
EasyChair Preprint
№ 7735

Towards Digital Twin-Enabled DevOps for CPS
Providing Architecture-Based Service Adaptation
& Verification at Runtime

Jürgen Dobaj, Andreas Riel, Thomas Krug, Matthias Seidl,
Georg Macher and Markus Egretzberger

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 6, 2022

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

Towards Digital Twin-enabled DevOps for CPS providing

Architecture-Based Service Adaptation & Verification at Runtime

Jürgen Dobaj†
 Institute of Technical Informatics

 Graz University of Technology

 Graz, Austria
 juergen.dobaj@tugraz.at

Andreas Riel
 CNRS, G-SCOP Laboratory

Grenoble Alps University

 Grenoble, France
 andreas.riel@grenoble-inp.fr

Thomas Krug
 Institute of Technical Informatics

 Graz University of Technology

 Graz, Austria
 t.krug@tugraz.at

Matthias Seidl
 Institute of Technical Informatics

 Graz University of Technology

 Graz, Austria
 matthias.seidl@tugraz.at

Georg Macher
 Institute of Technical Informatics

 Graz University of Technology

 Graz, Austria
 georg.macher@tugraz.at

Markus Egretzberger
 R&D Automation

 Andritz Hydro GmbH

 Vienna, Austria
markus.egretzberger@andritz.co

ABSTRACT

Background: Industrial Product-Service Systems (IPSS) denote a

service-oriented way of providing access to cyber-physical

systems’ (CPS) capabilities. The design of such systems bears high

risk due to uncertainty in requirements related to service function

and behavior, operation environments, and evolving customer

needs. Such risks and uncertainties are well known in the IT sector,

where DevOps principles ensure continuous system improvement

through reliable and frequent delivery processes. A modular and

service-oriented system architecture complements these processes

to facilitate IT system adaptation and evolution.

Objective: This work proposes a method to use and extend the

Digital Twins (DTs) of IPSS assets for enabling the continuous

optimization of CPS service delivery and the latter’s adaptation to

changing needs and environments. This reduces uncertainty during

design and operations by assuring IPSS integrity and availability,

especially for design and service adaptations at CPS runtime.

Methodology: The method builds on transferring IT DevOps

principles to DT-enabled CPS IPSS. The chosen design approach

integrates, reuses, and aligns the DT processing and communica-

tion resources with DevOps requirements derived from literature.

Results: We use these requirements to propose a DT-enabled self-

adaptive CPS model, which guides the realization of DT-enabled

DevOps in CPS IPSS. We further propose detailed design models

for operation-critical DTs that integrate CPS closed-loop control

and architecture-based CPS adaptation. This integrated approach

enables the implementation of A/B testing as a use case and central

concept to enable CPS IPSS service adaptation and reconfiguration.

Conclusion: The self-adaptive CPS model and DT design concept

have been validated in an evaluation environment for operation-

critical CPS IPSS. The demonstrator achieved sub-millisecond

cycle times during service A/B testing at runtime without causing

CPS operation interferences and downtime.

CCS CONCEPTS

• Computer systems organization~Embedded and cyber-physical

systems • Computer systems organization~Architectures

KEYWORDS

DevOps, Digital Twin, Self-Adaptation, CPS, Deployment, IPSS

ACM Reference format:

Jürgen Dobaj, Andreas Riel, Thomas Krug, Matthias Seidl, Georg Macher and

Markus Egretzberger. 2022. Towards Digital Twin-enabled DevOps for CPS

providing Architecture-Based Service Adaptation & Verification at Runtime.

In 17th International Symposium on Software Engineering of Adaptive Self-

Managing Systems (SEAMS’22). May 18-23, PITTSBURGH, PA, USA, ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3524844.3528057

1 Introduction

For several decades various industries have been dealing with

the dynamic interplay of products and services known as

Product-Service Systems (PSS) [1]. Market competition, higher

profitability of services, and the need for more sustainable

customer relations through increased and extended product

lifecycle control are among today’s top PSS drivers. These

benefits led to PSS adoption between business partners, known

as Industrial Product-Service Systems (IPSS) [2].

†Corresponding author

https://doi.org/10.1145/3524844.3528057

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA Dobaj, Riel, Krug, Seidl, Macher, Egretzberger

IPSS denote a service-oriented way of providing access to

cyber-physical systems (CPS) capabilities. According to a very

recent analysis by Brissaud et al. [3], remote asset maintenance

and monitoring and remote asset reconfiguration are

considered the most relevant CPS service capabilities at

present and in the near future. Digital Twins (DTs) as virtual

counterparts to these assets are accepted as an enabler for IPSS

and the above use cases in particular.

Due to their vast business and sustainability potentials, IPSS

have been expected to be widely adopted in multiple sectors.

However, Brissaud et al. [3] found that IPSS are not as

widespread as suggested in a former study [1]. In their analysis,

the high risks imposed on IPSS service providers is among the

main adoption challenges. These risks arise from planning and

design uncertainties [4] related to unclear requirements of

service behavior, operation environments, and evolving

customer needs. This finding is supported by industry studies

[3,5], concluding that the risk imposed by technical, user

behavioral, and service provisioning uncertainties is evident

and must be properly managed for CPS IPSS adoption.

As for the former challenge, we propose reducing provider

risks and design uncertainties by adopting the DevOps lifecycle

for CPS by enabling the continuous delivery, adaptation, and

improvement of CPS (IPSS) services. To that end, we propose a

self-adaptive CPS design model that maps the Information

Technology (IT) concept of frequent design-build-deployment

cycles to the Operation Technology (OT) domain of CPS IPSS.

These design models are developed based on the systematic

transfer of DevOps principles to the CPS OT domain, thereby

integrating the DT as a shared knowledgebase to enable

context-aware self-adaptive CPS characteristics. These charac-

teristics ensure CPS IPSS service sustainability through design,

technology, and function evolution. As the main contribution of

this work, we propose a novel software service deployment

strategy that enables the autonomous deployment and veri-

fication of service changes in the CPS OT domain at runtime.

The remainder of this work is organized as follows. Section

2 describes the background, discusses related work, and states

the research questions and methodology. Section 3 derives

design requirements for CPS DevOps. Section 4 explains the

proposed design models. Section 5 evaluates and discusses the

results. Finally, Section 6 concludes the presented work.

2 Background and Related Work

This section introduces DevOps and discusses the gaps in

DevOps for CPS. DevOps is a collection of principles from

computer science that signify the integration and collaboration

of IT development with IT operations activities [6–8]. Such

integration of software service development (Dev) and

operations (Ops) enables the continuous building, testing, and

deployment of software services upon each software design

modification. Consequently, provided services continuously

improve, evolve, and can be validated in “real” operation. While

such a scenario is pertinent for IT environments, we must note

that we are far from achieving the same for OT environments.

2.1 Value Creation through DevOps

We start our discussion on DevOps for CPS from a value-

oriented perspective. To that end, we roughly divide the

DevOps lifecycle into four value streams, as shown in Figure 1.

(a) The creation of value in the (Design &) Dev space by

developing and testing new and improved services. (b) The

creation of value by the downstream delivery of these services

to the operations environment for their operationalization. (c)

The creation of value by using, maintaining, and monitoring the

provided services in the Operation & Maintenance (O&M)

space. (d) The creation of value by operations monitoring and

the delivery of upstream feedback for data-driven strategy and

design planning in the Design (& Dev) space.

The closed-loop implementation of these four value streams

in CPS OT environments can only be achieved if the required

CPS and OT capabilities (i.e., requirements) are well integrated

across multiple DevOps lifecycle phases. In order to achieve an

appropriate level of integration, we postulate that these

capabilities must be taken into account during CPS design.

For example, particular key strengths of DevOps are the

short (upstream and downstream) feedback cycles between

Dev and Ops [8], which are enabled through rigorous

operations monitoring and the frequent and reliable delivery

and deployment of software services changes.

Upstream Feedback. To implement upstream feedback,

the service monitoring capabilities need to be integrated into

the service operation and monitoring phases. Second, response

capabilities must be provided to ensure data and information

transfer from Ops to Dev. Third, the received data needs to be

integrated and managed for subsequent analysis and planning.

Downstream Feedback. To implement downstream deli-

very of releasable services, the service deployment capabilities

need to be integrated into service operation to ensure CPS

availability, integrity, and safety at all times. Therefore, down-

stream deployment needs to integrate autonomous monitoring

and failure response capabilities into the CPS O&M space.

2.2 DevOps in the Light of DTs and CPS IPSS

Next, we want to take a brief look at the achievements of

industry and research in CPS design, development, and

operation, focusing on aspects that support the realization of

DevOps value streams and feedback cycles.

Figure 1: DTs in the CPS DevOps Lifecycle

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

Towards Digital Twin-enabled DevOps for CPS SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA

Digital Twin. A DT consists of a physical entity, its virtual

counterpart, and the data connection in between. Today, DTs

are used to optimize physical entities in virtual space by exper-

imenting with its virtual counterpart. The obtained results are

then reflected back into physical space. Such a procedure is

called twinning. The twinning fidelity describes the twinning

accuracy determined by the twinned parameters and the

twinning rate of these parameters [9].

Design & Dev Space. Traditionally, CPS were designed as

special-purpose static silo applications, built and configured

once for decades of operation with fixed pre-scheduled and

manually executed maintenance intervals [10,11]. With the

ever-increasing CPS complexity, due to the advancing

digitalization and interconnection, and the need for value co-

creation across industries [12], also CPS design has had to

evolve. Self-adaptive systems engineering supports the

management of this constant evolution by reducing the

complexity and the uncertainty associated with change [13,14].

Verification and Validation. Today, DTs are used for

shifting essential parts of the effort for predicting, evaluating,

and preparing asset and CPS configurations virtually during

design time rather than during expensive and availability-

critical operation time [15]. For that purpose, model-based and

data-driven simulation approaches are used [16–19]. When

integrated into a framework, these approaches also enable

virtual CPS engineering and commissioning [20] to reduce

time, effort, and faults during physical commissioning.

Connecting CPS Dev & Ops. Despite great advances in (DT-

based) simulation, a residual risk remains when deploying

virtually validated services and functions to the real world. To

further reduce CPS operation risks due to model and simulation

uncertainty [20], verification approaches ensure that the

virtual design space reflects physical reality accurately enough.

Such verifications can be achieved by, e.g., linking the Ops DT

(i.e., real world data) and the Dev DT (i.e., the virtual simulation

space) to compare virtual with physical CPS behavior. To

ensure interoperability and compatibility in case of evolving

and diverging DTs, adaptive frameworks for DT data

abstraction are proposed [21,22] to facilitate long-term

upstream and downstream DT data exchange and data reuse.

O&M Space. In the operation space, DTs are used for remote

operation and optimization of CPS assets and processes and

predictive maintenance [23,24]. These DTs, e.g., minimize

energy consumption and maximize asset lifetime and yield.

Frequently such DTs rely on Model Predictive Control (MPC)

facilitated through data-intensive machine-learning algorithms

like Deep Neural Networks (DNN) [25]. Self-adaptive systems

support CPS operations in, e.g., assuring dependability and

resilience [26–29], and in adapting to changing environments

and mission goals using, e.g., runtime models, goal-driven

optimization techniques, and control theory [30–35], as well as

to evolving software system needs by, e.g., relying on a modular

design, architecture-based adaptation, and reuse [36–41].

DevOps in the CPS Software Engineering Lifecycle. Agile

software practices, including DevOps, are increasingly adopted

by regulated industries, where safety and standard compliance

are cornerstones in software development for operation- and

mission-critical CPS (used interchangeably in the following).

These industries rely on rigorous engineering processes to

deliver certifiable or certification-ready software. As concluded

in [42], agile practices and CI/CD pipelines produce high-

quality and certifiable software ready to be delivered more

frequently to the end-user. However, such IT DevOps practices

cannot be directly adopted due to stricter safety, compliance,

and CPS architecture requirements. Leite et al. [8] made a

similar observation when analyzing the DevOps concept and

challenges in the IT sector. They note that adopting DevOps

practices imposes significant challenges on system

architecture, embedded systems, and IoT, including their

design, management, and operation.

The Vision of DevOps for CPS. The increasing interest of

regulated industry in DevOps practices resulted in proposals of

concepts and roadmaps [43–49] pursuing the introduction of

DevOps for CPS design and operations. Most of these works put

the DT at the center of DevOps to serve as knowledgebase for

organizing and automating DevOps processes in CPS. While all

these and similar works we have found postulate that the DT

can facilitate DevOps principles for CPS, we could not find any

work that addresses CPS and DT service design for DevOps.

Summing up, significant progress has been made in all four

value streams individually. In these value streams, the DT and

self-adaptive systems engineering are becoming increasingly

important to reduce uncertainty in the emergent and highly

complex CPS landscape [50]. Particular strengths of today’s DT-

based CPS IPSS are their data-driven prediction capabilities

and the DT’s ability to manage and exchange data across

lifecycle phases. However, these data exchange capabilities,

especially today's downstream and O&M capabilities, do not

support frequent and reliable software service deployment, a

key aspect of DevOps in IT environment [8]. To the best of the

authors’ knowledge, no work has addressed the research

questions of adopting modern (IT-like) DevOps deployment

strategies (DS) for critical CPS OT environments.

2.3 Deployment Strategies and Architectures

In this section, we discuss the challenges of adopting IT DSs for

the CPS OT environment. To that end, we describe state-of-the-

art (SotA) IT DSs, whose characteristics are summarized in

Table 1. We adapted this table from a presentation by the Cloud

Native Foundation [51] and added the characteristics of SotA

OT DSs. Figure 2 shows two conceptual architecture models to

discuss the differences between IT and OT software service

deployment and the IT and OT DevOps lifecycle processes.

Architectural Aspects. The most significant difference,

when comparing the architectures in Figure 2, is that two

networking technologies are used in the CPS architecture: (a)

an IT network (NW) to support business and development

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA Dobaj, Riel, Krug, Seidl, Macher, Egretzberger

processes and (b) an OT NW to support operations processes

and to handle and respond to user requests (subsequently also

denoted as user traffic (UT) and operations dataflow (ODF)).

The air gap in Figure 2 indicates that these NWs are strictly

separated, similar to the support processes implemented in

these NWs. The traffic generated by these support processes

(e.g., business, dev, and ops processes) is denoted as

management traffic (MT) and management dataflow (MDF).

The separation into traffic types is used throughout this work

as an essential characteristic to describe DSs and the relations

between users, supporting processes, service instances, and

the information processing and communication (IPC)

resources executing these services.

While there are many similarities between IT and OT NW

technologies, there are also significant differences. Both NWs

are designed for availability and high throughput rates. Since

OT NWs are used to interact with the physical environment for

critical application control, OT NW safety and integrity are

essential for CPS operation. Further, the OT IPC resources and

services must support real-time IPC in the sub-millisecond

range to properly control “fast” physical processes. To meet

these requirements, the OT IPC resources are organized in a

strictly hierarchical manner (as indicated in Figure 2 by the IPC

resource cluster). Resource-constrained embedded devices, for

example, are located near IPC resource "users" to provide real-

time control of physical assets and processes. Special purpose

OT protocols and NWing technologies ensure safe and timely

data transfer within and across OT NW hierarchy levels, called

Automation Pyramid (AP) levels [52]. A detailed discussion of

the AP and their impact on DevOps, DT, and CPS service design

follows in Section 3. Next, we discuss different DSs.

IT Deployment Strategies. We start with the service DSs

used in modern Cloud and IT IPC environments listed in Table

1. The simplest DSs is to recreate all service instances. In this

case (a) the services running in the “current release” IPC cluster

are stopped, and subsequently, (b) the new services are started

in the same cluster. During this procedure, the system is not

available to users. The deployment, usually fully automated, is

managed by the individual DevOps team(s) responsible for the

specific service. In an IT IPC environment, the MT and UT can

be routed through a load balancer (LB) that inspects, filters,

and forwards the different traffic types to their destinations.

The LB’s services are typically decoupled from the system

service instances and operated in their individual IPC cluster.

The LB provides a standard interface to individual services,

which enables the implementation of sophisticated DSs that,

e.g., (a) ensure service availability during deployment (i.e., zero

downtime), (b) enable testing of services and their comparison

to current services in the real operation environments (i.e., real

traffic testing), and (c) to perform the real traffic testing on

specific users or user groups (i.e., targeted users). For example,

shadow deployment allocates all the IPC resources to deploy all

new service instances alongside the current release. 100% of

incoming UT is routed to the current and new service releases,

while only the responses of the current release are forwarded

to the users. Hence, the shadow DS allows to compare releases

causing zero downtime. The A/B testing DS, for example,

allocates only IPC resources required for 30% of the overall

user traffic. In this case, user requests are split and processed

by the current (i.e., A) and new (i.e., B) service releases, as

shown in Figure 2. The LB routes the responses from A and B

to their respective users. Such a DS allows comparing user–

reactions based on different service behavior. The LB’s purpose

is to manage and hide the complexity of these DSs.

OT Deployment Strategies. Implementing the above IT

DSs and features in an OT environment is accompanied by

several challenges. First, the strict real-time constraints and the

interaction with distributed physical assets (represented by

the users in Figure 2) prevent from using a “central” LB in OT

environments. Instead, these constraints enforce a hierarchical

structure that historically evolved to a NW of heterogeneous

devices, protocols, and technologies. This structure and

interaction with physical assets make IPC resources' dynamic

allocation and management challenging [53]. As of Figure 2, it

is feasible to realize only one dedicated IPC resource cluster to

implement CPS functionality. Consequently, OT IPC resources

are shared between (a) the Dev teams and processes, (b) the

Ops teams and processes, and (c) the real-time and mission-

critical CPS processes (i.e., the actual users). Balancing all these

“stakeholders” requirements and constraints makes designing

and adopting DevOps and IT-like DSs for CPS challenging.

Table 1: Features of IT and OT Deployment Strategies

Figure 2: Conceptual IT and OT Deployment Models

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

Towards Digital Twin-enabled DevOps for CPS SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA

Based on our experience in the field, we can say that most

software updates are executed manually by dedicated and

specially trained Ops teams (i.e., operation and commissioning

engineers) that have local or remote access to the OT IPC

cluster. This manual updating allows to easily apply changes to

subsystems, i.e., targeted users as shown in Table 1. However,

changes can typically only be applied if these subsystem or the

entire CPS is taken offline (which results in heavy costs and

high risks). Very recently, automated remote updates are

becoming popular. Most notably, future vehicles are enforced

by law to support software updates for security patching. The

automotive industry addresses this via automated over-the-air

(OTA) updates [54], the first step towards IT-like deployment.

Summing up, CPS are designed and developed as relatively

static systems for a specific behavior and environment. Their

maintenance is scheduled for fixed intervals, and significant IT-

like hardware and software changes are usually not planned or

supported only to a limited extent. Some sectors make their

first steps towards more frequent software service updates.

However, to the best of the author’s knowledge, no OT DS exists

that supports modern deployment features such as real-traffic

testing on targeted users at zero downtime.

2.4 Research Questions and Methodology

The research objectives of this work are (a) to propose a self-

adaptive service-oriented CPS model that uses the DT as a

common knowledgebase throughout the DevOps lifecycle

phases. Based on this model, we aim (b) to propose and

evaluate the design of a novel A/B testing DS designed

explicitly for OT environments to facilitate CPS DevOps by the

features summarized in Table 1. From these objectives, we

derive the following research questions (RQs), which

contribute to the question of “how CPS and its DTs shall be

designed to realize DevOps for CPS OT environments”:

RQ1 What are the design requirements of self-adaptive CPS

IPC services and their DT(s) to enable IT-like service deployment?

RQ2 How shall DTs be structured to create a high-fidelity

context for autonomous CPS adaption?

RQ3 What does a DT-enabled self-adaptive CPS's conceptual

model (aligned to [55] Fig. 1) look like?

RQ4 Can the model covering RQ3 be instantiated to

implement the proposed A/B testing for CPS?

In the article presented here, we address RQ1, RQ2, and RQ3

through the following methodology: We derive and analyze the

design requirements and models covering system and device

scale based on (a) previous work [53,56], (b) the integration of

design patterns for self-adaptive systems and CPS engineering

[57–60], and (c) the analysis and integration of concepts from

several industrial reference architectures and frameworks

[61–67]. We align the resulting requirements and models to the

AP [52] underlying industrial CPS (see Figures 3 and 4).

Subsequently, we address RQ4 by proposing design models

that facilitate the implementation of A/B testing for CPS. For

validation, we implement and validate the A/B testing DS on an

evaluation platform for distributed mission-critical CPS IPSS.

3 CPS and DT Design

In this section, we address the first three (design-related) RQs.

To that end, we have compiled Figure 3, which shows multiple

conceptual viewpoints on CPS aspects with a strong focus on

the inherent hierarchical structure and organization of CPS.

3.1 Structure and Organization

CPS IPSS Structure. All views (a-f) that are shown in Figure 3

are vertically aligned to the AP levels. This alignment shall

reflect that all views are strictly related to each other and that

individual design aspects within a single view may impact the

Figure 3: Views Showing Conceptual Models of the Hierarchical CPS Structure from a DevOps, Service, and DT Perspective

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA Dobaj, Riel, Krug, Seidl, Macher, Egretzberger

design and function of other views. In particular, view (a) maps

the four DevOps value streams to (b) the AP levels. View (c)

shows which IPC technologies are used on the individual AP

levels, and (d) shows the typical physical layout of a CPS IPSS

and its IPC clusters. View (e) maps the IT and OT deployment

models as of Figure 2 onto the AP levels. Finally, view (f) shows

the Dev DT and the Ops DT which are compositions of the

individual DT instances distributed across the AP levels. The

tiny boxes in view (d) indicate that these DT instances are

further separated and distributed across the IPC NW resources.

IT NW. AP level 5 is called business or management level. At

this level, the DT provides key performance indicators (KPIs)

of the overall CPS IPSS to drive business decisions. On level 4,

the planning level, DTs are used for strategic system operations

and design planning, development, simulation, and verification

& validation. Due to their functional aspects levels 5 and 4 can

be mapped to the Design & Dev space value stream. Modern IT

solutions such as public and on-premises clouds are used for

information processing and exchange at these levels.

OT NW. Level 3 denotes the supervisory level responsible

for supervisory control and data acquisition (SCADA) of a plant

(fleet). Level 2 is the control level, responsible for domain and

asset control. In particular, the programmable logic controllers

(PLCs) are connected via the field level technologies (i.e.,

sensor, actuators, fieldbus networks on level 1) to the physical

assets and processes under control on level 0. The domain

controllers are intermediate layers to increase CPS fault

tolerance and ease the coordination of distributed assets and

processes. The lower AP levels implement the mission-critical

IPC and CPS functions. Hence, they are designed for availability,

integrity, safety, and time-synchronous cyclic real-time IPC.

CPS Functionality and Services. The IPC and CPS functions

are actually implemented by the distributed service instances

shown in Figure 3(e), which are executed on the IPC resources

(a) to coordinate and control the physical assets and processes

(i.e., the “physical users” of the cluster), (b) to coordinate and

implement the support processes, and (c) to manage IPC

cluster resources and their usage. The composition and

cooperation of these IPC service instances within and across AP

levels are essential for implementing the CPS functionality.

The DT as Enabler Technology. As of Section 2, the DT

serves as common knowledgebase in the Dev and Ops space.

We propose this DT knowledgebase as enabler technology to

ensure proper composition, cooperation, and management of

the service instances and their deployment across AP levels. To

that end, the envisioned DT must provide a context that reflects

the physical assets, the physical processes, and the IPC

resources to be monitored, maintained, (re)configured, and

updated throughout the DevOps lifecycle. That DT context must

be accurate enough at all times for (a) decision-makers to make

the right decisions remotely, (b) for developers to deploy and

validate those decisions in virtual (design) space (c) for

developers and operators to deploy and validate the releasable

design in the physical (operation) space (i.e., real traffic

testing), and (d) to then close the loop by operationalizing the

virtually and physically validated design in the physical space.

The Dev DT and Ops DT layouts (shown in Figure 3(f) and

explained above) provide such an accurate DT-enabled context

by facilitating individual twinning fidelities within and across

AP levels. For example, the control DT instance is a high-fidelity

real-time representation of physical asset and process states to

implement proper closed-loop control. On the higher AP levels,

the twinning fidelity of the same states can be reduced to, e.g.,

KPIs on level 5 describing the number of produced goods. This

fidelity adaptation is achieved by data preprocessing and

filtering between the AP levels, which is necessary to meet the

different IPC requirements that change between AP levels. The

adaptive twinning fidelity between AP levels also allows

addressing different computational needs of twinning, (model-

based) prediction, and simulation. Overall, the separation of

the DT into a layered Dev DT and Ops DTs simplifies DT

instance and communication design because only the

requirements of specific AP levels have to be considered.

3.2 Design Requirements

Paradigm Change. Traditionally, users (learned to) adapt

their behavior to the provided system functions. Nowadays, the

system learns from the user and continuously adapts its service

to user behavior, maximizing value for all stakeholders. This

paradigm shift in system behavior is introduced with the IPSS

concept in CPS, which must be accompanied by a paradigm shift

in CPS design. Hence, modern CPS IPSS are no longer designed

as static, siloed, special purpose systems. Instead, they need to

become increasingly dynamic to adapt to changing needs,

environments, and technologies. As of Sections 1 and 2, this

requires CPS OT design to integrate agile processes and DSs.

Abstraction & Interoperability. From a technology point

of view, one of the big challenges in OT design is that mutually

largely incompatible networking concepts control different

levels in the AP. Even between the same technologies, there

might exist vendor-specific incompatibilities. Hence, a lot of

manual integration and configuration work is required for

design changes. The standardization and introduction of new

fieldbus technologies and industrial Ethernet shall address this

issue by using the IP suite as an enabler for data exchange

across AP levels, making the traditional AP structure flatter and

easier to handle [52]. However, according to Wollschläger et al.

[11] this will not decrease the prevalent heterogeneity of

communication protocols and technologies. Instead,

heterogeneity will rather be set to increase in the future.

Therefore, the harmonization of the CPS IPSS services above the

networking and communication layer is essential to ensure

vertical and horizontal interoperability (requirement R1).

Autonomy. The analysis presented in [56] states that the

need for adaptation in CPS may arise due to technology

advances, standardization, dynamic device integration

unknown at the design time, and due to security flaws, which

might result in changes of the communication infrastructure,

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

Towards Digital Twin-enabled DevOps for CPS SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA

protocols, or the software architecture itself. Hence, CPS must

also be capable of adapting to future changes in its system

requirements and its technology stack (R2). As described in

Section 2, such CPS adaptations are commonly performed

manually. However, these adaptations must be automated

using CI/CD pipelines [8] to effectively achieve CPS DevOps. At

the same time, the deployment to the operations space must be

autonomous (i.e., no human-in-the-loop) to ensure CPS

availability and integrity (R3).

Service-Orientation & Modularity. To establish auto-

nomous adaptation across AP levels, the strict separation of

management (e.g., IPC service and network configuration,

monitoring, and arbitration) and operation (e.g., asset control

and CPS monitoring) concerns becomes essential (a) to provide

freedom from interference, (b) to cope with design and

adaptation complexity, and (c) to ensure system evolution

through modularity. Such a separation addresses technological

evolution and interoperability and enables the independent

development and evolution of operations and management

functions. Therefore, management and operation traffic (i.e.,

data flows) and management and operation services shall be

strictly separated. Interactions between operation and

management shall be minimal and implemented by well-

controlled interfaces (R4) [53].

Context. From an adaptation point of view, the hierarchical

control pattern described in [57] is well suited to coordinate

the above described decentralized, hierarchical, multi-step,

and multi-technology CPS adaptations. DTs already available in

CPS IPSS can be reused and extended to serve as knowledge

repositories for contextual and coordinated adaptation. In

particular, the Ops DT instances can provide the high-fidelity

context-awareness to maintain CPS availability and integrity

by: (a) ensuring that adaptations are only made in non-critical

CPS states; and (b) canceling or delaying adaptations early if

CPS performance is to be violated. So-called management DTs

can run aside Ops DTs to maintain system integrity by creating

self-awareness about IPC service, resource, and adaptation

states required for coordinated adaptation across all AP levels.

3.3 DT-enabled Self-Adaptive CPS Model

This section introduces the conceptual model of a DT-enabled

self-adaptive CPS (see RQ3) to establish a common ground for

the subsequent development of detailed CPS service design

models and adaptation strategies. Figure 4 shows our proposed

adaptation model that is aligned to the conceptual self-adaptive

system model described in [55] Fig. 1.

 DT-enabled Self-Adaptation. The managing and managed

subsystem boundaries in Figure 4 show the fundamental

architecture of a self-adaptive system. The managed system

(i.e., the entire CPS physical instance) is comprised of the

SCADA and control services responsible for plant (fleet) control

and physical system control. For that purpose, these services

are executed on the OT IPC resource cluster on field, plant, and

fleet levels. Sensors are used to replicate the physical system

and process states into the (virtual) services for real-time

closed-loop control. The actuators replicate the results back to

the physical space, affecting physical system behavior.

Similar to the described closed-loop control mechanism, the

managing system senses the current IPC resource and service

states using probes and monitoring services. The DT services

replicate these states into the virtual space. By this, also the

physical system states can be replicated since they are already

stored for processing within IPC resources. The so-created CPS

virtual instances (i.e., the Dev DT and Ops DT) accurately reflect

the entire CPS context (i.e., the CPS physical instance) to

support CPS monitoring, control, maintenance, and adaptation.

The software agents replicate virtually applied adaptations

back into the physical space using effectors, thereby adjusting

IPC and physical system states and behavior.

DT-enabled Context. The described DT-enabled close-loop

mechanism can establish the context-awareness required by

the managing and managed systems for autonomous CPS

adaptations. As already discussed, the accuracy of this context

depends on the twinning fidelity, which depends on the

twinned states/parameters and the individual twinning rates

of these parameters. In the CPS context, the twinning fidelity

also depends on the requirements and capabilities of the AP

levels, which is not reflected in the conceptual model shown in

Figure 4. The DT context here focuses on accurately covering

highly dynamic physical and virtual (i.e., IPC resource and

service) states to accurately reflect the CPSs’ underlying

embedded mechatronic control infrastructure.

DT-enabled DevOps. The Dev and Ops support processes

shown in Figure 4 interact with the Dev DT and the Ops DT to

observe and adapt CPS behavior in virtual space. It, is the

responsibility of the DT services to distribute and apply virtual

changes to the physical CPS instance.

Figure 4: Conceptual DT-enabled Self-Adaptive CPS Model

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA Dobaj, Riel, Krug, Seidl, Macher, Egretzberger

4 Technical Self-Adaptive CPS Design Models

Generic Device-Level Design Model. Based on our previous

work [53,56] and the analysis of the above-identified design

requirements R1-R4 against the AP, we conclude that the

needed OT service and communication adaptations must be

coordinated hierarchically across AP levels. However, the

design requirements must be addressed on the device level to

provide fine-granular CPS OT function and service adaptation.

The implementation of these properties on the device level

heavily depends on the used operating systems (OSs) and

supported virtualization technologies such as hypervisors,

containers, and virtual machines. Since selecting these tech-

nologies depends on individual use case needs and hardware

capabilities, we describe a generic device-level design model

that can be tailored for specific implementation needs.

Figure 5 shows our proposed generic design model for OT

devices. The model is structured into layers representing the

OT stack. The top three layers implement the actual CPS

functionality. The underlying layers provide the necessary IPC

resources. OT and IT are strictly separated, represented by the

usage of different OSs. A mediator controls and coordinates the

interaction between OT and IT. The OT-side is responsible for

CPS control and the twinning of operation parameters

represented by the operations DT on the data layer. The IT-side

is responsible for managing and configuring both IT and OT

components. The management DT represents the current IT

and OT IPC states to coordinate the adaptation on the device

and between devices. Since this coordination is strictly

separated from the time- and mission-critical OT functions, the

use of IT tools and protocols is feasible. Management and

operation only need to interact during system adaptation.

Following the decentralized adaptation patterns as of [57],

effectors (E) and probes (P) need to be implemented on all

layers for each service and function to enable context- and self-

aware adaptation at runtime. The implementation of effectors

and probes depends on the individual technologies and

functions to be adapted. Hence, service and function design

shall follow the Microservice architecture pattern for the

Industrial Internet-of-Things (IIoT) [56] to facilitate

independent service, effector, and probe development, as well

as DevOps principles [8]. Next, we discuss the design of the

individual layers from bottom to top.

Like the device design, the network (NW) layer is separated

into two communication planes, i.e., the operation and

management NWs. Gateways (GWs) are commonly used as

mediators and protocol translators between two incompatible

NWs. These GWs also require effectors and probes for

management as of [53,58]. The interface layer connects the

device with the NW layers. The OS layer provides device

hardware (HW) abstraction and management functions, and

standard services for software development. The commu-

nication (com.) layer consists of one or more network and

protocol stacks (PSs) to provide compatibility with multiple

(fieldbus) network technologies. The data layer aggregates

data based on the DT concept. The service layer implements the

actual functionality using features of all lower layers. The

mediator may span multiple layers coordinating the data flow

and service access between operation and management.

Summing up the above design strategies, each device acts in

principle like a software-controlled and software-defined data

flow and service-provisioning gateway between the operation

and management domain. Hence, design, management, and

configuration strategies known from software-defined

networking (SDN) [58,68] and the service mesh principle [53]

are applicable. For example, the CoC pattern [58] is targeted

toward the hierarchical management of heterogeneous

networks, and the dependable mesh networking patterns [53]

are targeted toward the integrated management of

heterogeneous (Micro)services, networks, and devices. Both

approaches propose using distributed controllers and

hierarchical knowledge repositories for management.

Runtime Adaptation & Verification Model. Next, we

apply the above strategies and models to transfer the A/B

testing DS from the IT domain to the OT domain. In particular,

our DT–enabled DevOps for CPS (as of Table 1) shall support:

(i) Shadow deployment of new services for (ii) real-traffic

testing (iii) on targeted users (i.e., specific assets and (sub-

)processes) in the “real” CPS OT operation environment with

the ability to (iv) operationalize the newly deployed services

(after virtual and physical validation), and thereby (v) causing

zero CPS downtime during the entire deployment procedure.

To that end, we integrate the generic device-level model into

the architecture adaptation model. Figure 6 shows the resulting

A/B testing model of distributed OT control services. In

particular, the proposed model enables the verification of a

(redesigned) control algorithm (i.e., the B service) by deploying

B to the operation environment. At the same time, B’s behavior

and performance shall be compared to the currently active

control algorithm (i.e., the A service). To that end, the IPC

resources required by B must be allocated and configured, and

B’s network and inter-service communication links must be

established while A continues its normal operation. B shall

start its shadow operation aside of A after configuring B’s IPC

Figure 5: Generic Self-Adaptive Device Design Model

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

Towards Digital Twin-enabled DevOps for CPS SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA

resources and services. The hierarchical DT services are

responsible for managing the deployment (see Section 3).

CPS integrity shall be preserved by ensuring freedom of

interference between A and B. Therefore, the signals from B to

the actuators are blocked by software and not forwarded to the

fieldbus network, ensuring that A is the only service controlling

the physical system. Whereas, A and B receive the same sensor

signals and can interact with and use all IPC resources above

the fieldbus level. At these higher AP levels, freedom of

interference is provided by separating not only the MDFs and

ODFs but also the individual dedicated ODFs of A and B as

shown in Figure 6 by using, e.g., priority-based flow control and

time-triggered communication technologies [69].

The DT-based management services ensure integrity and

availability by the autonomous coordination of the adaptation

sequence. In addition, they continuously monitor the entire

adaptation sequence and the A/B shadow operation (a) to

abort eventually and roll back applied changes preserving CPS

availability and integrity, and (2) to record and twin A, B, IPC,

and CPS behavior and performance. Dev and Ops can use the

twinned data for live and historical analysis in the design space.

CPS services in the OT domain typically operate in a cycling

and time-synchronous manner, which allows the

implementation of relatively simple time-triggered software-

switching mechanisms to activate B and deactivate A within the

same processing cycle. Therefore, A and B must agree on a

specific point in time (i.e., a specific processing cycle) where

that switch is set for A and B simultaneously, which enables

switching services A and B during operation. Since A can

continue its operation beside B, a rollback can be performed

using the same switch mechanism.

 Implementation Model. Next, we implement the above

models on an OT control device. Therefore, we propose the

pipeline-based IPC model shown in Figure 7. Figure 8 shows

the corresponding task scheduling diagram for A/B testing.

The dataflow (DF) shown in Figure 7 is separated into a so-

called management plane (MP) and operation plane (OP). Each

plane is encompassed by the indicated twinning fidelity, i.e., the

twinned parameters and the twinning rate. The tasks (i.e.,

circles representing threads, processes, and containers) on the

OP within the blue box are operated in a cyclic time-

synchronous mode, as shown in Figure 8. All other tasks

outside that box operate in an asynchronous mode and can run

whenever CPU resources are free. The protocol stacks, located

on the subscriber and publisher sides, also represent tasks.

The input and output flow tasks are responsible for dataflow

dispatching, monitoring, and priority-based flow control. The

asynchronous management services (i.e., DT services as of

Figure 5) can push adaptation and configuration requests to

the operation plane's input flow control. These requests are

forwarded to the cyclic input processing tasks. These tasks

primarily receive data from the OP, besides the requests from

the DT service from the MP.

As of Figure 8, the input processing tasks are the first tasks

executed at each cycle start t0, indicating the current point in

time. Other devices and tasks on the OP operate synchronously

to cycle t0, which is achieved via hardware-supported

distributed time-synchronization mechanisms. This

synchronous operation is essential for accurate real-time

closed-loop control and data exchange between OT services.

In principle, an execution cycle consists of four stages as of

Figure 7: (1) (Pre-)processing and transfer of all input signals

(i.e., subscriptions) to the data layer, where they are stored in

the local high fidelity DTs. (2) Execution of the control

algorithms that read the input signals and write the resulting

control signals back to the DT in virtual space. (3) Forwarding

of the closed-loop control signals to their specific destinations,

such as actuators and other control devices. (4) Execution of

asynchronous tasks like management, visualization, and

logging tasks. These four principle steps bring us to the detailed

discussion of our design and execution sequence. However,

before going into the details, we make a short excurse to

explain the underlying synchronization principle. As of Figure

5, the mediator is responsible for service and data layer

synchronization. We decided to use the Disruptor pattern [67]

as a basis for its implementation. The Disruptor is a bounded

ring buffer data structure, as shown in the legend of Figure 7. It

is designed to replace queues as synchronization mechanisms

in multi-threaded producer-consumer applications that follow

the event-based pipeline execution pattern. For such

applications, the Disruptor enables high throughput ratios, low

latency, and low jitter [70]. The Disruptor achieves this by

using sequence counters as the only synchronization

mechanism between threads, combined with a CPU-friendly

memory layout and memory access pattern to exploit modern

multi-core CPU hardware features. Further details on these

mechanisms and analysis are given in [70] and [71].

In our above-described cyclic application, each cycle start

denotes an event and multiple tasks are executed in sequence

to operate on the same data entry (i.e., buffer entry), which

perfectly matches the pipeline principle. However, the

Figure 6: A/B Testing Model for OT Environments

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA Dobaj, Riel, Krug, Seidl, Macher, Egretzberger

Disruptor structure needs to be adapted to meet our OT and

adaptation requirements: (1) We must provide service and

function adaptation at runtime, and (2) we must ensure that

(producer) tasks on the OP, such as the input processor tasks,

are not blocked if slower tasks (most likely on the MP) cannot

take pace with the production and processing speed of the OP.

Addressing point (1), we implemented the Disruptor as a

shared-memory data structure, which enables adding and

removing pipeline stages and tasks before every cycle starts. To

that end, the management services can send an adaption

request. As of Figure 8, the input tasks process this request

shortly before (i.e., tprep for preparation time) the actual cycle

start, which enables altering the individual pipeline stages and

tasks in every cycle. The so-enabled adaptation of tasks and their

execution order allows seamlessly changing the provided control

device functionality at runtime.

Addressing point (2), we modified the original Disruptor

synchronization mechanism (i.e., the barrier mechanisms as of

[71]) that prevents producers from overtaking consumers. We

replaced the initially blocking mechanisms with a wait-free

non-blocking mechanism. This mechanism ensures that the

input processing tasks can always reserve a buffer entry for the

next cycle. To that end, we introduce a transaction-based

synchronization mechanism for consumers, under the premise

that all consumers after pipeline stage 2 are only allowed to

read from the Disruptor memory buffer. Whenever a producer

(i.e., the input processing tasks) reserves a buffer entry, this

entry is invalidated via a wait-free update (i.e., store-release

instruction) of the cycle timestamp. This ensures that the

producer is not blocked from making progress while all

(asynchronous) consumers recognize the entry invalidation.

In the previous sections, we identified availability and

integrity as essential for CPS. However, every adaptation at

runtime introduces uncertainty and may result in availability

and integrity violations. To minimize device-level adaptation

risks, we first assign newly deployed operation tasks to a lower

scheduling priority class. Hence, service B tasks are assigned to

the class P2, as of Figure 8, which shall ensure on a modern

multi-core CPU (in our analysis, we assumed four cores) that all

other tasks can make progress, even in the case that B blocks

an entire CPU core. Service B is terminated if management

services detect IPC resource usage limit violations. Otherwise,

the operator can decide to trigger the above described switch-

ing mechanisms to seamlessly deactivate A while making B the

active service to interact with the physical system level.

5 Evaluation and Discussion

Regarding coverage of research questions RQ1 to RQ4, we can

report as follows: As for RQ1, we derived design requirements

of self-adaptive CPS IPC services and their DT(s), starting from

a value-driven perspective of IPSS service needs on their

underlying CPS IPC platform. This led us to the key

requirements related to context-aware self-adaptability while

assuring CPS availability and integrity.

Integrating context-awareness is achieved via the layered

and distributed DT design that links all AP levels. The so

established DT context is not limited to static and slowly

changing physical properties and states like in traditional DT

Figure 7: Implementation Model (i.e., Dataflow Model) of a DT-enabled Architecture-based Self-Adaptive Control Device

Figure 8: Scheduling Diagram A/B Testing

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

Towards Digital Twin-enabled DevOps for CPS SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA

concepts. Instead, our DT context focuses on covering highly

dynamic physical and virtual states to accurately reflect the

CPSs’ underlying embedded mechatronic control infrastruc-

ture, including its IPC resources and services. Such high fidelity

is achieved by distributing and integrating the modular DT

instances at all CPS scales (i.e., system, device, service) and AP

levels. By this, every DT instance can operate at its individual

fidelity for its dedicated purpose. Multiple DT instances agree

on a common fidelity for data exchange by that establishing an

adaptive CPS context across AP levels. As for RQ2, such a design

enables a high-fidelity adaptive context across AP levels.

As for RQ3, we have developed a conceptual model of a DT-

enabled self-adaptive CPS that allows replicating the entire

physical CPS context (i.e., physical asset, IPC resource, and IPC

service states) into the virtual space and back again. This

bidirectional twinning of the CPS context can be used by Dev

and Ops teams for CPS monitoring, analysis, and adaptation.

As for RQ4, we instantiated the above conceptual model and

demonstrated the feasibility of the proposed context- and self-

aware deployment, adaptation, and A/B testing on a evaluation

platform for distributed CPS control. From our perspective, the

most relevant part of the demonstration is that our proposed

DT concept can serve as a distributed knowledgebase for

hierarchical coordinated CPS adaptation. In particular, we

showed that complex CPS functions that span multiple AP

levels could be deployed to the Ops space for validation without

causing CPS interferences and downtime. From a design view,

our results reveal that the proposed DT-enabled self-adaptive

CPS models can be instantiated for specific real-world use

cases, i.e., the A/B testing of services at device and system scale

while meeting the strict OT availability, integrity, and real-time

constraints of sub-millisecond cycle times. The demonstrated

DS also shows that a modular design enables the DevOps-like

closed-loop optimization of CPS service changes through

architecture-based self-adaptation and verification at runtime.

The proposed models come also with challenges in terms of

implementation complexity. Compared to traditional solutions,

they require more IPC resources in terms of processing power,

memory usage, and communication bandwidth to implement

their functionality. Hence, future extended evaluation activities

include investigating detailed timing, maximum tolerable IPC

resource usage on device, NW, and system scale, and a detailed

adaptation behavior analysis under uncertain CPS conditions.

6 Conclusion

Guided by the CPS IPSS Automation Pyramid architecture and

the IT DevOps concept, this article proposes generic technical

design models that facilitate the implementation of adaptive

and evolvable IPSS based on DT’s. The use case that served as a

design objective is A/B testing of CPS IPSS service changes in

the operation-critical CPS environment at runtime. The main

contribution of this work is to ensure full CPS IPSS availability

and integrity during CPS adaptation and A/B testing. This

contribution is pivotal for transferring the DevOps concept

known in the IT domain to the OT domain, which opens the

door for entirely new opportunities in terms of bringing closely

together IPSS design and adaptive operation, both from a

technical and organizational perspective.

ACKNOWLEDGMENTS

The authors thank Andritz Hydro GmbH and the Austrian Research

Funding Agency FFG for supporting this research.

REFERENCES
 [1] H. Meier, H. Lagemann, F. Morlock, C. Rathmann, Key Performance Indicators for Assessing

the Planning and Delivery of Industrial Services, Procedia CIRP 11 (2013) 99–104.

https://doi.org/10.1016/j.procir.2013.07.056.

[2] H. Meier, R. Roy, G. Seliger, Industrial Product-Service Systems—IPS 2, CIRP Annals 59

(2010) 607–627. https://doi.org/10.1016/j.cirp.2010.05.004.

[3] D. Brissaud, T. Sakao, A. Riel, J.A. Erkoyuncu, Designing Valule-Driven Solutions: The

Evolution of Industrial Product-Service Systems, CIRP Annals - Manufacturing Technology

71(2) (to appear).

[4] H. McManus, D. Hastings, A framework for understanding uncertainty and its mitigation and

exploitation in complex systems, IEEE Eng. Manag. Rev. 34 (2006) 81.

https://doi.org/10.1109/EMR.2006.261384.

[5] M. Qu, S. Yu, D. Chen, J. Chu, B. Tian, State-of-the-art of design, evaluation, and operation

methodologies in product service systems, Computers in Industry 77 (2016) 1–14.

https://doi.org/10.1016/j.compind.2015.12.004.

[6] J. Humble, J. Molesky, Why Enterprises Must Adopt Devops to Enable Continuous Delivery,

Cutter IT Journal 24 (2011) 6–12.

[7] C. Ebert, G. Gallardo, J. Hernantes, N. Serrano, DevOps, IEEE Softw. 33 (2016) 94–100.

https://doi.org/10.1109/MS.2016.68.

[8] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A Survey of DevOps Concepts and

Challenges, ACM Comput. Surv. 52 (2020) 1–35. https://doi.org/10.1145/3359981.

[9] D. Jones, C. Snider, A. Nassehi, J. Yon, B. Hicks, Characterising the Digital Twin: A

systematic literature review, CIRP Journal of Manufacturing Science and Technology 29

(2020) 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002.

[10] T. Sauter, S. Soucek, W. Kastner, D. Dietrich, The Evolution of Factory and Building

Automation, EEE Ind. Electron. Mag. 5 (2011) 35–48.

https://doi.org/10.1109/MIE.2011.942175.

[11] M. Wollschlaeger, T. Sauter, J. Jasperneite, The Future of Industrial Communication:

Automation Networks in the Era of the Internet of Things and Industry 4.0, EEE Ind. Electron.

Mag. 11 (2017) 17–27. https://doi.org/10.1109/MIE.2017.2649104.

[12] T.D. Oesterreich, F. Teuteberg, Understanding the implications of digitisation and automation

in the context of Industry 4.0: A triangulation approach and elements of a research agenda for

the construction industry, Computers in Industry 83 (2016) 121–139.

https://doi.org/10.1016/j.compind.2016.09.006.

[13] R. de Lemos, D. Garlan, C. Ghezzi, H. Giese (Eds.), Software Engineering for Self-Adaptive

Systems III. Assurances, Springer International Publishing, Cham, 2017.

[14] R. de Lemos, H. Giese, H.A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl, G.

Tamura, N.M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun, B.

Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K.M. Göschka, A. Gorla, V. Grassi, P.

Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mirandola,

J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. Schlichting, D.B. Smith,

J.P. Sousa, L. Tahvildari, K. Wong, J. Wuttke, Software Engineering for Self-Adaptive

Systems: A Second Research Roadmap 7475 (2013) 1–32. https://doi.org/10.1007/978-3-642-

35813-5_1.

[15] F. Tao, Q. Qi, L. Wang, A. Nee, Digital Twins and Cyber–Physical Systems toward Smart

Manufacturing and Industry 4.0: Correlation and Comparison, Engineering 5 (2019) 653–661.

https://doi.org/10.1016/j.eng.2019.01.014.

[16] S. Boschert, R. Rosen, Digital Twin—The Simulation Aspect, in: P. Hehenberger, D. Bradley

(Eds.), Mechatronic Futures, Springer International Publishing, Cham, 2016, pp. 59–74.

[17] J. Andersson, R. de Lemos, S. Malek, D. Weyns, Modeling Dimensions of Self-Adaptive

Software Systems, in: B.H.C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.),

Software Engineering for Self-Adaptive Systems, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009, pp. 27–47.

[18] M. D'Angelo, A. Napolitano, M. Caporuscio, CyPhEF, in: Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings, Gothenburg

Sweden, ACM, New York, NY, USA, 2018, pp. 101–104.

[19] C. Liu, P. Jiang, W. Jiang, Web-based digital twin modeling and remote control of cyber-

physical production systems, Robotics and Computer-Integrated Manufacturing 64 (2020)

101956. https://doi.org/10.1016/j.rcim.2020.101956.

[20] G.F. Schneider, H. Wicaksono, J. Ovtcharova, Virtual engineering of cyber-physical

automation systems: The case of control logic, Advanced Engineering Informatics 39 (2019)

127–143. https://doi.org/10.1016/j.aei.2018.11.009.

– Preprint –

Accepted for Publication at SEAMS 2022

Final published version available at: https://doi.org/10.1145/3524844.3528057

SEAMS’22, May 18–23, 2022, PITTSBURGH, PA, USA Dobaj, Riel, Krug, Seidl, Macher, Egretzberger

[21] J.A. Erkoyuncu, I.F. del Amo, D. Ariansyah, D. Bulka, R. Vrabič, R. Roy, A design framework

for adaptive digital twins, CIRP Annals 69 (2020) 145–148.

https://doi.org/10.1016/j.cirp.2020.04.086.

[22] D. Lehner, A. Garmendia, M. Wimmer, Towards Flexible Evolution of Digital Twins with

Fluent APIs, in: 2021 26th IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA), Vasteras, Sweden, IEEE, 2021, pp. 1–4.

[23] F. Reiche, H. Timinger, Process Model for Integrated Product Lifecycles Using Digital Twins

and Predictive Analytics, in: 2021 IEEE Technology & Engineering Management Conference

- Europe (TEMSCON-EUR), Dubrovnik, Croatia, IEEE, 2021, pp. 1–5.

[24] I. Errandonea, S. Beltrán, S. Arrizabalaga, Digital Twin for maintenance: A literature review,

Computers in Industry 123 (2020) 103316. https://doi.org/10.1016/j.compind.2020.103316.

[25] J. Dalzochio, R. Kunst, E. Pignaton, A. Binotto, S. Sanyal, J. Favilla, J. Barbosa, Machine

learning and reasoning for predictive maintenance in Industry 4.0: Current status and

challenges, Computers in Industry 123 (2020) 103298.

https://doi.org/10.1016/j.compind.2020.103298.

[26] G. Weiss, P. Schleiss, D. Schneider, M. Trapp, Towards integrating undependable self -

adaptive systems in safety-critical environments, in: Proceedings of the 13th International

Conference on Software Engineering for Adaptive and Self-Managing Systems - SEAMS '18,

Gothenburg, Sweden, ACM Press, New York, New York, USA, 2018, pp. 26–32.

[27] R. de Lemos, P.A. de Castro Guerra, C. Rubira, A fault-tolerant architectural approach for

dependable systems, IEEE Softw. 23 (2006) 80–87. https://doi.org/10.1109/MS.2006.35.

[28] R. Calinescu, D. Weyns, S. Gerasimou, M.U. Iftikhar, I. Habli, T. Kelly, Engineering

Trustworthy Self-Adaptive Software with Dynamic Assurance Cases, IIEEE Trans. Software

Eng. 44 (2018) 1039–1069. https://doi.org/10.1109/TSE.2017.2738640.

[29] D. Garlan, S.-W. Cheng, B. Schmerl, Increasing System Dependability through Architecture-

Based Self-Repair, in: R. de Lemos, C. Gacek, A. Romanovsky (Eds.), Architecting

Dependable Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 61–89.

[30] W. Dai, V.N. Dubinin, J.H. Christensen, V. Vyatkin, X. Guan, Toward Self -Manageable and

Adaptive Industrial Cyber-Physical Systems With Knowledge-Driven Autonomic Service

Management, IEEE Trans. Ind. Inf. 13 (2017) 725–736.

https://doi.org/10.1109/TII.2016.2595401.

[31] C.T. Sungur, U. Breitenbücher, F. Leymann, M. Wieland, Context-sensitive Adaptive

Production Processes, Procedia CIRP 41 (2016) 147–152.

https://doi.org/10.1016/j.procir.2015.12.076.

[32] A. Filieri, M. Maggio, K. Angelopoulos, N. D'Ippolito, I. Gerostathopoulos, A.B. Hempel, H.

Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A.V.

Papadopoulos, S. Ray, A.M. Sharifloo, S. Shevtsov, M. Ujma, T. Vogel, Software Engineering

Meets Control Theory, in: 2015 IEEE/ACM 10th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems, Florence, Italy, IEEE, 2015, pp. 71–

82.

[33] R. Calinescu, S. Gerasimou, A. Banks, Self-adaptive Software with Decentralised Control

Loops, in: A. Egyed, I. Schaefer (Eds.), Fundamental Approaches to Software Engineering,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 235–251.

[34] D.G.D. La Iglesia, D. Weyns, MAPE-K Formal Templates to Rigorously Design Behaviors

for Self-Adaptive Systems, ACM Trans. Auton. Adapt. Syst. 10 (2015) 1–31.

https://doi.org/10.1145/2724719.

[35] D. Weyns, A. Omicini, J. Odell, Environment as a first class abstraction in multiagent systems,

Auton Agent Multi-Agent Syst 14 (2006) 5–30. https://doi.org/10.1007/s10458-006-0012-0.

[36] J. Camara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. Schmerl, R. Ventura, Evolving

an adaptive industrial software system to use architecture-based self-adaptation, in: 2013 8th

International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), San Francisco, CA, USA, IEEE, 2013, pp. 13–22.

[37] D. Weyns, M.U. Iftikhar, D. Hughes, N. Matthys, Applying Architecture-Based Adaptation to

Automate the Management of Internet-of-Things, in: C.E. Cuesta, D. Garlan, J. Pérez (Eds.),

Software Architecture, Springer International Publishing, Cham, 2018, pp. 49–67.

[38] S. Mahdavi-Hezavehi, V.H. Durelli, D. Weyns, P. Avgeriou, A systematic literature review

on methods that handle multiple quality attributes in architecture-based self-adaptive systems,

Information and Software Technology 90 (2017) 1–26.

https://doi.org/10.1016/j.infsof.2017.03.013.

[39] D. Garlan, B. Schmerl, S.-W. Cheng, Software Architecture-Based Self-Adaptation, in: In:

Zhang, Y., Yang, L., Denko, M. (eds) Autonomic Computing and Networking. Springer,

Boston, MA, pp. 31–55.

[40] N. Abbas, J. Andersson, D. Weyns, ASPLe: A methodology to develop self-adaptive software

systems with systematic reuse, Journal of Systems and Software 167 (2020) 110626.

https://doi.org/10.1016/j.jss.2020.110626.

[41] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, P. Steenkiste, Rainbow: architecture-based

self-adaptation with reusable infrastructure, Computer 37 (2004) 46–54.

https://doi.org/10.1109/MC.2004.175.

[42] C. Baron, V. Louis, Towards a continuous certification of safety-critical avionics software,

Computers in Industry 125 (2021) 103382. https://doi.org/10.1016/j.compind.2020.103382.

[43] B. Combemale, M. Wimmer, Towards a Model-Based DevOps for Cyber-Physical Systems,

in: J.-M. Bruel, M. Mazzara, B. Meyer (Eds.), Software Engineering Aspects of Continuous

Development and New Paradigms of Software Production and Deployment, Springer

International Publishing, Cham, 2020, pp. 84–94.

[44] J. Hugues, A. Hristosov, J.J. Hudak, J. Yankel, TwinOps - DevOps meets model-based

engineering and digital twins for the engineering of CPS, in: Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings, Virtual Event Canada, ACM, New York, NY, USA, 2020, pp. 1–5.

[45] M. Ugarte Querejeta, L. Etxeberria, G. Sagardui, Towards a DevOps Approach in Cyber

Physical Production Systems Using Digital Twins, in: A. Casimiro, F. Ortmeier, E. Schoitsch,

F. Bitsch, P. Ferreira (Eds.), Computer Safety, Reliability, and Security. SAFECOMP 2020

Workshops, Springer International Publishing, Cham, 2020, pp. 205–216.

[46] W. Hasselbring, S. Henning, B. Latte, A. Mobius, T. Richter, S. Schalk, M. Wojcieszak,

Industrial DevOps, in: 2019 IEEE International Conference on Software Architecture

Companion (ICSA-C), Hamburg, Germany, IEEE, 3/25/2019 - 3/26/2019, pp. 123–126.

[47] R. Kostromin, A. Feoktistov, Agent-Based DevOps of Software and Hardware Resources for

Digital Twins of Infrastructural Objects, in: The 4th International Conference on Future

Networks and Distributed Systems (ICFNDS), St.Petersburg Russian Federation, ACM, New

York, NY, USA, 2020, pp. 1–6.

[48] J. Dobaj, M. Krisper, G. Macher, Towards Cyber-Physical Infrastructure as-a-Service

(CPIaaS) in the Era of Industry 4.0, in: Systems, Software and Services Process Improvement,

Springer International Publishing, Cham, 2019, pp. 310–321.

[49] J. Mertens, J. Denil, The Digital Twin as a Common Knowledge Base in DevOps to Support

Continuous System Evolution, in: I. Habli, M. Sujan, S. Gerasimou, E. Schoitsch, F. Bitsch

(Eds.), Computer Safety, Reliability, and Security. SAFECOMP 2021 Workshops, Springer

International Publishing, Cham, 2021, pp. 158–170.

[50] M. Grieves, J. Vickers, Digital Twin: Mitigating Unpredictable, Undesirable Emergent

Behavior in Complex Systems, in: F.-J. Kahlen, S. Flumerfelt, A. Alves (Eds.),

Transdisciplinary Perspectives on Complex Systems, Springer International Publishing,

Cham, 2017, pp. 85–113.

[51] E. Tremel, Deployment strategies on Kubernetes, Cloud Native Foundation, 2019.

[52] T. Sauter, The Three Generations of Field-Level Networks—Evolution and Compatibility

Issues, IEEE Trans. Ind. Electron. 57 (2010) 3585–3595.

https://doi.org/10.1109/TIE.2010.2062473.

[53] J. Dobaj, M. Schuss, M. Krisper, C.A. Boano, G. Macher, Dependable mesh networking

patterns, in: Proceedings of the 24th European Conference on Pattern Languages of Programs,

Irsee Germany, ACM, New York, NY, USA, 2019, pp. 1–14.

[54] J. Dobaj, G. Macher, D. Ekert, A. Riel, R. Messnarz, Towards a security‐driven automotive

development lifecycle, Journal of Software: Evolution and Process (2021).

https://doi.org/10.1002/smr.2407.

[55] D. Weyns, Software Engineering of Self-adaptive Systems, in: S. Cha, R.N. Taylor, K. Kang

(Eds.), Handbook of Software Engineering, Springer International Publishing, Cham, 2019,

pp. 399–443.

[56] J. Dobaj, J. Iber, M. Krisper, C. Kreiner, A Microservice Architecture for the Industrial

Internet-Of-Things, Irsee Germany, ACM, New York, NY, USA, 2018, pp. 1–15.

[57] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J.

Andersson, H. Giese, K.M. Göschka, On Patterns for Decentralized Control in Self -Adaptive

Systems 7475 (2013) 76–107. https://doi.org/10.1007/978-3-642-35813-5_4.

[58] F. Ansah, S.S.P. Olaya, D. Krummacker, C. Fischer, A. Winkel, R. Guillaume, L. Wisniewski,

M. Ehrlich, W. Mandarawi, H. Trsek, H. de Meer, M. Wollschlaeger, H.D. Schotten, J.

Jasperneite, Controller of Controllers Architecture for Management of Heterogeneous

Industrial Networks, in: pp. 1–8.

[59] F. Li, J. Fröhlich, D. Schall, M. Lachenmayr, C. Stückjürgen, S. Meixner, F. Buschmann,

Microservice Patterns for the Life Cycle of Industrial Edge Software, in: Proceedings of the

23rd European Conference on Pattern Languages of Programs, Irsee Germany, ACM, New

York, NY, USA, 07042018, pp. 1–11.

[60] G. Macher, M. Seidl, M. Dzambic, J. Dobaj, Architectural Patterns for Integrating AI

Technology into Safety-Critical Systems, in: 26th European Conference on Pattern Languages

of Programs, Graz Austria, ACM, New York, NY, USA, 2021, pp. 1–8.

[61] A.J.H. Redelinghuys, A.H. Basson, K. Kruger, A six-layer architecture for the digital twin: a

manufacturing case study implementation, J Intell Manuf 31 (2020) 1383–1402.

https://doi.org/10.1007/s10845-019-01516-6.

[62] C. Cimino, E. Negri, L. Fumagalli, Review of digital twin applications in manufacturing,

Computers in Industry 113 (2019) 103130. https://doi.org/10.1016/j.compind.2019.103130.

[63] H. Meissner, R. Ilsen, J.C. Aurich, Analysis of Control Architectures in the Context of Industry

4.0, Procedia CIRP 62 (2017) 165–169. https://doi.org/10.1016/j.procir.2016.06.113.

[64] Industrial Internet Consortium Connectivity Task Group, The Industrial Internet of Things

Volume G5: Connectivity Framework.

[65] S. Aheleroff, X. Xu, R.Y. Zhong, Y. Lu, Digital Twin as a Service (DTaaS) in Industry 4.0:

An Architecture Reference Model, Advanced Engineering Informatics 47 (2021) 101225.

https://doi.org/10.1016/j.aei.2020.101225.

[66] Smart Grid Coordination Group, Smart Grid Reference Architecture, 2012.

[67] M. Hankel, B. Rexroth, The Reference Architectural Model Industrie 4.0 (RAMI 4.0), 2015.

[68] Ben Schneider, Alois Zoitl, Monika Wenger, Jan Olaf Blech, Evaluating Software-defined

Networking for Deterministic Communication in Distributed Industrial Automation Systems:

September 12-15, 2017, Limassol, Cyprus, IEEE, Piscataway, NJ, 2017.

[69] M. Raagaard, P. Pop, M. Gutiérrez, W. Steiner, Runtime Reconfiguration of Time-Sensitive

Networking (TSN) Schedules for Fog Computing: Oct. 30, 2017-Nov. 1, 2017, IEEE,

Piscataway, NJ, 2017.

[70] M. Thompson, D. Farley, M. Barker, P. Gee, A. Stewart, Disruptor: High performance

alternative to bounded queues for exchanging data between concurrent threads, 2011.

[71] Y. Fang, H. Zhu, F. Zeyda, Y. Fei, Modeling and analysis of the disruptor framework in CSP,

in: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference

(CCWC), Las Vegas, NV, IEEE, 2018, pp. 803–809.

