a state-dependent reward function is not
necessary for the present work.

Generic Problem Formulation We adopt the perspective of a passive specta-
tor of the MDP with access to its Markov state and the action taken by the agent
at each time step. This allows us to observe a history of N states and actions
H = [(s1, a1), ..., (sN , aN )] to use as the basis of learning. Our objective is to
imitate the agent’s behaviour, that is, to reverse-engineer the mapping st → at.
This effectively requires approximations of both φ and π, denoted by φ′ and π′

respectively. The need to infer both the policy and the representation on which
this policy is based makes this problem a hybrid of imitation learning and state
representation learning [4].

It is essential to constrain the search spaces for φ′ and π′ (Φ and Π re-
spectively) so that they only contain functions that are human-interpretable,
meaning that their operation can be understood and predicted via visualisations,
natural-language explanations or brief statements of formal logic. This property
must be achieved while minimally sacrificing imitation quality or tractability of
the I2L problem. Given the history of state-action pairs H, this problem can be
formulated as an optimisation over φ′ and π′:

argmin
φ′∈Φ,π′∈Π

[
N∑
t=1

` (π′(φ′(st)), at)

]
where Φ,Π = “interpretable” (1)

and ` : A×A → R≥0 is a pairwise loss function over the discrete action space.
The schematic in figure 11 outlines the task at hand.

Human Model

Fig. 1. Generic I2L problem setup. The objective is to minimise the loss between at
and a′t ∀t ∈ 1..N , while ensuring φ′ and π′ are comprehensible under human scrutiny.

1 Icons from users Freepik and Pixel Perfect at www.flaticon.com.
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Space of Representation Functions As highlighted above, it is important
that Φ permits human-interpretable state representations. We achieve this by
limiting its codomain to vectors of real-valued features, generated from st through
recursive application of elementary operations from a finite set F. To limit the
complexity of Φ, we specify a limit r on the recursion depth. Prior domain
knowledge is used to design F, which in turn has a shaping effect on φ′ without
requiring the stronger assumption of which precise features to use. Each feature
also has a clear interpretation by virtue of its derivation via canonical opera-
tions. In our traffic simulator implementation, F contains operations to extract
a vehicle’s speed/position, find the nearest vehicle/junction ahead of/behind a
position, and subtract one speed/position from another.

Space of Policy Functions Π must be similarly limited to functions that
are comprehensible to humans while retaining the representational capacity for
high-quality imitation. Following prior work [2,6], we achieve this by adopting
a decision tree structure. The pairwise loss function ` over the action space A
is used to define an impurity measure for greedy tree induction. For a decision
node n, let Pn(a) be the proportion of data instances at that node with action
value a. We use the following measure of node impurity:

I(n) =
∑
a∈A

∑
a′∈A

Pn(a) · Pn(a′) · `(a, a′) (2)

The popular Gini impurity is a special case of this measure, recovered by defining
` such that `(a, a′) = 0 if a = a′, and `(a, a′) = 1 otherwise.

Learning Procedure In general, the joint inference of two unknown functions
(in this case φ′ and π′) can be very challenging, but our constraints on Φ and Π
allow us to approximately solve equation 1 through a sequential procedure:

1. Apply domain knowledge to specify the feature-generating operations F and
recursion depth r. Denote the representation of all valid features φall.

2. Iterating through each state st in the observed state-action history H, apply
φall to generate a vector of numerical feature values. Store this alongside the
corresponding action at in a training dataset.

3. Define a pairwise action loss function ` and deploy a slightly-modified version
of the CART tree induction algorithm [1] to greedily minimise the associated
impurity measure (equation 2) on the training set. Let the induction process
continue until every leaf node is pure, yielding a large, overfitted tree T0.

4. Prune the tree back using minimal cost complexity pruning (MCCP) [1],
whose output is a tree sequence [T0, T1, T2, ...], each a subtree of the last,
representing a progressive reduction of T0 down to its root.

5. Pick a tree from this sequence to use as the policy model π′, and define φ′

as the subset of features from φall used at least once in that tree.

Having a sequence of options for the tree model and associated representation
allows us to manage a tradeoff between accuracy on one end, and interpretability
(through simplicity) on the other. In the following implementation, we explore
the tradeoff by selecting several trees from across the pruning sequence.
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3 Implementation with a Traffic Simulator

We implement I2L in a traffic simulator, in which multiple vehicles follow a
common policy to navigate a track while avoiding collisions. Five track topologies
are shown in figure 3 (left). Coloured rectangles are vehicles and red circles are
junctions. Since the policy is homogeneous across the population we can analyse
the behaviour of all vehicles equally to learn φ′ and π′.

Target Policies Instead of learned policies, we use two hand-coded controllers
as the targets of I2L. From the perspective of learning these policies remain
opaque. For both policies, A contains five discrete acceleration levels, which
determine the vehicle’s speed for the next timestep within the limits [0, vmax].

– Fully-imitable policy (πF): a rule set based on six features including the vehi-
cle’s speed, distance to the next junction, and separations and speeds relative
to other agents approaching that junction. This policy is itself written as a
decision tree with 39 leaves, hence can be modelled exactly in principle.

– Partially-imitable policy (πP): retains some logic from πF, but considers more
nearby vehicles and incorporates a proportional feedback controller. These
changes cannot be modelled exactly by a finite decision tree.

Representation We use a set of eight operations F which allows the six-feature
representation used by πF (denoted φF) to be generated. These are:

– pos : i→ p or j → p. Get the position of vehicle i or junction j.
– speed : i→ v. Get the speed of vehicle i.
– fj : i→ j. Find the next junction in front of vehicle i.
– fa : i→ i′ or j → i′. Find the next vehicle in front of vehicle i or junction j.
– ba : i→ i′ or j → i′. Find the next vehicle behind vehicle i or junction j.
– twin : j → j′. Flip between the two track positions comprising a junction.
– sep : (p1, p2)→ s. Compute the separation between two positions.
– sub : (v1, v2)→ ∆ or (s1, s2)→ ∆. Subtract two speeds or separations.

With r = 6, φall has 308 features, including all six in φF. The vast majority are
irrelevant for imitating the target policies, so we face a feature selection problem.

Training We run simulations with 11 vehicles on all five topologies in figure 3
(left). The recorded historyH is converted into a training dataset by applying φall

for each vehicle. After rebalancing action classes, our final dataset has a length of
125000. For tree induction, we use the simple loss function `(a, a′) = |a−a′|. For
each tree in the sequence output by MCCP, we measure the predictive accuracy
on a validation dataset, and consider the number of leaf nodes and features used
as heuristics for interpretability. Figure 2 plots these values across the sequence
for both targets. We select five pruning levels (in addition to T0) for evaluation.

Baselines We also train one tree using only the six features in φF, and another
with an alternative representation φnäıve, indicative of what might be deemed
useful without domain knowledge (radius, angle, normal velocity and heading
of nearby agents in egocentric coordinates). Two further baselines use training
data from only one track topology (either the smallest topology A or the largest
D). This tests the generalisability of single-topology learning. For all baselines,
we use the pruned tree with the highest validation accuracy.
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Fig. 2. Validation accuracy and used feature count across the pruning sequences for
each target policy. *Note the very different horizontal axis scales* ; the unpruned tree
for πP is much larger. Numbered vertical lines indicate trees chosen for evaluation.

4 Results and Discussion

The heat maps in figure 3 (right) contain results for two metrics of imitation
quality for both πF and πP. Each row corresponds to a pruned tree or baseline,
and each column indicates the track topology used for testing.
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Fig. 3. (Left): The five test topologies used. (Right): Results for I2L quality metrics.

Accuracy This metric is predictive accuracy on a held-out test set. For both
πF and πP, mean accuracy exceeds 90% for even the smallest prune levels and
95% for the second-smallest. The fact that accuracy for πP is bounded at around
97.5% reflects the fact that this policy is not a decision tree so cannot be per-
fectly imitated by one. As expected, providing φF upfront (thereby removing the
representation learning requirement) yields somewhat better accuracy, but it is
promising to see that down to prune level 2, performance differs by under 0.25%
for both targets. Lacking information about junctions, the tree using φnäıve is
unable to obtain the same levels of accuracy, demonstrating the importance of
choosing the correct representation for imitation. The single-topology training
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results show that trees generalise well from the large topology D, but poorly
from the small topology A. This suggests the latter contains insufficient variety
of vehicle arrangements to capture all important aspects of the target policies.

Failure Here we deploy the models as control policies in the environment and
measure the mean time between failures (either collision or ‘stalls’, when traffic
flow grinds to a halt) over 100 episodes of up to 1000 timesteps. A value of 100000
indicates zero failures occurred. While results broadly correlate with accuracy,
this metric shows a more marked aggregate distinction between πF and πP, and
between different test topologies. Nonetheless, there is minimal degradation with
pruning down to level 4, with a constant average of just 1-2 failures for πF, and
3-4 for πP. In fact, it appears that intermediate pruning levels fail less often than
the largest trees. While the reason for this is not immediately clear, it may be
that having fewer leaves yields less frequent changes of acceleration and smoother
motion. Providing φF confers no significant benefit over φall, while φnäıve and
single-topology training on A are utterly unable to perform/generalise well.

5 Conclusion

We have introduced our approach to interpretable imitation learning for black
box agent control policies that use intermediate low-dimensional state repre-
sentations. Our models take the form of decision trees, which select from large
vectors of candidate features generated from the Markov state using a set of basic
operations. The accuracy-interpretability tradeoff is managed by post-pruning.

Our initial implementation has shown that trees trained by I2L exhibit high
predictive accuracy with respect to two hand-coded control policies, and are
able to avoid failure conditions for extended periods, even when heavily pruned.
It has also highlighted that using a plausible-but-incorrect state representation
places a severe limitation on imitation quality, and that learning from data that
do not capture the full variation of the environment leads to poor generalisation.

In ongoing follow-up work, we are exploring how our decision tree models can
be used to interpret and explain their target policies, and are also implementing
I2L with a truly black box policy trained by reinforcement learning.
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