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ABSTRACT: In real life while modeling and solving “Vehicle Routing Prob-
lem With Profits (VRPP)” we often face the state of uncertainty as well as
hesitation due to various qualitative and quantitative factors. To deal with
such situations, in this paper, we propose “Fermatean Fuzzy Multiple Vehi-
cle Routing Problem With Profits (FFMVRPP)” in which we have considered
the profits, expenses as Fermatean Fuzzy (FF) values and has included quali-
tative factors like ‘Relation of customer with the seller’, ‘risk of transporting
from one node to another’ to make our model more realistic. The paper in-
cludes mathematical formulation of the FFMVRPP and proposed algorithms
to solve them. We propose Fermatean Fuzzy Clarke and Wright’s saving al-
gorithm(FFCWA), Fermatean Fuzzy Nearest Neighbourhood algorithm and
Nearest Neibourhood + Brute Force algorithm (Group First and brute second).
An example is also stated to elaborate the given methods and ultimately we
will conclude with the advantageous of a FFMVRPP over the classical VVRP
along with the references.

KEYWORDS: Fermatean Fuzzy Sets, Vehicle Routing Problem with Prof-
its, Fermatean Fuzzy Multiple Vehicle Routing Problem With Profits, Clarke
and Wright’s saving algorithm, Nearest Neighbourhood algorithm, Nearest
Neighbourhood + Brute Force algorithm.

1 INTRODUCTION:

Vehicle Routing Problem was introduced by Dantzig and Ramser [3] approx-
imately 60 years before, in the year 1959 and Clark and Wright proposed [6]
an efective greedy heuristic for the approximate solution of the VRP. Classical
Vehicle Routing Problems with Profits (VRPP) is an extension of the Vehi-
cle Routing problem (VRP). The most basic problems of this class with only
one route are often presented as variants of the Traveling Salesman Problem



(TSP) ( Fischetti, Salazar González, and Toth) [11]. Though having a good
practical interest in considering the profits in VRP, most of the existing liter-
ature revolves around the single-vehicle case of the problems. Among all the
MVRPP, the only problem that has been studied in depth is the TOP(Team
Orienteering problem) by “BUTT and CAVALIER” [10].

Many authors have used fuzzy and intuitionistic fuzzy set theory for solving
real life optimization problems such as transporting, routing etc [4], [5], [7].
Though having superiority over fuzzy, intutionistic and Phythagorean Sets [1],
not much work has been done with the Fermatean Fuzzy theory. This paper
involves the application on FFS in VRPP.

Fuzzy theory [2] was introduces by zadeh (1965) . The use of fuzzy set
theory became very rapid in the field of optimization after the pioneering work
done by Bellman and Zadeh (1970) [12].
Senapati and Yager introduced the concept of Fermatean fuzzy set (FFS)[1]
which is one of the important generalizations of fuzzy set theory. The major
advantage of FFS over fuzzy set is that FFS separates the degree of member-
ship (acceptance level) and the degree of non-membership (non-acceptance
level) of an element in the set. Later in 2020 some new important operations
on Fermatean Fuzzy Sets by again given by Senapati and Yager [9].

In this paper, we proposed FFMVRPP. The problem set up is as follow:
Given a set of N total customers at any time t. The distributor has only a capac-
ity of serving M customers out of N in a given unit of time, where M ≤ N. The
problem is to select M customers out of N and visit these M customers through
different vehicle routes with the limitation that not more then K customers are
visited in a single trip, where K ≤ M ≤ N. The objective here is to maximize
the difference between the profit expectations level and serving expense level.

Corresponding to each customer a Fermatean Fuzzy profit is attached with
its Fermatean Fuzzy degrees indicating the level of profit satisfaction offered
by the customer. The relation of the customer with the distributor being an
important qualitative feature, is again given by Fermatean fuzzy values. The
risk of transporting goods from one node to another and cost matrix are given
in Fermatean fuzzy terms which gives us the overall expense matrix.

The paper is structured in the following manner, in section 2 basic prelim-
inaries and concepts of Fermatean fuzzy set theory along with its operations
and vital functions have been reviewed. In section 3 a mathematical model
of FFMVRPP has been proposed. Section 4 deals with the two step solu-
tion process of the FFMVRPP by the proposed algorithms - Fermatean Fuzzy
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Clarke and Wrights savings algorithm, Fermatean Fuzzy Nearest Neighbour-
hood algorithm, Nearest Neighbourhood + Brute Force algorithm in sections
4.1, 4.2, 4.3, and 4.4 respectively. In section 5 an example has been presented
with 7 customers and a depot node (O) out of which only 6 can be served in a
unit time, where all the data is given in Fermatean Fuzzy environment. Section
6 contains a brief comparison of the results of the example. The last Section 7
comprises the concluding remarks and future works along with the references.

2 PRELIMINARIES AND CONCEPTS:[9],[1]

2.1 FERMATEAN FUZZY SETS (FFS)

Let X be universe of discourse. A Fermatean fuzzy sets F in X is an object
having the form

F = {< x, αF(x), βF(x)> ;x ∈ X}

Where,
αF(x) : X → [ 0,1] and

βF(x) : X → [ 0,1]

including the condition

0 ⩽ (αF(x))3 +(βF(x))3 ⩽ 1, ∀x ∈ X

The number αF(x) and βF(x) denote respectively the degree of membership
and the degree of non membership of the element x in the set F .
Note that , for the interest of simplicity, we shall mention the symbol

F = (αF(x),βF(x))

for the Fermatean Fuzzy Sets,

F = {< x,αF(x),βF(x)>;x ∈ X}

2.2 SCORE FUNCTION :

Let F = (αF ,βF) be a FFS then the score function of F can be represented as

score(F) = α
3
F −β

3
F

For any FFS, F = (αF ,βF) the suggested score function,
score(F) ∈ [ −1,1]
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2.3 ACCURACY FUNCTION:

Let F = (αF ,βF) be an FFS, then the accuracy function regarding F can be
described as follows:

acc(F) = α
3
F +β

3
F

Clearly, acc(F) ∈ [ 0,1]
Bigger the value of acc(F), higher the accuracy of FFS, F will be.

2.4 DEGREE OF INDETERMINACY

For any FFS, F and x ∈ X

πF(x) = 3
√

1− (αF(x))3 − (βF(x))3

is identified as the degree of indeterminacy of x to F .

2.5 RANKING PRINCIPLE USING SCORE AND ACCURACY
FUNCTION:

Let F1 = (αF1,βF1) and F2 = (αF2,βF2) be two FFSs. score(Fi) and acc(Fi),
i = 1,2 are the score values and accuracy values of F1 and F2 respectively then
the ranking principle using score and accuracy is defined as follows:

1. I f score(F1)< score(F2), then F1 < F2

2. I f score(F1)> score(F2), then F1 > F2

3. I f score(F1) = score(F2), then

(a) I f acc(F1)< acc(F2), then F1 < F2

(b) I f acc(F1)> acc(F2), then F1 > F2

(c) I f acc(F1) = acc(F2), then F1 = F2

2.6 OPERATIONS ON FERMETEAN FUZZY NUMBERS:

Let F = (αF(x),βF(x)), F1 = (αF1(x),βF1(x)) F2 = (αF2(x),βF2(x)) be three
FFSs and λ > 0, then their operations are defined as follows:

• F1 ∩F2 = (min{αF1,αF2},max{βF1,βF2})
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• F1 ∪F2 = (max{αF1,αF2},min{βF1,βF2})

• F1 ⊞F2 = ( 3
√

α3
F1
+α3

F2
−α3

F1
α3

F2
,βF1βF2)

• F1 ⊠F2 = (αF1αF2,
3
√

β 3
F1
+β 3

F2
−β 3

F1
β 3

F2
)

• F1 ⊟F2 = ( 3

√
α3

F1
−α3

F2
1−α3

F2

,
βF1
βF2

) i f αF1 ≥ αF2,βF1 ≤ min(βF2,
βF2π1

π2
)

• F1÷̃F2 = (
αF1
αF2

, 3

√
β 3

F1
−β 3

F2
1−β 3

F2

) i f αF1 ≤ min(αF2,
αF2π1

π2
),βF1 ≥ βF2

• Fc = (βF ,αF)

• λF = ( 3
√

1− (1−α3
F),β

λ
F )

• Fλ = (αλ
F ,

3
√

1− (1−β 3
F)

λ )

3 Mathematical Model:

Let G = (V,A) be a complete graph with V = {O,1,2, ...,n} is the of all nodes
and A be the set of all arcs. The nodes V\{O} = {1,2, ...,n} shows the n
customers and the node O represents the depot from where any route starts or
ends. For any (i, j) ∈ A, C̃i j denots the expense of travelling from one node to
another, where the expense is taken as a weight function of travelling cost and
risk, and a profit P̃i is associated with each customer ∀i = 1,2, ..n. The profit
of each sellected customer can be collected only once.
Out of the total N customers only M can be served/visited in a unit time and at
most K customers can be visited in a single trip.
∴ Number of Vehicles or trips required (either we can assume to have multiple
vehicles or to have one vehicles with multiple trips) to visit these selected M
customers will be ⌊M÷K⌋= |R| (let).
The problem is to first select these M customers out of N and then to find
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suitable routes so that the difference of profit satisfaction level and serving
expense level is maximized.

3.1 NOTATIONS

N: Total number of available customer.
M: Number of customers to be served in a unit time with M ≤ N
K: Maximum number of customers that can be visited in a single trip.
R: Set of all routes through which customers are visited.

∴ | R | = ⌊M÷K⌋
C̃i j : Expense of travelling from ith node to jth node.
P̃i : Profit satisfaction level offererd by the ith customer.
W̃i : Willingess to serve customer i or relation of ith customer with seller
Let us define the following variables :
yir = 1 if i ∈V is visited by vehicle route r ∈ R or 0 otherwise.
xi jr = 1 if (i, j) ∈ A is traversed by the vehicle route r ∈ R or 0 otherwise.

∴ The mathematical formulation is as follows:

Max {α
˜
∑
i∈V

p̃i ∑
r∈R

Yir ⊟
˜
∑

(i, j)∈A
C̃i j ∑

r∈R
Xi jr}

Subject to
∑
j∈V

xi jr = yir; ∀i ∈V,r ∈ R.........(1)

∑
j∈V

x jir = yir; ∀i ∈V,r ∈ R..........(2)

∑
r∈R

yor ≤ | R |= [
m
k
]..............(3)

∑
r∈R

yir ≤ 1; ∀i ∈V\{0}.............(4)

∑
i

yir ≤ k; ∀i = 1,2, ...,m ∀r ∈ R.......(5)

yir ∈ {0,1}; ∀i ∈V, r ∈ R...........(6)

xir ∈ {0,1}; ∀(i, j) ∈ A, r ∈ R.........(7)
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Here, the objective function maximizes the difference between the overall gained profit satis-
faction level and the total expense level of serving. Constraints (1) and (2) ensures that one
arc enters and one arc leaves for each visited vertax. Constraint (3) limits the number of routes
to be at most |R|, while constraint (4) imposes that each customer is visited at most once. The
constraint (5) for any route r ∈ R, at most K customers are visited. Finally (6) and (7) shows
that yir and xi jr can take only two values either 0 or 1, ∀i ∈V and r ∈ R.

4 Solution Methods
Clearly, FFMVRPP is a two stage problem. First we have to select M customers out of N then
to create vehicle routes keeping in mind the constraints.
So we propose a two step solution procedure in which the first step deals with the sellection
of M customers out of N and the second steps create efficient routes to visit the sellected
customers from step 1.

4.1 Step 1 Procedure
For each customer we calculate their attractiveness or favourability depending on Profit
satisfaction P̃i, willingness or relation with seller W̃i and the expected expense in serving
them C̃i j. For this we use the following function : Favourability Function

F(α1P̃i, α2W̃i, α3C̃0i )= a3
i − a′3i + b′3i − b3

i ....(8)
where α1,α2,α3 are weights and α1 +α2 +α3 = 1
and α1P̃i ⊞α2W̃i = (ai,bi) and α3C̃0i = (a′i,b

′
i)

∀i = 1,2, ...n
equation (8) gives us the attractiveness of the customer i. Let F be the attractiveness of each
customer and let we make a list Fi ∀ i = 1,2, ...n and arrange the list in Descending order
Take a list L = customer i in Fi and select first m customers from the list [Fi]. Thus length of
list L=M
∴ L is the list of selected customers.
∴ expected profit satisfaction =̃ ∑i∈L Pi =̃ P̃ (let)
This concludes our STEP 1 of the solution procedure.

4.2 Fermatean Fuzzy C.W.A For Step 2
The algorithm proceeds as follows:

Calculating Savings
Let

C̃oi ⊞C̃o j = (αo j,βo j)

C̃i j = (ci j,di j)

S̃i j = α
3
oi −C3

i j +d3
i j −β

3
o j

Create m individual routes (O, i,O) ; i = 1,2, ..m
Create List l = Si j where Si j = defuzzify S̃i j
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(Computing savings for each merge of locations i and j. Making m routes 0− i− 0. List l
keeps savings for each possible merge Si j)

Creating Routes/trips

Choose max Si j, 1 ≤ i ≤ M and i+1 ≤ j ≤ M
let it is = Si′ j′

route ri : Join i′ and j′ i.e.create O− i′− j′−O and expense is
C̃i = C̃0i ⊞ C̃i j ⊞ C̃o j
eliminate Si′ j′ from list l and update list l

Any route can visit at most K customers
If length ri < K Then
choose max Si′ j or Si j′ for 1 ≤ i ≤ M ; i+1 ≤ j ≤ M
without loss of generelity, let we take it as S j′i′′

extend ri as O− i′− j′− i′′−O and thus
C̃i = C̃0i ⊞ C̃i′ j′ ⊞ C̃ j′i′′ ⊞ C̃i′′O
eliminate S j′i′′ from l and update l.
else: end route ri and initiate route ri+1 with updated l

Multiple Routes

Repeat step 4.3.3 , 4.3.4 untill Length (l) = 0
after this step we will have |R| = ⌊M ÷K⌋ routes, each containing different set of customers
and

C̃ =̃ ∑
i=1

|R| C̃i

Final Result

Ans = α P̃ ⊟ C̃
where C̃ is the overall expense level and P̃ is profit satisfaction level multiplied by a scalar
α > 0 indicating the satisfaction level of the whole process right from selection of customer
to creating multiple routes and serving them in route order trips.

4.3 Fermatean Nearest Neighbourhood For Step 2
For step 2 i.e creating routes and trips the method is given as follows.

Initiating Route With Least Expensive Node

Take C̃i j; O ≤ i ≤ M , O ≤ j ≤ M.
min C̃O j; 1 ≤ j ≤ M = C̃O j1 (let).
Initiate route O− j1 ; where j1 ∈ 1,2, ...,M
expense C̃i = C̃O j1; Now update C̃i, j by eliminating C̃O j1 and C̃ j1O i.e
C̃i, j\{ C̃O j1 , C̃ j1O}

Extend And Add Nodes

take i = j1
=⇒ min {C̃i j ; 1 ≤ j ≤ M ; i ̸= j} = C̃i j2 (let)

8



=⇒ C̃i j2 = C̃ j1 j2; extend route O-j1- j2;
C̃i = C̃O j1 ⊞ C̃ j1 j2
update C̃i, j matrix C̃i, j\{C̃ j1, j2, j2, j1}

Create Routes

Repeat step 5.2 q number of times where
q = min {M,K −1} to get a route visiting q customers and ending with O.

route ri : O− j1 − j2 − j3 − ....− jq −O

C̃i = C̃O j1 ⊞ C̃ j1 j2 ⊞ .... ⊞ C̃ jq−2 jq−1 ⊞ C̃ jqO

update C̃i j by C̃i j\ {C̃i j; i = j1, j2, ... jq and j = j1, j2, ... jq}

Repeat steps 5.1, 5.2, 5.3 [m
k ] = R times to set | R | different routes with update C̃i j and

m ∈ m−q customers.

∴ Total expense =̃
R

∑
i=1

C̃i =̃ C̃

Final Result

Final Result = α p̃ ⊟ C̃
where C̃ is the overall expense level and P̃ is profit satisfaction level multiplied by a scalar
α > 0 indicating the satisfaction level of the whole process right from selection of customer
to creating multiple routes and serving them in route order trips.

4.4 Nearest Neighbourhood And Brute Force For Step 2
For the step 2 i.e creating routes we proceed as follows:

Grouping Customers

Group the customers using the above Nearest Neighbourhood Method i.e. section 5.1, 5.2,
5.3 and 5.4 except calculating C̃i. A total of | R | = [m

k ] groups are to be made.

Case(i): if k | m then We have | R | groups, each containing exactly k customers.

Case(ii): if k ∤ m then
We have | R | −1 groups of k customers and 1 group of m− rk customers.

When K | M

For case(i) : For any group Gi, i = 1,2,3, ..., | R | we have k! number of different possible
routes starting and ending with nodes O .
take

r̃i = Min{r̃i j ; 1 ≤ j ≤ k!}

take “r̃ j expens” be the list of expenses of all k! possible routes in group Gi , where,
i = 1,2,3, ..., | R | and j = 1,2,3, ...,k!
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take C̃i = Min{r̃ j ; 1 ≤ j ≤ k!}

∴ Total expense =
|R|

∑
i=1

C̃i

When K ∤ M

For case(ii) : Repeat step 6.2.2 for | R | −1 groups having k customers each.
For the group with m− rk customers.
Number of different possible routes = (m− rk)!
Let R j

′
be the expense of each possible route.

taking, C̃′
= Min { R̃ j

′
| 1 ≤ j ≤ (m− rk)! }

∴ TotalExpense =
|R|−1

∑
i=1

C̃i ⊞ C̃′ =̃ C̃

Final Result

Ans = αP̃ − C̃
where C̃ is the overall expense level and P̃ is profit satisfaction level multiplied by a scalar
α > 0 indicating the satisfaction level of the whole process right from selection of customer
to creating multiple routes and serving them in route order trips.

5 Numerical Example

5.1 PROBLEM FORMULATION
Consider the following FFMVRPP with 7 customers and 1 depot O. The data are given in the
following tables. All the data i.e profits, cost, willingness , risk are taken in FF terms. The
problem is to First select 6 customers, as it is assumed that in 1 day only 6 customers can be
visited, and then create routes to visit/serve these 6 customers assuming that in one trip only
3 customers can be visited. Here N=7 ; M=6 ; K=3.
Thus the no paths R= ⌊6÷3⌋= 2

Customer1 Customer2 Customer3 Customer4 Customer5 Customer6 Customer7

Profit Satisfaction level 4̃1 (0.86,0.36) 2̃9 (0.52,0.85) 4̃5 (0.97,0.08) 3̃0 (0.55,0.83) 4̃3 (0.91,0.24) 3̃8 (0.78,0.54) 4̃4 (0.94,0.16)

Willingness (0.66,0.71) (0.3,0.97) (0.77,0.54) (0.8,0.4) (0.91,0.24) (0.55,0.83) (0.94,0.16)

Expected Fuzzy Cost 8̃ (0.8,0.48) 1̃0 (0.97,0.08) 2̃ (0.2,0.95) 1̃ (0.1,0.99) 9̃ (0.9,0.27) 1̃ (0.1,0.99) 9̃ (0.9,0.27)

Table 1: Selection Table

Table 1 give us the data of the profit level offered by all the customers, the willingness to
serve them i.e. the data indicating the relation of the customers with the distribution and the
expected fuzzy cost indicating that how much costly it is to serve/visit the customers directly.
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8̃ (0.8,0.48) 1̃0 (0.97,0.08) 2̃ (0.2,0.95) 1̃ (0.1,0.99) 9̃ (0.9,0.27) 2̃ (0.1,0.99) 9̃ (0.9,0.27)

8̃ (0.8,0.48) 1̃0 (0.97,0.08) 9̃ (0.9,0.27) 4̃ (0.4,0.93) 1̃ (0.1,0.99) 8̃ (0.8,0.48) 2̃ (0.2,0.95)

1̃0 (0.97,0.08) 1̃0 (0.97,0.08) 4̃ (0.4,0.93) 9̃ (0.9,0.27) 9̃ (0.9,0.27) 2̃ (0.2,0.95) 5̃ (0.5,0.87)

2̃ (0.2,0.95) 9̃ (0.9,0.27) 4̃ (0.4,0.93) 9̃ (0.9,0.27) 1̃0 (0.97,0.08) 7̃ (0.7,0.65) 9̃ (0.9,0.27)

1̃ (0.1,0.99) 4̃ (0.4,0.93) 9̃ (0.9,0.27) 9̃ (0.9,0.27) 8̃ (0.8,0.48) 6̃ (0.6,0.78) 5̃ (0.5,0.87)

9̃ (0.9,0.27) 1̃ (0.1,0.99) 9̃ (0.9,0.27) 1̃0 (0.97,0.08) 8̃ (0.8,0.48) 9̃ (0.9,0.27) 3̃ (0.3,0.97)

1̃ (0.1,0.99) 8̃ (0.8,0.48) 2̃ (0.2,0.95) 7̃ (0.7,0.65) 6̃ (0.6,0.78) 9̃ (0.9,0.27) 2̃ (0.2,0.95)

9̃ (0.9,0.27) 2̃ (0.2,0.95) 5̃ (0.5,0.87) 9̃ (0.9,0.27) 5̃ (0.5,0.87) 3̃ (0.3,0.97) 2̃ (0.2,0.95)

Table 2: Fuzzy Cost Table

Table 2 give us the fuzzy cost of moving from one node to another. Here the matrix is
symmetric matrix .i.e. the fuzzy cost for going from ith to jth and jth to ith node is same.
All the diagonal cells are empty as the transportation is not required from ith to ith node. The
fermatean fuzzy values indicates how much costly it is to move from the ith to jth node.

(0.41,0.84) (0.78,0.6) (0.27,0.9) (0.83,0.55) (0.65,0.7) (0.52,0.78) (0.92,0.43)

(0.41,0.84) (0.83,0.55) (0.65,0.7) (0.88,0.49) (0.27,0.9) (0.41,0.84) (0.65,0.7)

(0.78,0.6) (0.83,0.55) (0.78,0.6) (0.41,0.84) (0.78,0.6) (0.94,0.37) (0.52,0.78)

(0.27,0.9) (0.65,0.7) (0.78,0.6) (0.83,0.55) (0.78,0.6) (0.71,0.66) (0.27,0.9)

(0.83,0.55) (0.88,0.49) (0.41,0.84) (0.83,0.55) (0.43,0.92) (0.94,0.37) (0.11,0.96)

(0.65,0.7) (0.27,0.9) (0.78,0.6) (0.78,0.6) (0.43,0.92) (0.78,0.6) (0.99,0.2)

(0.52,0.78) (0.41,0.84) (0.94,0.37) (0.71,0.66) (0.94,0.37) (0.78,0.6) (0.94,0.37)

(0.92,0.43) (0.65,0.7) (0.52,0.78) (0.27,0.9) (0.11,0.96) (0.99,0.2) (0.94,0.37)

Table 3: Risk Table

Table 3 is the risk table indicating the risk involved in moving from the ith to jth node. The
higher the membership value the more risky it is to transport goods between the nodes.

Table 4 is calculated with the help of table 2 and 3. The expense from moving from ith

to jth node is a combination of the fuzzy cost and risk involved in moving from the ith to jth

node. Expense is a weight function of both cost and risk with weight 0.6 and 0.4 respectively.
For example :

˜C12 =̃ 0.6 ˜C′
12 ⊞ 0.4 ˜r′12 where ˜C′

12 is the entry in (1,2) cell in table 2 and ˜r′12 is the (1,2)
cell entry in table 3.
∴ ˜C12 =̃ 0.6 (0.8,0.48) ⊞ 0.4 (0.41,0.84)

11



˜C12 =̃ (0.71,0.60)
Similarly all the C̃i j are calculated in table 4.

(0.71,0.60) (0.93,0.17) (0.23,0.92) (0.66,0.78) (0.84,0.39) (0.39,0.89) (0.90,0.32)

(0.71,0.60) (0.94,0.17) (0.84,0.39) (0.73,0.71) (0.2,0.95) (0.71,0.6) (0.49,0.84)

(0.93,0.17) (0.94,0.17) (0.63,0.7) (0.82,0.42) (0.86,0.37) (0.79,0.65) (0.50,0.83)

(0.23,0.92) (0.84,0.39) (0.63,0.7) (0.87,0.35) (0.93,0.17) (0.70,0.65) (0.81,0.43)

(0.66,0.78) (0.73,0.71) (0.82,0.42) (0.87,0.35) (0.71,0.62) (0.83,0.57) (0.42,0.90)

(0.84,0.39) (0.2,0.95) (0.86,0.37) (0.93,0.17) (0.71,0.62) (0.86,0.37) (0.91,0.51)

(0.39,0.89) (0.71,0.6) (0.79,0.65) (0.70,0.65) (0.83,0.57) (0.86,0.37) (0.79,0.65)

(0.90,0.32) (0.49,0.84) (0.50,0.83) (0.81,0.43) (0.42,0.90) (0.91,0.51) (0.79,0.65)

Table 4: Expense Table

5.2 SOLUTION
5.2.1 Step 1

We calculate the favourability of each customers as described in section 4.1
We take the weight as
α1 = 0.4, α2 = 0.4, α3 = 0.2
Now we calculate

F(α1P̃i, α2W̃i, α3C̃oi) = a3
i −a

′
i
3 +b

′
i
3 −b3

i

Where
α1P̃i ⊞ α2W̃i = (ai,bi)

α3 C̃oi = (a
′
i,b

′
i) ∀i = 1,2, ...,n

For customer 1,

P̃i = (0.86,0.36) W̃i = (0.66,0.71) C̃oi = (0.8,0.48)
∴ 0.4 (0.86,0.36) ⊞ 0.4 (0.66,0.71) =̃ (0.69,0.66) ⊞ (0.50,0.87) =̃ (0.74,0.57)
α3 C̃oi =̃ 0.2 (0.8,0.48) =̃ (0.511,0.863)
∴ F1 =̃ (0.732740)

Similarly for customer 2:

α1P̃2 ⊞ α2W̃2 =̃ 0.4(0.52,0.85) ⊞ 0.4(0.3,0.97)
α1P̃2 ⊞ α2W̃2 =̃ (0.38,0.93) ⊞ (0.22,0.98)
α1P̃2 ⊞ α2W̃2 =̃ (0.41,0.92)

α3 ˜Co3 =̃ 0.2(0.97,0.08)
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α3 ˜Co3 =̃ (0.72,0.60)

F2 = −0.8904

Similarly calculating we get the favorabilities as follows:
F1 = 0.7327, F2 = −0.8904, F3 = 1.6495, F4 = 1.0296, F5 = 0.8673, F6 =
0.8932, F7 = 0.9720

l = ( CUS3, CUS4, CUS7, CUS6, CUS5, CUS1)
is the final list. And

Overall pro f it satis f action =
7

∑
i=1

P̃i; i ̸= 2

∴ Overall Pro f it Satis f action = (0.99,0.0049)

This concludes the step 1 of the solution process. Now foe step 2 we propose the following
algorithms in sections 5.2.2, 5.2.3, 5.2.4

5.2.2 Fermatean Fuzzy Clarke Wright Algorithm

We calculate the savings list using the function given in 4.3.1 and calculating the list Si j we
have .
We find S13 as follows :

˜Co1 ⊞ ˜Co2 =̃ (0.71,0.60) ⊞ (0.23,0.92)
˜Co1 ⊞ ˜Co2 =̃ (0.71,0.60) ⊞ (0.71,0.552)

˜C13 =̃ (0.84,0.39)

By equation (8)

S13 = (0.71)3 − (0.84)3 +(0.39)3 − (0.552)3

S13 = −0.1181 = S31

Similarly Calculating

Si j ∀ 1 ≤ i ≤ 7 and i+1 ≤ j ≤ 7 ; i, j ̸= 2

and sort the list in descending order we get the list as:

{ S37, S45, S17, S47, S57, S36, S67, S56, S34, S46, S14, S15, S13, S35}
Now, using the above list we create the following route, taking k = 3 customers at a time.

1. 0−3−7−1−0

2. 0−4−5−6−0

∴ trip 1 : ˜C03 ⊞ ˜C37 ⊞ ˜C71 ⊞ ˜C10

Trip 1 expense, C̃1 =̃ (0.90,0.199)

Similarly
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Trip 2 expense, C̃2 =̃ (0.94,0.159)

Total Expense , C̃ =̃ (0.90,0.199) ⊞ (0.94,0.159) C̃ =̃ (0.98,0.03)

Final Result

=̃ αP̃ ⊟ C̃; where α = 1
=̃ (0.99,0.00049) ⊟ (0.98,0.03)
=̃ (0.79,0.01)

Fuzzy Cost Of Transportation =̃ 4̃0 (0.994,0.014)

5.2.3 Fermatean Fuzzy Nearest Neighbourhood

We initiate route by searching for least expensive route from depo node O in table 4 :
min {C̃0 j; 1 ≤ j ≤ 7; j ̸= 2} = (0.23,0.92) = C̃03
Here j ̸= 2 as customer 2 is rejected.
We eliminate C̃03 and C̃30 from matrix C̃0 j
initiate route 1: O-3
expense ; C̃ = C̃0,3
from node 3 we find
min{C̃3 j; 1 ≤ j ≤ 7; j ̸= 2,0} = (0.70, 0.65) = C̃36
∴ the route is extended ; route 1: 0−3−6
C̃ = C̃03 ⊞ C̃36
similarly proceeding in this way we get the next cheap node as C̃61
∴ the route is 0−3−6−1−0 = TRIP 1;
C̃1 = C̃03 ⊞ C̃36 ⊞ C̃61 ⊞ C̃10 = (0.90, 0.215)
similarly eliminating entries from matrix C̃i j :
C̃i j : i = 1,3,6 and j = 1,3,6
and repeating the process with the updated C̃i, j we get the next route as
Route 2: 0-4-7-5-0
C̃2 = C̃04 ⊞ C̃47 ⊞ C̃75 ⊞ C̃50 = (0.97, 0.139)
Total expense, C̃ = (0.993, 0.139)
Final Result =̃ (0.99,0.00049) ⊟ (0.993,0.29) as α = 1
= (0.52, 0.016)
Fuzzy Cost Of Transportation =̃ 4̃3 (0.998,0.0043)

5.2.4 FF Nearest Neighbourhood + Brute Force

The selected customer list from the section 5.2.1 is
l= {cus3 ,cus4 ,cus7 ,cus6 ,cus5 ,cus1}
then the group by FFNN methods in section 5.2.3 are (1,3,6) (4,5,7)
Now for the group (1,3,6) we have 3! = 6 possible different route combinations as follows;

1. 0−1−3−6−0

2. 0−1−6−3−0
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3. 0−3−1−6−0

4. 0−3−6−1−0

5. 0−6−3−1−0

6. 0−6−1−3−0

we calculate the expense for each route and select the route with minimum expense.
For example for expense of (1) : 0-1-3-6-0 is
C̃01 ⊞ C̃13 ⊞ C̃36 ⊞ C̃60 = (.942,135)
similarly for others also we get
(2) 0-1-6-3-0 = (0.90,0.215)
(3) 0-3-1-6-0 = (0.911,0.191)

NOTE:
0−1−3−6−0 and 0−6−3−1−0

0−1−6−3−0 and 0−3−6−1−0

0−3−1−6−0 and 0−6−1−3−0

are routes exactly opposite to each other hence have same expense level.
least expensive route is : 0-1-6-3-0 or 0-3-6-1-0 with expense : C̃1 = (0.90,0.215)

similarly for the other group (4,5,7) the possible combinations are

1. 0−4−5−7−0

2. 0−4−7−5−0

3. 0−5−4−7−0

4. 0−5−7−4−0

5. 0−7−4−5−0

6. 0−7−5−4−0

And the least expensive route is

0−7−4−5−0 or 0−5−4−7−0

with expense =̃ (0.97,0.139)

Total Expense

C̃ =̃ (0.90,0.215) ⊞ (0.97,0.139)
C̃ =̃ (0.993,0.29)

Result =̃ (0.52,0.016)
Fuzzy Cost Of Transportation =̃ 4̃3 (0.998,0.0043)
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6 Comparision Of Results

6.1 Among Sections 5.5.2, 5.2.3, 5.2.4

Selected Customers Trips Result Fuzzy Cost Expected Profit

FFCWA l = {3,4,7,6,5,1} 0−3−7−1−0 0−4−5−6−0 (0.79,0.001) 4̃0(0.994,0.014) ˜201(0.9407,0.35)

FFNN l = {3,4,7,6,5,1} 0−3−6−1−0 0−4−7−5−0 (0.52,0.016) 4̃3(0.998,0.0043) ˜198(0.793,0.506)

FF(NN+B) l = {3,4,7,6,5,1} 0−3−6−1−0 0−4−7−5−0 (0.52,0.016) 4̃3(0.998,0.0043) ˜198(0.793,0.506)

Table 5:

The step 1 of the solution procedure was same for all the algorithms. Out of 7 possible
customers we chose top 6 most customers attractive or favorable customers in section 5.2.1
using the procedure explained in section 4.1 We saw for the above example in section 5, the
FFCLA gave us a better result (i.e section 5.2.2) the then FFNN and FF(NN+B). The route
given by FFCLA is:
TRIP 1 : 0-3-7-1-0
TRIP 2 : 0-4-5-6-0
with the overall satisfaction level (0.79, 0.01) which is higher then the satisfaction level given
by FFNN and FF(NN+B). For the above example we saw that both the methods FFNN and
FF(NN+B) gave us the same route
TRIP 1: 0-1-6-3-0
TRIP 2: 0-7-4-5-0
with the overall satisfactory level as (0.52, 0.16).
However in general FFNN and FF(NN+B) may not provide the same set of solutions. In
general FF(NN+B) give us a route route which is either same as FFNN or less expensive the
FFNN.
Also the fuzzy expected cost is calculated from the table 1
we saw that the transportation Fuzzy cost under FFCWA is 4̃0 (0.994,0.014). For the FFNN
and FF(NN+B) the fuzzy cost is
4̃3 (0.998,0.0043) ≥ 4̃0 (0.994,0.014)

6.2 FFMVRPP AND CLASSICAL MVRPP
Let us now have a comparison between the VRPP in FF environment and in deterministic
environment. In deterministic environment the VRPP models takes only two factors cost and
profit while in FF environment the FFMVRPP models includes cost, profit, risk and willing-
ness variables, clearly having a more realistic and practical approach for decision making.
The willingness or relation of customer with seller/distributor plays a very dominant role in
practical scenerios which is completely ignored in the deterministic approach of the VRPP.
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From the above table it can be clearly seen that even for the same set of customers we get
different Groups and routes for transporting. In FF environment by FFCWA we get the trips
as

0−1−5−7−0 and 0−6−4−3−0

with the profit ˜201 (0.994,0.014) and overall transportation risk (0.89,0.052). For the deter-
ministic case by CWA we get the routes as

0−3−7−1−0 and 0−4−5−6−0

with similar profits 201. But if we calculate the risk of this trip then it comes out to be
(0.99,0.00928) which is higher then that of FFCWA.

Similarly for NN and NN+B also, we get the routes in deterministic environment as

0−4−6−1−0 and 0−3−7−5−0

with a higher profit of 203 units. In the FF environment the method gives us the routes as

0−3−6−1−0 and 0−4−7−5−0

with a lesser profit of ˜198 (0.793,0.506) . But when compared with the risk factor we can see
that in FF environment the risk is less (0.872,0.1142) then that of the deterministic environ-
ment (0.999,0.200). Now in practical situations risk plays a more dominant role then profit
as most of the firms prefers less risk even if the cost is a bit higher.

NOTE: If we remove the willingness and risk factors from our FFMVRPP then we would
get similar result i.e we would get similar kind of set of customers and routes. The deviation
is due to the extra qualitative factors that we have included in our model showing the effect of
these factors.

7 Conclusion and Future Objectives
In this paper FFMVRPP has been proposed. For the solution a two step procedure has been
proposed in which the first step deals with the selection and in second routes and trips are cre-
ated for visiting customers. The end result comes out to be a fermatean fuzzy value indicating
the satisfaction level achieved through the whole process. Expected fuzzy cost and profits can
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also be calculated if desired.

It can be clearly seen that FFMVRPP is much more realistic and practical when compared
to the deterministic MVRPP. Considering the factor “Relation of a customer with seller” in
step 1 or in selecting customers is very important as in real life situations this factor plays a
very important and dominant role in the decision making which is completely ignored in the
deterministic model. Also including the risk factor for selection of routes is very important
as this qualitative factor also is very important in the real situations. So it can be concluded
that decision making under the FF environment is much more efficient when compared to the
Rigid or deterministic environment.

In future research,we are working to modify the methodologies to get an optimal solution
of the FFMVRPP. Also it can be extended to solve FFMVRPP having different data structure
i.e when the data is given in interval valued or any other type of Fermetean Fuzzy numbers.
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