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ABSTRACT

In this work, we present a quantum circuit model for inferring gene regulatory networks (GRNs). The
model is based on the idea of using qubit-qubit entanglement to simulate interactions between genes.
We provide preliminary results that suggest our quantum GRN modeling method is competitive
and warrants further investigation. Specifically, we present the results derived from the single-cell
transcriptomic data of human cell lines, focusing on genes in involving innate immunity regulation.
We demonstrate that our quantum circuit model can be used to predict the presence or absence of
regulatory interactions between genes and estimate the strength and direction of the interactions,
setting the stage for further investigations on how quantum computing finds applications in data-driven
life sciences and, more importantly, to invite exploration of quantum algorithm design that takes
advantage of the single-cell data. The application of quantum computing on single-cell transcriptomic
data likewise contributes to a novel understanding of GRNs, given that the relationship between fully
interconnected genes can be approached more effectively by quantum modeling than by statistical
correlations.

Summary Quantum computing holds the promise to achieve certain types of computation that would otherwise be
unachievable by classical computers. The advent in the development of quantum algorithms has enabled a variety of
applications in chemistry, finance, and cryptography. Here we introduce a parameterized quantum circuit modeling
method for constructing gene regulatory networks (GRNs) using data from single-cell RNA sequencing (scRNA-seq).
In the circuit, each qubit represents a gene, and qubits are entangled to simulate the interaction between genes. The
strength of interactions is estimated using the rotation angle of controlled unitary gates between qubits after fitting the
scRNA-seq expression matrix data. We applied our quantum single-cell GRN (qscGRN) model to real scRNA-seq
data obtained from human lymphoblastoid cell lines and demonstrated its usage in recovering known and detecting
novel regulatory relationships between genes in the nuclear factor-kappa B (NF-κB) signaling pathway. Our quantum
circuit model enables the modeling of vast feature space occupied by cells in different transcriptionally activating states,
simultaneously tracking activities of thousands of interacting genes and constructing more realistic single-cell GRNs
without relying on statistical correlation or regression. We anticipate that quantum computing algorithms based on our
circuit model will find more applications in data-driven life sciences, paving the way for the future of predictive biology
and precision medicine.

1 Introduction

A gene regulatory network (GRN) defines the ensemble of regulatory relationships between genes in a biological
system. Inferring GRNs is a powerful approach for studying molecular mechanism of transcriptional regulation and
the function of genes in processes of cellular activities [1, 2]. A GRN is often represented as a graph—which can be
signed, directed, and weighted—representing the relationships between transcription factors or regulators and their
target geneswhose expression level is controlled. However, because gene regulation inside cells is difficult to observe,
indirect measurements of intracellular expression are often used as a proxy, and the statistical dependencies are used to
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Quantum gene regulatory networks

infer real regulatory relationships between genes. Thus, the power of different methods for GRN inference depends on
the types of computational algorithms and the resolution of the expression data [3, 4, 5].

Single-cell technologies, which have recently been developed and improved, open up opportunities for studying biology
at unprecedented resolution and scale. Single-cell RNA sequencing (scRNA-seq) allows us to measure gene expression
in individual cells for thousands of cells in a single experiment [6]. The GRN modeling can adopt scRNA-seq technology
and leverage the unprecedented information from the sheer number of cells to improve inference power [7]. The use of
such data would allow us to learn better and more detailed network models, which will also help us better understand the
mechanics behind cellular operations. A plethora of computational methods for inferring GRNs have been developed
for either population-level or single cell-level gene expression data. These methods apply statistical approaches to
identify likely regulatory relationships between genes based on their expression patterns. These different methods are
based on correlation and partial correlation [8], information theory [7], regression [9, 10], Gaussian graphical model
[11], Bayesian and Boolean networks [12, 13, 14], and many others. Each method has its own set of assumptions and
limitations,which are not always stated explicitly.

In recent years, quantum computing has become an emerging technology and an intense field of research constantly
seeking applications [15]. Researchers have developed quantum algorithms with applications in areas such as finance
[16], cryptography [17], machine learning [18], drug discovery [19], chemistry, and material science [20]. Theoretically,
a speedup is expected in certain types of computation using quantum algorithms versus classical algorithms because a
quantum computer takes advantage of superposition and entanglement phenomena during the computation [21, 22].
The most iconic quantum algorithm is Shor’s [23] for the factorization of large numbers, which can break the Rivest
Shamir Adleman encryption [24]. Due to the potential of quantum computing, the current approach to scRNA-seq
analysis and GRN inference may be rethought.

In this work, we introduce a quantum single-cell GRN (qscGRN) modeling method, which is based on a parameterized
quantum circuit and uses the quantum framework to recover biological GRNs from scRNA-seq data. In the qscGRN
model, a gene is represented using a qubit, and the structure is divided into 2 types of layers: the encoder layer that
translates the scRNA-seq data into a superposition state and the regulation layers that entangle qubits and model
gene-gene interactions in the quantum framework. In contrast to the correlation-based inference methods, the qscGRN
model maps the binarized expression values onto a large vector space, known as Hilbert space, making full use of the
cell information in the scRNA-seq data. Thus, a large number of cells in the scRNA-seq data is important because it
improves the mapping of biological information in a superposition state. In addition, parameterization in the qscGRN
model allows the gene-gene relationships to be inferred all at once by fitting the superposition state probabilities onto
the distribution observed in the scRNA-seq data.

A quantum-classical framework for optimizing the qscGRN model is also introduced. The classical component of
our framework uses the Laplace smoothing [25] and the gradient descent algorithm [26] to perform optimization
by minimizing a Kullback-Leibler (KL) divergence [27] as a loss function. Finally, we used the quantum-classical
framework on a real scRNA-seq data set [28, 29] to show that gene-gene interactions can be modeled using quantum
computing, and the structure of such as previously published GRN [30, 31] can be recovered from the parameter-
optimized quantum circuit.

2 Methods

2.1 Quantum computing theory

We first introduce the basic, broad-audience background of quantum computing necessary for this work. Classical
computers manage information processing using bits for storage, computation, and communication [32]. A bit is the
unit of information being 0 or 1, also represented in Dirac notation [33] as |0〉=(1 0)

ᵀ or |1〉=(0 1)
ᵀ respectively

[34]. In quantum computing, a qubit is the unit of information represented as |ψ〉=(c0 c1)
ᵀ
=c0|0〉+c1|1〉, where |ψ〉

is the quantum state in the superposition of |0〉 and |1〉 basis in a 1-dimensional Hilbert space, and c0, c1 are complex
numbers. The state of a quantum system is described by a unit vector in the Hilbert space; therefore, the square modulus
sum |c0|2 + |c1|2 is equal to 1. In quantum mechanics, the measure of |ψ〉 results in 0 with a probability to be observed
of |c0|2, and 1 of |c1|2. Thus, the probability of measuring a basis is the squared modulus of the associated complex
number.

Single-qubit gates that are widely used include the NOT gate, Hadamard gate, Pauli gates X , Y and Z, phase
shift gates, and parameterized rotation gates Rx, Ry and Rz . The Hadamard gate—represented as H gate—is fre-
quently used in various quantum algorithms and is defined as 1√

2

(
1 1
1 −1

)
. The H gate maps the basis state |0〉 to

H|0〉= 1√
2

(
1 1
1 −1

)(
1
0

)
= 1√

2

(
1
1

)
= |0〉+|1〉√

2
and |1〉 to |0〉−|1〉√

2
, creating a superposition of the basis states. The measure-

2



Quantum gene regulatory networks

ment of the quantum state |0〉+|1〉√
2

results in observing the basis state |0〉 with a probability of 0.5 and |1〉 with 0.5.
Furthermore, the rotation gate Ry is a single-qubit operation (FIGURE 1A) based on the exponentiation of the Pauli
gate Y using a rotation parameter θ and is defined as

Ry(θ) ≡ e
−iθY

2 = cos
θ

2
I − i sin θ

2
Y =

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)
,

where Y is a Pauli operation defined as
(
0 −i
i 0

)
and I is the identity matrix. The Ry gate maps the basis state |0〉 to a

superposition state Ry(θ)|0〉=cos θ2 |0〉+ sin θ
2 |1〉.

In addition, the controlled gate is a 2-qubit gate—which applies an operation on a target qubit when the control qubit is
in state |1〉. The operation is typically a single-qubit gate such as Ry gate. Thus, a controlled-Ry gate, represented as
c-Ry gate, is defined as

c-Ry,1,0(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ2 − sin θ

2

0 0 sin θ
2 cos θ2

 ,

where the control register is the qubit labeled q1 and the target is q0 (FIGURE 1B). In the case where the control register
is the qubit labeled q0 and the target is q1, the c-Ry gate is defined as

c-Ry,1,0(θ) =


1 0 0 0
0 cos θ2 0 − sin θ

2
0 0 1 0
0 sin θ

2 0 cos θ2

 .

TABLE 1 shows the mapping of the basis states in a 2-dimension Hilbert space when using a c-Ry,1,0(θ) gate. The
basis states |00〉 and |01〉 have the first bit as 0, thus the operation Ry is not performed. On the other hand, the basis
states |10〉 and |11〉 have the first bit as 1, thus the operation Ry is performed in the second bit.

Table 1: The controlled-Ry,1,0(θ) gate mapping of the basis state in a 2-dimension Hilbert space. The Ry operation in
the second bit is performed when the first bit is 1, and the second bit does not change otherwise.

Basis state |x〉 c-Ry,1,0(θ)
|00〉 |00〉
|01〉 |01〉
|10〉 cos θ2 |10〉+ sin θ

2 |11〉
|11〉 − sin θ

2 |10〉+ cos θ2 |11〉

Generally, a controlled-U gate can be decomposed into single-qubit gates such as phase shift, c-NOT and rotation
gates, where U is a single qubit gate. Thus, the c-Ry gate is decomposable only into 2 single rotation gates, represented
as R(c)=

(
cos c − sin c
sin c cos c

)
, and 2 c-NOT gates because there is no phase shift operation. FIGURE 1C shows the

decomposition of a c-Ry,1,0 gate into R( θ4 ), R(−
θ
4 ) gates and 2 c-NOT gates, where the control register is q1, and

target is q0. In other words, the effects of the rotation gates sum up − θ2 when the control qubit is 1 and cancel out each
other otherwise.

2.2 The qscGRN model: a parameterized quantum circuit

In classical computation, a circuit is a model composed of a sequence of instructions (NOT, AND, OR classical gates)
that are not necessarily reversible. In the classical circuit, the input bits flow through the sequence of instructions
computing output bits for a certain task [35]. Similarly, a quantum circuit is a model consisting of a sequence of
quantum gates that perform operations on the qubits [36]. A quantum circuit that is running an algorithm is usually
initialized to |0〉n, which means a string of n bits of all zeros, and then put into a superposition state using H⊗n
transformation—which means an H gate on each qubit—allowing all possible inputs to be tested [37]. Then, the register
flows through a sequence of quantum gates, and the output register is measured and decoded to interpret the result of
the algorithm.

Here, we introduce the quantum single-cell gene regulatory network (qscGRN) model, that is a quantum circuit
consisting of n qubits, and models a biological scGRN for n genes in the framework of quantum computing. A qubit in
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Figure 1: Schematic representations of Ry gate, controlled-Ry gate, and its decomposition. (A) A schematic repre-
sentation of the Ry gate with a rotation parameter θ. In the representation, the input register is on the left, and the
output is on the right. (B) A schematic representation of the controlled-Ry gate with a rotation parameter θ. In the
representation, the control register is the qubit labeled q1, and the target is labeled q0. The operation is performed on
the target register when the control register q1 is 1, and the rotation is not performed otherwise. (C) The schematic
representation for the decomposition of a controlled-Ry gate with a rotation parameter θ. The sequence consists of 2
rotation gates R( θ4 ), R(−

θ
4 ) gates and 2 c-NOT gates. The operation in the target register is equal to an Ry(θ) gate

when the control register q1 is 1, and no operation is performed otherwise.

the qscGRN model represents a gene in the biological scGRN. The sequence of gates is grouped into 2 types of layers:
The encoder layer Lenc consists of n Ry gates that translate biological information (i.e., the state of gene activity or the
frequency of genes actively expressed among cells) onto a superposition state. In the Lenc layer, each qubit has a Ry
gate (FIGURE 2A). The regulation layer Lk consists of a sequence of n−1 c-Ry gates that have the kth qubit as control
and a corresponding target such that the kth qubit is fully connected to other qubits (FIGURE 2B). In the Lk layer, a
c-Ry gate—that has the kth qubit as control and the pth qubit as the target—models the regulation relationship in the
corresponding gene-gene pair. In particular, the parameter of a c-Ry gate quantifies the strength and determines the
type of relationship between the kth and pth genes.

In FIGURE 2, we use the notation θk,k for the parameter of the Ry gate on the kth qubit in the Lenc layer and θk,p
for the parameter on the c-Ry gate in the Lk layer that has the kth and pth qubits as control and target, respectively.
Formally, the matrix representations for both layers are

Lenc = Ry(θn−1,n−1)⊗ · · · ⊗Ry(θ1,1)⊗Ry(θ0,0),
where the ⊗ operator is the tensor product, and

Lk =

n−1∏
i=0,i6=k

Ry,n(θk,i) = Ry,n(θk,n−1) · · ·Ry,n(θk,1)Ry,n(θk,0),

where Ry,n(θk,i) denotes a c-Ry gate with the kth qubit as the control and ith qubit as the target in a n-qubit quantum
circuit. Also, the computation of the matrix representation is not commutative, which means the order of the terms
cannot be changed due to the operations needed are matrix multiplication and tensor product.

The qscGRN model is initialized to |0〉n state, and then put into a superposition state using a Lenc layer. The gene-gene
interactions are then modeled using regulation layers L0, L1, · · · , Ln−1. Thus, the qscGRN model is a quantum circuit
where each qubit is fully connected to every other qubit and has a total of n2 quantum gate parameters. Next, we
construct the matrix representation θ of the qscGRN model using the collection of parameters θk,p on the quantum
gates, where 0 ≤ k, p < n. Therefore, the matrix representation of the qscGRN model is denoted as

θ =


θ0,0 θ0,1 · · · θ0,n−1
θ1,0 θ1,1 · · · θ1,n−1

...
...

. . .
...

θn−1,0 θn−1,1 · · · θn−1,n−1


where the diagonal elements belong to the Ry gates in the Lenc layer, and the non-diagonal elements to the c-Ry gates
in the regulation layers L0, L1, · · · , Ln−1.

The output register |ψ〉 of the n-qubit qscGRN model, encodes the gene-gene interactions in a superposition state
according to the parameter θ and is formally defined as

|ψ〉 =

(
n−1∏
k=0

Lk

)
Lenc|0〉n = Ln−1 · · ·L1L0Lenc|0〉n.

FIGURE 2C shows the schematic representation of a qscGRN model consisting of 4 qubits as an example for better
interpretation of the equations. The quantum gate name is not shown for simplicity but only the corresponding parameter.

4



Quantum gene regulatory networks

According to the equations, the output register |ψout〉 in FIGURE 2C is defined as

|ψout〉 = L3L2L1L0Lenc|0〉4,

where L3, L2, L1 and L0 have 3 parameters each, and Lenc has 4 parameters. Then, the matrix representation θ of the
4-qubit qscGRN model is denoted as

θ =

θ0,0 θ0,1 θ0,2 θ0,3
θ1,0 θ1,1 θ1,2 θ1,3
θ2,0 θ2,1 θ2,2 θ2,3
θ3,0 θ3,1 θ3,2 θ3,3.


Finally, we understand the matrix θ as the adjacency matrix of the biological scGRN, which is a weighted directed fully
connected network.

Figure 2: The quantum single-cell gene regulatory network (qscGRN) model. (A) The encoder layer Lenc for a
qscGRN model that has n qubits, represented with a green background. The kth qubit has an Ry gate with a parameter
θk,k—which is a diagonal element of the adjacency matrix in the qscGRN. (B) The regulation layer Lk for a qscGRN
model that has n qubits, represented with a red background. The kth qubit uses a c-Ry gate with a parameter
θk,p—which is a non-diagonal element of the adjacency matrix in the qscGRN—to connect to the pth qubit, where
0 ≤ p < n and p 6= k, thus the kth qubit is fully connected to other qubits. (C) A schematic representation of a qscGRN
model that consists of 4 qubits. The Lenc layer consists of 4 Ry gates that put the input register into a superposition
state. The Lk layer consists of c-Ry gates that connect the kth qubit to the others. Thus, a 4-qubit qscGRN model uses
an Lenc with 4 parameters and L0, L1, L2 and L3 with 3 parameters for each layer. The collection of parameters θ is
the matrix representation of the 4-qubit qscGRN model.

2.3 Quantum-classical framework for optimization of the qscGRN model

2.3.1 Gene selection and binarization

The input data of the workflow is a transformed scRNA-seq expression data matrixX that has expression values for
m cells. The transformation of the expression matrix can be done using, for example, Pearson residuals [38]. Then,
we select n genes fromX and binarize the expression values. The binarization is achieved by applying an expression
threshold of 0 to the transformed expression matrix, which means that expression values greater than 0 are set to 1, and
0 otherwise. The outcome of the binarization is saved toXb, which is a matrix of dimension n×m.

5
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2.3.2 Labeling and activation ratios (FIGURE 3A)

A label is assigned for each cell in Xb, such that the label is a string composed of the binarized expression of the n
genes in a cell. In other words, a label is the activation state of genes in a cell (colored in light blue). Then, we compute
the percentage of occurrences of each label in the m cells to obtain the observed distribution pobs. The percentage of
label |0〉n in pobs is set to 0, and the rest of the distribution is rescaled to sum to 1. The rationale for setting the |0〉n
probability to 0 is that cells with no expression levels are not informative in the quantum framework due to dropout in
the scRNA-seq experiment. Furthermore, the activation ratio actk of the kth gene is defined as the percentage of cells
expressing that gene in Xb (colored in light yellow). The n genes in Xb are ordered decreasingly by the activation
ratio such thatXb has n ordered rows labeled as g0, g1, · · · , gn−1.

2.3.3 Initialization of the parameter θ in the qscGRN model (FIGURE 3B)

The parameters θk,p in the regulation layers L0, L1, · · · , Ln−1 are initialized to 0, where 0 ≤ k, p < n and k 6= p.
Besides, the parameters θk,k in the encoder layer Lenc are initialized to 2 arcsin

√
actk corresponding to the kth gene,

where 0 ≤ k < n. Therefore, the initial parameter θ is represented as

θinitial =


2 arcsin

√
act0 0 · · · 0

0 2 arcsin
√
act1 · · · 0

...
...

. . .
...

0 0 · · · 2 arcsin
√
actn−1

 .

The rationale for the formula 2 arcsin
√
actk is that, independently on each qubit, the probability of observing 1 is the

activation ratio of the corresponding gene after the Lenc layer.

2.3.4 Optimization of the parameter θ in the qscGRN model (FIGURE 3C)

We measure the output register |ψout〉 of the qscGRN model to obtain the output distribution pout of observing the basis
states. The probability of the state |0〉n in pout is set to 0, and the rest of the distribution is rescaled to sum to 1. Then,
Laplace smoothing is used to reshape pobs and pout to a different distribution p̂obs and p̂out, respectively, thus handling
the zero-probability problem when computing the loss function. The smoothed distribution is computed as

p̂i =
#ocui + α

m+ 2nα

where i ∈ {out, obs} and α is the smoothing parameter which is typically 1. #ocui is the number of occurrences in the
distribution pi. In other words, pi=#ocui

m is the original distribution.

The optimization of θ is achieved by minimizing the loss function to a threshold value of 2n×10−6 using the gradient
descent algorithm with a learning rate lr of 1. Otherwise, the optimization is performed for pre-defined iterations t. The
loss and error function are defined as

L(θ) =
∑

x∈{0,1}n
p̂outx log

(
p̂outx

p̂obsx

)
,

E(θ) =
∑

x∈{0,1}n
(poutx − pobsx )2,

where pix and p̂ix are the probability of the state x in the distributions, i ∈ {out, obs}.
The parameters θk,k in the Lenc layer are not trained during optimization according to the assumption that these
parameters encode a unique binarized scRNA-seq matrix into the quantum framework. Thus, no training of the
parameters θk,k implies that the Lenc layer encodes the same biological information onto a superposition state in each
iteration, making the optimized parameter θ meaningful from a biological perspective.

2.3.5 Recovery of Gene Regulatory Network (FIGURE 3D)

We use the values of parameter θ of qscGRN model to construct the adjacency matrix of the biological scGRN, as
described in the matrix representation for qscGRN model step. In the adjacency matrix, parameters with an absolute
value less than 0.087 are set to 0 because no significant rotation is performed by the corresponding c-Ry gate. The
heatmap representation of the adjacency matrix is shown on the left side of FIGURE 3D, where rows and columns
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represent control and targetgenes, respectively, and strong regulation relationships are highlighted. Finally, we construct
the signed, directed, weighted network representation (right side of FIGURE 3D) of the biological scGRN using the
adjacency matrix.

Figure 3: The quantum-classical framework using the qscGRN model to infer the corresponding biological scGRN. The
input matrixXb is the binarized scRNA-seq data with n genes selected. (A) Labels are assigned to each cell inXb such
that a label is the binarized expression string for the n genes in a cell. The observed distribution pobs is computed as the
percentage of occurrences of each label. The percentage in the |0〉n label is set to 0, and the rest of pobs is rescaled.
The activation ratio of a gene is the percentage of cells expressing that gene onXb. (B) The parameters in the Lenc
layer are initialized such that, independently, each qubit has a probability of observing 1 equal to the corresponding
activation ratio, and the parameters in L0, L1, · · · , Ln − 1 are initialized to zero. In the matrix representation of θ, the
diagonal values belong to Lenc layer, and the non-diagonal values to the regulation layers. (C) The classical optimizer
fits the smoothed distributions p̂out into p̂obs using a gradient descent based algorithm with the KL-divergence as the
loss function and the mean square as the error metric. (D) The matrix representation of the qscGRN model is used as
the adjacency matrix of the biological scGRN. In the adjacency matrix, parameters smaller than 0.087 are dropped (left
side), assuming the interaction is not strong enough to report. Thus, the network representation of the biological scGRN
(right side) is constructed using the remaining values in the adjacency matrix.
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2.4 Data sets

LCL data set: The scRNA-seq data was generated from lymphoblastoid cell lines (LCLs), which are widely used
cell model systems derived from human primary B cells. Information about the experimental handling and acquisition
of data is provided in reference to our original study [28]. The data set has been deposited in the Gene Expression
Omnibus (GEO) database with the accession number GSE126321. For this study, we merged this data set with another
LCL scRNA-seq data set [29], for which the gene-barcode matrix files were downloaded from the GEO database using
the accession number GSE158275. The raw data matrix was pre-processed using scGEAToolbox [39]. The processed
matrix of 9, 905 genes and 28, 208 lymphoblastoid cells was then transformed using the Pearson residuals normalization
[38]. Then, expression values of six genes (IRF4, REL, PAX5, RELA, PRDM1, AICDA) of the NF-κB signaling
pathway were extracted. The 6-gene expression matrix (6-by-28, 208) was used as the input of the qscGRN analysis of
this study. The known regulatory relationships between genes were obtained from the previously established B-cell
differentiation circuit model [30, 31].

3 Results

3.1 Real data LCL

We used our quantum-classical framework to build the qscGRN model—a fully connected quantum circuit—and
compute the observed distribution pobs using the data set described in subsection 2.3.2. The input scRNA-seq expression
matrix contained more than 28, 000 cells belonging to the same cell type, the lymphoblastoid cell. The pobs distribution
maps the population of the state in the scRNA-seq data into a vector space (pobs is represented in blue—FIGURE 4A).
The qscGRN model schema for the data set is a 6-qubit system and consists of an encoder layer and six regulation
layers (FIGURE 4B). We measured the output register of the qscGRN model to recover the output distribution pout
from the quantum framework. To improve visualization, FIGURE 4A only shows the states with a probability greater
than 0.01 due to the large size of the vector space.

Then, we optimized the parameter θ in the qscGRN model for 50, 000 iterations by minimizing the loss function L(θ)
and using the smoothed distributions for pout and pobs. Therefore, the distribution p̂out is fitted into p̂obs during the
optimization, as shown in FIGURE 4A that visually proves the similarity of both distributions after optimization. The
pout after optimization is represented in orange—FIGURE 4A. The similarity is quantified using the loss function and
error metrics that reached values of 8.03× 10−4 and 3.04× 10−5, respectively.

The value of the parameter θ after optimization retrieves an adjacency matrix (FIGURE 4C) that is used to construct the
biological scGRN. Then, we constructed a weighted, directed network from the quantum framework using the non-
diagonal elements of θ, as shown in FIGURE 4D. We compared the sign of the element of each pair of genes with the
corresponding regulatory effect in the previously published network, i.e., the baseline GRN [30, 31] . The comparison
results were measured using 3 metrics: accuracy, f1 score, and precision, to quantify the prediction performance of the
classical-quantum framework. The qscGRN model recovers gene-gene relationships with an accuracy, f1 score, and
precision of 0.63, 0.72, and 0.78, respectively.

FIGURE 4E shows the evolution of parameters for 8 gene-gene pairs (a control-target pair) in the qscGRN model
during the optimization. These pairs are relationships recovered from the quantum framework and are present in the
NF-κB network. Gene pairs correctly recovered are represented using a solid line, and pairs incorrectly recovered in
long-dash-dot lines. The 8 gene-gene pairs almost reach their optimized value by 10, 000 iterations. Specifically, pairs
such as IRF4-AICDA, PAX5-AICDA, and PRDM1-PAX5 that have reached their optimized value earlier than others
are strongly supported by the quantum framework. IRF4 is known to induce AICDA expression through an indirect
mechanism in the NF-κB signaling cascade [40]. PAX5 is suggested to be a player in the B-lineage-specific control of
AICDA transcription in a previous study [41]. PRDM1 is a master regulator that represses PAX5 expression in B cells
[42].

FIGURE 4F shows 3 gene-gene pairs with regulatory relationships are present in the published baseline GRN but
are removed by our qscGRN estimation. The exclusion of these gene pairs suggests that the regulatory relationships
between them might be through indirect links. The baseline model failed to distinguish between indirect and direct
links. For example, one of the removed gene pairs is IRF4-PRDM1 which has a parameter larger than 0.1 during the
first 1, 000 iterations. The parameter value decreases gradually to close to zero after 5, 000 iterations. The dropping
suggests that IRF4-PRDM1’s regulatory relationship might be through a third-party modulator. Indeed, IRF4 is known
to inhibit BCL6 expression, and because BCL6 can repress PRDM1 [43, 44], it has been formally speculated that the
effects of IRF4 on PRDM1 expression might have been mediated through inhibition of BCL6 expression [45].
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Ten novel regulatory relationships between genes, which are not in the published baseline GRN, were predicted by the
qscGRN model when the computation nearly reached their optimized value by 10, 000 iterations (FIGURE 4G). We
found that, for at least two of these newly discovered regulatory relationships, there is experimental evidence supporting
the involved gene pairs. The first gene pair is IRF4-PAX5, for which our model predicted that PAX5 is positively
regulated by IRF4. Indeed, in a previous study of the phosphoinositide-3 kinase signaling in B cells [46], an experiment
searching for transcription factors that are activated by FOXO1 revealed that IRF4 is a potential candidate for PAX5
regulation. The second gene pair is PRDM1-AICDA. PRDM1 has been found to be able to silence the expression
of AICDA, probably in a dose-dependent manner [47]. These results suggest that our qscGRN method recovered
regulatory relationships that were missed in the published baseline model.

4 Discussion

Finding ways to apply quantum computing in biological research is an active research area [48, 49, 50, 51]. Many
questions in biology can benefit from quantum computing by exploring many possible parallel computational paths,
but identifying such questions remains challenging. Especially understanding how to exploit quantum computers for
progress in solving important biological questions is crucial. The latest development of scRNA-seq has made it possible
to gather the transcriptome information from tens of thousands of individual cells in a high-throughput manner. These
complex data sets with unprecedented detail are driving the development of new computational and statistical tools
that are revolutionizing our understanding of cellular processes. However, quantum computation has not yet received
enough attention in the face of this single-cell big data revolution. As a consequence, we present our qscGRN method
for modeling interactions between genes to derive the quantum computing framework for constructing GRNs. Below
we discuss several aspects of application issues.

4.1 Mapping of scRNA-seq data in the quantum framework

Typically, a correlation-based method obtains enough information from a scRNA-seq data set to infer a GRN with a
large number of genes. The gene-gene interaction is calculated as a single value (summary statistic) using the expression
values of the available cells. On the other hand, our quantum approach for GRN inference models a small number
of genes due to the vector space size, which is equal to the number of basis states, increases exponentially with the
number of genes. In other words, the number of cells in binarized scRNA-seq data might be mapped to a moderate
number of basis states such that each basis state is mapped from the biological data. For example, a 15-qubit qscGRN
model requires 215 = 32, 768 basis states; however, a scRNA-seq data set with roughly 32, 768 cells would retrieve
an observed distribution without meaningful biological information mapped to the basis states. The latest scRNA-seq
technology has the capacity to allow the transcriptome of millions of cells to be measured. To obtain enough cells, we
may also integrate multiple scRNA-seq data sets from the same cell types or similar biological sources and perform
statistical correction to remove the batch effect. We can select informative genes such as highly variable genes [52] in
advance, then proceed with our quantum-classical pipeline. Thus, reducing the burden of a large number of genes in the
model while maintaining the biological relevance.

4.2 Initialization values for the parameter θ in the qscGRN model

The initialization of the parameter θ determines the starting point in the landscape of the loss function, thus indirectly
setting the difficulty for the optimization due to barren plateaus—which is an issue when optimizing a parameterized
quantum circuit. In subsection 2.3.3 Initialization of the parameter θ in the qscGRN, an all-zeros approach is taken for
the parameters in the c-Ry gates. Additionally, 2 more initialization approaches for the c-Ry gates were tried using a
random initialization with uniform and normal distributions. The 3 methods initialize the parameter θ at 3 different
positions in the landscape; however, only the all-zeros approach defines the same point when running the workflow
again. Thus, the all-zeros approach would recover a biological scGRN consistently from the quantum framework since
the gradients are computed at the same starting point. Finally, the all-zeros approach recovered 8 gene-gene interactions
with biological support, which is larger than the other approaches.

4.3 Advantages of the qscGRN over correlation- and regression-based GRNs

Correlation and regression-based methods are the most widely used methods for GRN inference due to their computa-
tional efficiency. These methods typically compute a correlation or regression coefficient for a gene pair using the total
number of cells in the data. The issue with correlation and regression methods is that they rely on summary statistics.
The relationship between the two genes is measured using a single value of the summary statistics: correlation or regres-
sion coefficient. Once computed, the coefficient becomes independent of the total number of cells. Moreover, increasing
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Figure 4: Application of the qscGRN modeling with real scRNA-seq data. (A) The observed and output distributions
(pobs and pout) colored in blue and orange, respectively. pobs is computed using the transformed scRNA-seq data. pout is
obtained by measuring the output register in the qscGRN model when the optimization is completed. (B) The schematic
for a 6-genes qscGRN model consists of a Lenc layer and six regulation layers that map relationships between genes in
the quantum framework. (C) The adjacency matrix of the biological scGRN, in which parameters with an absolute
value less than 0.087 are removed. The heatmap reveals the strength and direction of the interaction for a gene-gene
interaction. The diagonal elements are colored in black due to these parameters are not trained during optimization. (D)
A directed-weighted representation of the biological scGRN recovered from the quantum circuit. Up-regulation and
down-regulation relationships are colored in green and red, respectively. The thickness of each edge is proportional to
the absolute value of the corresponding parameter in the adjacency matrix. (E) Evolution of parameters for gene-gene
interaction that were recovered from the quantum framework and are present in the NF-κB network during the first
15, 000 iterations. (F) Evolution of parameters for gene-gene interactions that were not recovered but are present in
the NF-κB network during the first 15, 000 iterations. (G) Evolution of parameters for gene-gene interaction that are
predicted by the quantum framework during the first 15, 000 iterations.

10



Quantum gene regulatory networks

the number of cells would not substantially change the correlation and regression coefficients. Thus, information in the
scRNA-seq data is not fully used. The other issue is that the coefficient is computed only between the two focal genes,
regardless of the expression values of other genes in the same biological system. The effect of not considering other
genes in the computation can result in a biased coefficient, which does not represent the true behavior of the interaction.
There are methods such as partial correlation [8], principal component regression [9], and LASSO [53] that may correct
this. But the correcting effect is limited given the all-to-all interactions cannot be modeled.

In contrast, our qscGRN method is based on the quantum framework, which uses the Hilbert space and maps the
binarized expression of each cell for n genes at once. The mapping of n genes to the Hilbert space allows manipulating
the superposition of basis states in an n qubit system and fitting the output distribution to the observed distribution in
the binarized scRNA-seq data. Thus, biological information passes through the quantum circuit and is encoded in a
superposition state. In other words, a gene-gene relationship is computed using information from an n gene biological
system all at once in the quantum framework, which is an improvement compared to correlation-based methods.
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