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Abstract. It is always challenging for efficiently conducting accurate
detection of small and occluded pears in modern orchards. In the past
few years, the aforementioned detection tasks remained unsolved though
lots of researchers attempted to optimize the adaption of background
noise and viewpoints, particularly compliant models suitable for simul-
taneously detecting small and occluded pears with low computational
cost and memory usage. In this paper, we proposed a lightweight and
effective object detection network called as SFYOLO based on space-
friendly aggregation perception. Specifically,a novel space-friendly atten-
tion mechanism was proposed for implementing the aggregate percep-
tion of spatial domain and channel domain. Afterwards, an improved
space-friendly transformer encoder was put forward for enhancing the
ability of information exchange between channels. Finally, the decoupled
anchor-free detectors were used as the head to improve the adaptability
of the network. The mean Average Precision (mAP) for in-field pears
was 93.12% in SFYOLO, which was increased by 2.03% compared with
original YOLOv5s. Additional experiments and comparison were carried
out considering newly proposed YOLOv6 and YOLOv7 that aimed at
optimizing the detection accuracy and speed. Results verified that small
and occluded pears could be detected fast and accurately by the com-
petitive SFYOLO network under various viewpoints for further orchard
yield estimation and development of pear picking system.

Keywords: YOLOv5s · Object detection · Visual attention mechanism
· Transformer encoder · Aggregate perception

1 Introduction

To meet the consumption requirements of the world’s growing population, horti-
culture has been trying to find new ways to increase orchard productivity [1,2].
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The development of artificial intelligence and robot technology provides a fea-
sible scheme for the improvement of production efficiency and efficiency [3, 4].
However, in the practical application scenario of agriculture, there are still great
challenges in the application of the above technologies. Although labor-intensive
agronomic management based on manual labor is difficult to meet the needs
of agricultural development under the background of rising agricultural costs
and shortage of skilled labor, however, the technology-intensive agronomic man-
agement dominated by computer science and technology is still lack of practical
experience. If the transition from labor-intensive orchard to technology-intensive
orchard can be realized, the development of automatic agronomic management,
such as pear growth monitoring, yield estimation and automatic picking of fruits,
will help in reducing economic and environmental costs.

In the latest development of intelligent agriculture and independent produc-
tion, deep learning technology has been widely used practically in agricultural
management to improve and estimate agricultural production. Traditionally, it
is common for machine vision methods based on convolutional neural networks
(CNN) to implement fruit detection. However, due to various sizes from big to
small, severe occlusion caused by dense distribution, different viewpoints cap-
tured by different device, and several other factors result in obstacles and re-
strictions of object detection with satisfactory accuracy. Taking the detection of
small pear as the main task, how to accurately detect small fruits and severely
occluded fruits in complex orchard environments is the key to realize fruit growth
monitoring and intelligent yield estimation. For the purpose of improving detec-
tion accuracy, current detection networks generally tend to increase the depth of
the neural network and use dense connections [5,6], but this may lead to feature
loss for small fruits. Therefore, an appropriate detection method is still required
for implementing agronomic management in an effective and efficient way.

In order to overcome the above shortcomings, based on the existing YOLO
series networks [7–11], we strive to balance the detection accuracy and compu-
tational cost, and design a Space-Friendly YOLO (SFYOLO) network. Firstly, a
novel SFA (Space-Friendly Attention) mechanism was designed, which enabled
the aggregation of spatial and channel attention at a low computational cost.
Subsequently, in order to improve the overall perception ability of the SFY-
OLO, we introduced transformer encoder as the global feature extraction and
modeling module, and the SFA mechanism was embed into it to build SF-TE
(Space-Friendly Transformer Encoder). Afterwards, SF-TE was used as the fea-
ture extraction unit of the neck part of the network to re-extract multi-level
features. Finally, the decoupled anchor-free detectors were used as the head of
the network to improve the adaptability and the accuracy of the detection net-
work, especially for the dense regions of small and occluded pears.

2 Related Works

Self-Attention in Computer Vision Visual attention mechanism is derived
from studies of the human vision system. Different parts of the human retina
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have different levels for information processing. In order to make rational use of
limited visual information processing resources, humans usually focus on specific
parts of the visual area. Generally speaking, the attention mechanism determines
which part of the input needs to be paid more attention to. The ability and
efficiency of feature extraction will be improved if the network focuses only on
task-related regions, rather than useless regions. Self-Attention mechanisms, such
as SE [12], CBAM [13] and CA [14], assign different weights to the region that
need attention and eliminate irrelevant information, thus improving the quality
of the extracted features.

Vision Transformer Due to the great success of Transformer in the field of
NLP (Natural Language Processing), lots of research has been done trying to
transfer it to the field of computer vision. Vision Transformer [15] firstly proves
that the images can be directly applied in Transformer, it makes one image
into sequence of patches and reaches SOTA performance in large datasets than
traditional CNN-based networks. DETR [16] is the first network based on Trans-
former for object detection task. It simplifies the process of target detection by
treating the detection problem as ensemble prediction, offering an effective way
of combining CNN with Transformer. However, the limitations of two networks
above are that they both require large-scaled datasets and take too much time for
training. Some networks such as LeViT [17], CvT [18], and Visformer [19] allevi-
ate these problems by means of multi-scale feature fusion. The aforementioned
work has demonstrated that the proper combination of CNN and Transformer
can help in reducing the inference time and the network size, enabling it to be
applied in the real-time object detection task.

Object Detection Models With the development of deep learning, various
object detection networks and methods have been proposed. The existing object
detection methods can be divided into two categories: 1) One-stage detectors,
such as YOLO series, FCOS [20], SSD [21]. 2) Two-stage detectors, such as
VFNet(17), Faster RCNN(18). In recent research, several novel one-stage object
detection networks, e.g. YOLOv6 [22] and YOLOv7 [23], were proposed to fur-
ther improve the object detection performance in general scenarios. However, the
computational cost increased significantly due to the use of high-capacity fea-
ture extraction backbone networks and feature extraction modules, which made
it difficult to be directly applied to real-time detection tasks in agricultural
scenarios with limited resource of computing hardware. At the same time, the
overall performance of YOLOv6 and YOLOv7 in detecting small and occluded
pears remained to be verified.

3 Image acquisition and processing

3.1 Image dataset acquisition

The pear dataset was collected in September 2021 from the experimental pear
orchard located in Suzhou City, Anhui Province, China. We divided the data
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collection work into two parts: collecting ground photography dataset and aerial
photography dataset. The CCD camera mounted on the tripod and the CCD
camera mounted on the Unmanned Aerial Vehicle (UAV) were used to capture
pear images from the ground and the air, respectively. A total of 1840 pear
images were collected at a shooting distance of about 2 metres to form a ground
dataset. The aerial data set was collected by UAV at the height of 2 metres above
the pear tree canopy, and 985 images were obtained to form the aerial dataset.
The collected images had a dense distribution of target pears of different sizes
and contain a large number of target pears with different distances and shapes,
which brought a great challenge to accurate detection.

3.2 Annotation procedure and data augmentation

We annotated the ground 1840 images and the annotation information was saved
in COCO format [24]. During data annotation, the percentage of small targets
was especially increased, and each image contained up to 100 annotation boxes.
The images were resized from 1280 × 720 pixels to 640 × 384 pixels with some
pears covered by only a few pixels, which further increased the detection diffi-
culty. The training of deep learning usually required a large amount of data. As
we know, the limited data collected in real scenarios was often insufficient for
network training. Therefore, we expanded the training samples by data augmen-
tation for improving the generalization ability and robustness of the network.
In this paper, we used random left-right flip, random up-down flip, HSV space
transformation, random blur, Mosaic enhancement [9], Mixup enhancement [25],
and other image preprocessing approaches provided in YOLOv5s for performing
online enhancement of the data during training to expand the training set.

4 SFYOLO network design

4.1 Overall structure of SFYOLO

Although YOLOv5 has been widely used in various fields, there are still some
problems remained to be solved. First of all, although YOLOv5s had a lighter
network architecture and faster detection speed than majority of networks,
YOLOv5s had a certain sacrifice in accuracy. Thus, how to make up for the
lack of detection accuracy without significantly improving the detection speed is
an urgent problem to be solved. Secondly, the probe head of YOLOv5s adopted
no anchor frame structure, although it performed well in the general scene, but in
the scene where a large number of small and occluded pears need to be detected,
YOLOv5s was prone to suffering from missed and false detection. Developing
appropriate methods that could improve the detection ability of these hard-to-
difficult pears would definitely promote the transformation of the network from
theory to practical application. In order to facilitate the deployment on the in-
telligent picking platform in the agricultural scene and reduce the computing
power and storage space requirements of the network as much as possible, we
followed the general architecture of YOLOv5 to meet the real-time requirements.
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Fig. 1. The network architecture of SFYOLO (where SF-TE corresponds to space-
friendly transformer encoder in Figure 3)

The overall structure of SFYOLO is shown in the Figure 1, and its frame-
work can be summarized into three main parts, namely, the backbone, neck,
and head. The backbone extraction network is CSPDarknet. After loading the
pre-training weights on the COCO dataset, it can extract the necessary feature
information from the original three-channel input image for subsequent detection
and classification tasks. The neck PANet was used to reprocess the multi-scale
feature images extracted by backbone at different stages. The basic feature ex-
traction module was replaced with SF-TE, which could better perceive local and
non-local aggregate features. The main part of head consists of three detectors.
We chose anchor-free detectors instead of the original anchor-based detectors to
improve the generalization ability of the network, with potential improvement
in detection of small and occluded pears. At the same time, the detectors were
decoupled and the classification process of frame and category was separated,
which not only greatly improved the convergence speed, but also increased the
classification and localization performance of the head.

4.2 Technical route of pear detection network

The flow of the SFYOLO-based pear detection network proposed in this study
could be concluded as follow. Firstly, improvements were made in the neck and
head of the original YOLOv5 network. For purpose of improving the neck, we
proposed a Space-Friendly Attention (SFA) mechanism based on the channel-
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aware and coordinate-aware aggregation, which aimed at enhancing the aggre-
gation perception ability of the network between the spatial domain and the
channel domain to make up for the lack of the original network’s ability to de-
tect small and occluded pears. Secondly, a construction method of Space-Friendly
Transformer Encoder (SF-TE) was developed to establish spatial long-range de-
pendencies. Through the joint perception of Transformer and SFA, the robust-
ness of the network was improved, and the local perception and global perception
were effectively combined. Then a novel neck was proposed by means of utilizing
the aforementioned SF-TE to replace the original CSP. In the improved head,
for each level of feature extracted from neck, we adopted a 1×1 convolution layer
to reduce the feature channel to 256 and then added two parallel branches with
two 3 × 3 convolution layers each for classification and regression tasks respec-
tively. Then IoU branch was added on the regression branch. Finally, qualitative
and quantitative experiments were carried out to verify the effectiveness of the
improvements.

4.3 Improvements of pear detection network based on YOLOv5s

𝐶 × 𝐻 ×𝑊 

 

 

𝐶 × 𝐻 ×𝑊 

C×1×1

C×1×W

C×H×1

Sigmoid

C×1×W

C×1×W

C×1×1

Skip Connection

Fig. 2. The structure of Space-Friendly Attention mechanism (SFA)

Space-friendly attention mechanism (SFA) In machine vision tasks, spa-
tial information was equally important as coordinate information. Achieving an
aggregate perception of spatial and channel features was beneficial to the overall
perception ability of the network. Self-attention mechanism within both spatial
and channel domains of the feature maps contributed to capturing dimension-
ally richer information in local and global way. As illustrated in Figure 2, on
the basis that the coordinate attention mechanism summarized the feature map
into a pair of feature vectors along the horizontal coordinate direction and ver-
tical coordinate direction, we added spatial feature vectors along the channel
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direction to implement the exchange of information between channels. This set
of spatial feature vectors could selectively enlarge the valuable feature chan-
nels and restrain the useless feature channels, thus improving the performance
of the network. Each feature map was aggregated into 1x1 pixels, which were
reweighted with horizontal and vertical feature vectors to achieve an effective
aggregate perception of spatial and channel features. In order to reduce the loss
of original information and alleviate the problem of gradient disappearance, we
artificially made some layers of the network skip the connection of the next layer
of neurons, making the non-adjacent layers connected, weakening the strong con-
nection between each layer, and alleviating the degradation of network caused
by the excessive depth. By making full use of spatial and channel information,
it was expected to improve the ability to capture local and global information
in the network.

Conv

wQ: 1×1 wK: 1×1 wV: 1×1

X

 

 

softmax

 

SFA

Original 

multi-head 

attention

LayerNorm

Imporved 

Multi-head 

attention

Dropout

 

LayerNorm

Conv

Dropout

 

Sublayer 1

Sublayer 2

C × H × W

Input 

feature maps

Fig. 3. The structure of space-friendly transformer encoder (SF-TE), where the red
marks the improvements, SFA corresponds to Figure 2

Space-friendly transformer encoder (SF-TE) Inspired by the idea of Vis-
former to introduce convolution into transformer encoders, we designed space-
friendly transformer encoders. The structure of improved space-friendly trans-
former encoder is illustrated in Figure 4, which could be divided into two sub-
layers, with the first layer being a multi-head attention layer and the second
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sublayer being a fully connected layer. Specifically, the input feature maps first
passed through a multi-head attention sublayer, in which multiple attention
heads performed attention computations synchronously to establish long-range
dependencies in the spatial domain and preserve non-local features. Then they
passed through the fully connected layer, where the feature maps were re-stored
to their original size by multiple convolution operations. Finally, the result of
residual connection was output after the Dropout operation, contributing to bet-
ter convergence and overfitting prevention. To further achieve the proper per-
ception of high-density targets, occluded targets, and small targets, the space-
friendly attention mechanism was embedded into the multi-head attention mech-
anism. On the basis of the original multi-head attention mechanism, we added a
path for feature extraction through SFA and connected it with the feature map
extracted by the original multi-head attention mechanism in a cross-layer way.
This expanded the channel dimension of the network, thus making full use of
the channel information and achieving the aggregate perception in both channel
and spatial domains.

Improved neck with transformer encoders To enhance the feature ex-
traction ability of the network for target objects of different scales, YOLOv5s
generally consisted of five stages referred to as [P1, P2, P3, P4, P5]. The output
feature maps of these stages had distinct scales and were used to extract features
from objects of different sizes, finally, the feature maps of P3, P4, and P5 were
used for the detection task. These feature maps at different scales provided ex-
tensive multi-scale feature information for the target detection task. To enhance
the feature extraction ability of the network for small targets, we attempted to
embed SF-TE (space-friendly transformer encoder) into the neck. Since SF-TE
greatly increased the parameters and computation cost of the network, applying
it on low-resolution feature maps instead of high-resolution feature maps would
lead to the increment of the expensive computation and memory cost, which
was an obstacle for implementing real-time target detection tasks with limited
resources. Therefore, we only embedded SF-TE into P3, P4, P5 in the neck of
YOLOv5s. The improved Neck effectively enriched the information content of
the feature maps, significantly enhancing the over perception results of in-field
pears. The eventual output feature map contained denser non-local and local in-
formation, which allowed for the detection of small and occluded pears in natural
environments.

Decoupled anchor-free detectors The detector of object detection network
can be divided into anchor-based and anchor-free, and the former is usually used
in traditional target detection network. However, the detection performance of
anchor-based depends on the design of anchor frame to some extent, and it is
very sensitive to the size, aspect ratio and quantity of anchor box. However,
a large number of hyperparameters are used in the initialization design of the
anchors, which makes it difficult to adjust these hyperparameters and cost a
lot of time and computation to optimize. Considering that there were a large
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number of small pears in this application scene, which was different from the size
distribution of the target in the general scene, it could not well match the preset
anchor size. Therefore, we chosen to use the non-anchor detector instead of the
anchor-based detector. Some scholars argued that there is a spatial misalignment
problem in localization and classification tasks of object detection [26]. This
meant that the two tasks have different focuses and degrees of interest, with
classification focusing more on the features extracted that are most similar to
existing categories, while localization focuses more on the location coordinates
with the anchor points and thus on the bounding box parameter correction.
Therefore, we chosen to use a decoupling head structure that can independently
complete classification and positioning tasks by using different decoupled head
branches, which is beneficial to the final detection effect and accuracy.

5 Experiments

5.1 Evaluation metrics

Since the images collected in the natural environment contained many pears
of different sizes, we used AP and F1-score to evaluate the performance of the
network. AP refers to the average value of all ten intersections (IoU) thresholds
with a uniform step size of 0.05 in the range of [0.50, 0.95]. F1-score is the
harmonic average of precision and recall, with a value ranging from 0 to 1.
Among them, a large F1-score value indicates good detection accuracy. The
formula for the F1-score is as follows:

P = TP/(TP + FP ) (1)

R = TP/(TP + FN) (2)

F =
2× P ×R

(P +R
(3)

Where TP (True Positive) denotes the number of predicted positive sam-
ples,FP (False Positive) denotes the number of predicted positive but negative
samples, and FN (False Negative) denotes the number of predicted negative but
positive samples.

5.2 Implementation details

The network was trained on the ground dataset with eight images as a batch
and the loss was updated once per iteration for a total of 200 epochs on a
single NVIDIA GTX 2080Ti. The detection of pears was carried out on a single
NVIDIA GTX 1650, which simulated the limited computing environment in the
natural environment. Using SGD as the optimizer, the initial learning rate was
set to 0.01, the weight decay rate was set to 0.00048, and the momentum factor
was set to 0.937. It gradually decayed to 1E-4 as the iterations proceeded. This
experimental network was trained using transfer learning, and further training
was performed on the pre-trained weights of the MS COCO dataset.
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5.3 Quantitative experimental results compared with YOLO series

In addition to the proposed SFYOLO, the typical or recent members of YOLO
series, such as YOLOv3-SPP, YOLOv4s, YOLOv5s, YOLOv6s and YOLOv7s
were employed for making performance comparison based on the ground dataset.
The detection accuracy, detection time, memory usage was taken into consid-
eration. From Table 1, it could be seen that the proposed SFYOLO achieve on
AP (average precision) and F1-score of 93.12% and 86.73%, which was much
better than the results acquired by YOLOv3-SPP, YOLOv4s and YOLOv5s.
Contrastively, YOLOv6s and YOLOv7s could offer closer detection results to the
proposed SFYOLO. However, compared to the aforementioned two networks, the
proposed SFYOLO reduced the detection time by 27% and 40%, meanwhile, the
FLOPs decreased by 58% and 82.6%. In addition, in comparison to YOLOv5s,
the AP of SFYOLO increased by 2.03% with slightly higher detection time and a
larger memory usage. Therefore, it could be drawn that the proposed SFYOLO
had the ability of offering better results in pear detection.

Table 1. Comparison among SFYOLO and other widely used and novel networks of
YOLO series in terms of detection accuracy and efficiency on the ground dataset.

Networks AP(%) F1-score(%) Detection time (ms) Memory usage(MB) FLOPs(G)
YOLOv3-SPP 89.51 83.72 16.1 120.32 157.1
YOLOv4s 91.98 85.62 20.2 246.34 137.2
YOLOv5s 91.09 84.35 11.2 13.70 16.4
YOLOv6s 92.93 85.92 18.2 285.78 44.2
YOLOv7s 93.02 86.23 22.3 64.23 104.7
SFYOLO 93.12 86.73 13.2 54.52 18.2

5.4 Qualitative experiments results on ground dataset

When detecting pears in practical application scenes, the collected images often
contain a large number of pears with different scales, serious occlusion and clut-
tered density. It was difficult to detect these pears, which was often the main
factor leading to low detection accuracy. If the improvements of the proposed
network could effectively enhance the detection accuracy of these pears, it could
provide a feasible scheme for the application of deep neural network in the field
of agriculture. In order to verify that the proposed network could meet the re-
quirements of the natural environment, we focus on its detection performance
in the areas with uneven pear size and serious background noise. The quantita-
tive test results of SFYOLO with YOLOv5, YOLOv6, and YOLOv7 is shown
in Figure 4. In the comparison of columns a and b, the detection performance
of the networks for dense areas containing a large number of small pears was
mainly concerned. The results showed that the cases of missed detection and
false detection of SFYOLO were less than those of YOLOv6 and YOLOv7, and
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Fig. 4. Comparison of pear detection on the ground dataset, with YOLOv5s, YOLOv6,
YOLOv7 and SFYOLO. The cases of missed detection are highlighted in yellow

obviously less than YOLOv5. This showed that SFYOLO could effectively detect
small pears, and was better than YOLOv5, YOLOv6 and YOLOv7 qualitatively.
In the comparison of columns of c and d, the detection performance of the net-
works for areas containing pears with different scales and blocking each other
was mainly concerned. The results showed that SFYOLO still had a beneficial
effect in detecting pears occluded by leaves or by each other, and the effect
was slightly better than that of YOLOv6 and YOLOv7, and obviously better
than that of YOLOv5. In summary, SFYOLO could effectively detect pears in
the natural environment, especially for small and occluded ones. This helped to
provide a lightweight vision system for portable devices and provided auxiliary
information for subsequent decision-making such as picking path planning.

5.5 Qualitative experimental results on aerial dataset

In agricultural monitoring, three-dimensional monitoring was of great signifi-
cance to promote orchard automation. The aerial images obtained by aircraft
could be used for pear growth monitoring, intelligent yield estimation and or-
chard spraying. In order to verify the performance of the proposed network in
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Fig. 5. Comparison of pear detection in the aerial dataset captured by drones from the
bird’s-eye viewpoint and side viewpoint. The cases of missed detection are highlighted
in yellow

cross-domain detection tasks, aerial dataset including bird’s-eye viewpoint and
side viewpoint were used to further explore the robustness of the network to the
change of viewpoints. Figure 5 shows the qualitative test results of YOLOv5,
YOLOv6, YOLOv7, and SFYOLO on the aerial dataset using the weights of
network trained on the ground dataset. Columns a and b were images taken by
drones from the bird’s-eye viewpoint, and columns c and d were images taken by
drones from side viewpoint. These images contain a large number of small and
occluded pears, which made it much more difficult to detect. Under the influence
of light and background noise, the pears in the bird’s-eye viewpoint were closer
to the color of leaves and soil, so they were more difficult to detect. As could be
seen from the figure, the detection performance of SFYOLO was slightly better
than that of YOLOv6 and YOLOv7 with less cases of missed detection. Among
them, the improvement in the bird’s-eye viewpoint was more obvious, indicating
that the SFYOLO can effectively reduce the interference of background noise, so
as to identify the target more accurately. Compared with the detection ability of
YOLOv5, the detection ability of SFYOLO was significantly improved, and the
cases of missed detection were greatly reduced in both viewpoints. This bene-
fited from the construction of SFA mechanism, the embedding of space-friendly
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transformer encoder and the employment of decoupling head, which not only
improved the ability of local and global feature extraction, but also enhanced
the transfer and generalization ability of the network.

To sum up the above results, due to the effective design of network and the
novel improvement of structure, SFYOLO was endowed with sufficient accuracy
and robustness improvement, and could carry out cross-domain detection effi-
ciently and accurately. Additionally, SFYOLO could be directly transferred for
pear detection in aerial images, which not only verified the generalization abil-
ity, but also reduced the workload, improved the production efficiency, bringing
potential improvement of production benefit.

5.6 Ablation studies

Fig. 6. Line graph of AP metrics for ablation experiments on the ground dataset

To further explore the impact of the improvements of the original YOLOv5s,
three sets of ablation experiments were designed in this paper, and the improve-
ment of each improvement on the network performance was discussed based on
the results of AP metrics. In order to explore the influence of SFA mechanism on
the network, it was added to P3, P4 and P5 in the neck of the original YOLOv5s,
which was named as YOLOv5s-SFA. In order to explore the influence of the po-
sition of SF-TE in the network, it was applied at the end of backbone, which
was named as YOLOv5s-SFTE. In order to explore the impact of decoupled
head on performance, decoupled head were applied as head, which was named
as YOLOv5s-DH. The results of the ablation experiment are shown in Figure 6
and Table 2. Each module could contribute to the performance improvement in
pear detection on the ground dataset.
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Table 2. Results in the ablation experiments.

Models AP(%) Detection
Time(ms)

Memory
usage(MB)

YOLOv5s 91.09 11.2 13.7
YOLOv5s-SFA 91.96(+0.87) 11.8(+0.6) 23.2(+9.5)
YOLOv5s-SFTE 92.44(+1.49) 15.7(+4.5) 113.9(+100.2)
YOLOv5-DH 92.12(+1.03) 12.1(+0.9) 17.9(+4.2)
SFYOLO 93.12(+2.03) 13.2(+2.0) 54.5(+40.8)

Effect of space-friendly attention mechanism (YOLOv5s-SFA) The AP
of YOLOv5s-SFA on the validation set increased by 0.87%. The memory us-
age increased by 1.69 times than the original size. In the early stage of training,
YOLOv5s-SFA converged rapidly, started to decrease slightly after twenty gener-
ations, and finally reached stable status. YOLOv5s made a certain improvement
in accuracy with faint computational cost and memory usage improvement, in-
dicating that SFA mechanism played an indispensable role in the feature map
and helped in the network convergence rapidly.

Effect of space-friendly transformer encoder (YOLOv5-SFTE) Com-
pared with the YOLOv5 network, YOLOv5-SFTE increased the AP on the val-
idation set by 1.49%. In the early stage of training, the accuracy of the network
fluctuates greatly and then keeps stable gradually. Compared with SFYOLO,
the reason for its lower overall accuracy might be that transformer encoder was
more difficult to fit on small-size datasets. Although the memory usage and de-
tection time increased a lot, it was still a useful part of the network compared
with other one-stage object detection networks.

Effect of decoupled head (YOLOv5s-DH) Compared with the YOLOv5
network, YOLOv5s-DHhad 1.03% higher AP on the verification set. In the early
stage of training, the accuracy of the network fluctuated greatly and then grad-
ually kept relatively stable. Compared with YOLOv5s, the reason for its higher
overall accuracy might be that the decoupled anchor-free detectors had almost
no manual preset hyperparameters, which could be well migrated to the appli-
cation scene in this paper to satisfy the object detection requirements. While
SFYOLO-DH has achieved effective accuracy improvement, there was almost no
significant improvement in detection time and memory usage, which was very
suitable for completing high-precision detection tasks in an environment with
limited computing resources.

6 Conclusion

Improving the detection ability of the network for target fruits was the basis
of implementing automated agronomic management. To address the problem of
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target fruit detection in real complex scenes, this paper proposed SFYOLO with
the inherent characteristics of the aggregation attention of space domain and
channel domain. The construction of the Space-Friendly Attention mechanism
and the modification of the original transformer encoder enabled the network
to aggregate spatial feature and channel feature as well as capture both local
and global information in an effective and efficient way. The decoupled anchor-
free head enabled the network to complete the tasks of classification, location
and regression independently and better, which further enhanced the detection
performance. The experimental results showed that our network enhances the
feature extraction ability and improved the detection accuracy of small pears and
occluded pears. The proposed SFYOLO achieved an average accuracy of 93.12%
on the ground dataset and outperformed the typical or recent members of the
YOLO series such as YOLOv6 and YOLOv7 on both the ground dataset and
the aerial dataset in terms of speed and accuracy. In the future, we will further
investigate the ways of implementing pear detection at different growth stages,
as well as the reduction of the training and detection cost to better support
real-time detection of other fruits.
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