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ABSTRACT 

Background: Industrial Product-Service Systems (IPSS) denote a 

service-oriented way of providing access to cyber-physical 

systems’ (CPS) capabilities. The design of such systems bears high 

risk due to uncertainty in requirements related to service function 

and behavior, operation environments, and evolving customer 

needs. Such risks and uncertainties are well known in the IT sector, 

where DevOps principles ensure continuous system improvement 

through reliable and frequent delivery processes. A modular and 

service-oriented system architecture complements these processes 

to facilitate IT system adaptation and evolution.  

Objective: This work proposes a method to use and extend the 

Digital Twins (DTs) of IPSS assets for enabling the continuous 

optimization of CPS service delivery and the latter’s adaptation to 

changing needs and environments. This reduces uncertainty during 

design and operations by assuring IPSS integrity and availability, 

especially for design and service adaptations at CPS runtime.  

Methodology: The method builds on transferring IT DevOps 

principles to DT-enabled CPS IPSS. The chosen design approach 

integrates, reuses, and aligns the DT processing and communica-

tion resources with DevOps requirements derived from literature.  

Results: We use these requirements to propose a DT-enabled self-

adaptive CPS model, which guides the realization of DT-enabled 

DevOps in CPS IPSS. We further propose detailed design models 

for operation-critical DTs that integrate CPS closed-loop control 

and architecture-based CPS adaptation. This integrated approach 

enables the implementation of A/B testing as a use case and central 

concept to enable CPS IPSS service adaptation and reconfiguration. 

Conclusion: The self-adaptive CPS model and DT design concept 

have been validated in an evaluation environment for operation-

critical CPS IPSS. The demonstrator achieved sub-millisecond 

cycle times during service A/B testing at runtime without causing 

CPS operation interferences and downtime. 
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1 Introduction 

For several decades various industries have been dealing with 

the dynamic interplay of products and services known as 

Product-Service Systems (PSS) [1]. Market competition, higher 

profitability of services, and the need for more sustainable 

customer relations through increased and extended product 

lifecycle control are among today’s top PSS drivers. These 

benefits led to PSS adoption between business partners, known 

as Industrial Product-Service Systems (IPSS) [2].  
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IPSS denote a service-oriented way of providing access to 

cyber-physical systems (CPS) capabilities. According to a very 

recent analysis by Brissaud et al. [3], remote asset maintenance 

and monitoring and remote asset reconfiguration are 

considered the most relevant CPS service capabilities at 

present and in the near future. Digital Twins (DTs) as virtual 

counterparts to these assets are accepted as an enabler for IPSS 

and the above use cases in particular. 

Due to their vast business and sustainability potentials, IPSS 

have been expected to be widely adopted in multiple sectors. 

However, Brissaud et al. [3] found that IPSS are not as 

widespread as suggested in a former study [1]. In their analysis, 

the high risks imposed on IPSS service providers is among the 

main adoption challenges. These risks arise from planning and 

design uncertainties [4] related to unclear requirements of 

service behavior, operation environments, and evolving 

customer needs. This finding is supported by industry studies 

[3,5], concluding that the risk imposed by technical, user 

behavioral, and service provisioning uncertainties is evident 

and must be properly managed for CPS IPSS adoption. 

As for the former challenge, we propose reducing provider 

risks and design uncertainties by adopting the DevOps lifecycle 

for CPS by enabling the continuous delivery, adaptation, and 

improvement of CPS (IPSS) services. To that end, we propose a 

self-adaptive CPS design model that maps the Information 

Technology (IT) concept of frequent design-build-deployment 

cycles to the Operation Technology (OT) domain of CPS IPSS. 

These design models are developed based on the systematic 

transfer of DevOps principles to the CPS OT domain, thereby 

integrating the DT as a shared knowledgebase to enable 

context-aware self-adaptive CPS characteristics. These charac-

teristics ensure CPS IPSS service sustainability through design, 

technology, and function evolution. As the main contribution of 

this work, we propose a novel software service deployment 

strategy that enables the autonomous deployment and veri-

fication of service changes in the CPS OT domain at runtime. 

The remainder of this work is organized as follows. Section 

2 describes the background, discusses related work, and states 

the research questions and methodology. Section 3 derives 

design requirements for CPS DevOps. Section 4 explains the 

proposed design models. Section 5 evaluates and discusses the 

results. Finally, Section 6 concludes the presented work. 

2 Background and Related Work 

This section introduces DevOps and discusses the gaps in 

DevOps for CPS. DevOps is a collection of principles from 

computer science that signify the integration and collaboration 

of IT development with IT operations activities [6–8]. Such 

integration of software service development (Dev) and 

operations (Ops) enables the continuous building, testing, and 

deployment of software services upon each software design 

modification. Consequently, provided services continuously 

improve, evolve, and can be validated in “real” operation. While 

such a scenario is pertinent for IT environments, we must note 

that we are far from achieving the same for OT environments. 

2.1  Value Creation through DevOps 

We start our discussion on DevOps for CPS from a value-

oriented perspective. To that end, we roughly divide the 

DevOps lifecycle into four value streams, as shown in Figure 1. 

(a) The creation of value in the (Design &) Dev space by 

developing and testing new and improved services. (b) The 

creation of value by the downstream delivery of these services 

to the operations environment for their operationalization. (c) 

The creation of value by using, maintaining, and monitoring the 

provided services in the Operation & Maintenance (O&M) 

space. (d) The creation of value by operations monitoring and 

the delivery of upstream feedback for data-driven strategy and 

design planning in the Design (& Dev) space. 

The closed-loop implementation of these four value streams 

in CPS OT environments can only be achieved if the required 

CPS and OT capabilities (i.e., requirements) are well integrated 

across multiple DevOps lifecycle phases. In order to achieve an 

appropriate level of integration, we postulate that these 

capabilities must be taken into account during CPS design. 

For example, particular key strengths of DevOps are the 

short (upstream and downstream) feedback cycles between 

Dev and Ops [8], which are enabled through rigorous 

operations monitoring and the frequent and reliable delivery 

and deployment of software services changes.  

Upstream Feedback. To implement upstream feedback, 

the service monitoring capabilities need to be integrated into 

the service operation and monitoring phases. Second, response 

capabilities must be provided to ensure data and information 

transfer from Ops to Dev. Third, the received data needs to be 

integrated and managed for subsequent analysis and planning. 

Downstream Feedback. To implement downstream deli-

very of releasable services, the service deployment capabilities 

need to be integrated into service operation to ensure CPS 

availability, integrity, and safety at all times. Therefore, down-

stream deployment needs to integrate autonomous monitoring 

and failure response capabilities into the CPS O&M space. 

2.2 DevOps in the Light of DTs and CPS IPSS 

Next, we want to take a brief look at the achievements of 

industry and research in CPS design, development, and 

operation, focusing on aspects that support the realization of 

DevOps value streams and feedback cycles. 

 

Figure 1: DTs in the CPS DevOps Lifecycle 
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Digital Twin. A DT consists of a physical entity, its virtual 

counterpart, and the data connection in between. Today, DTs 

are used to optimize physical entities in virtual space by exper-

imenting with its virtual counterpart. The obtained results are 

then reflected back into physical space. Such a procedure is 

called twinning. The twinning fidelity describes the twinning 

accuracy determined by the twinned parameters and the 

twinning rate of these parameters [9].  

Design & Dev Space. Traditionally, CPS were designed as 

special-purpose static silo applications, built and configured 

once for decades of operation with fixed pre-scheduled and 

manually executed maintenance intervals [10,11]. With the 

ever-increasing CPS complexity, due to the advancing 

digitalization and interconnection, and the need for value co-

creation across industries [12], also CPS design has had to 

evolve. Self-adaptive systems engineering supports the 

management of this constant evolution by reducing the 

complexity and the uncertainty associated with change [13,14].  

Verification and Validation. Today, DTs are used for 

shifting essential parts of the effort for predicting, evaluating, 

and preparing asset and CPS configurations virtually during 

design time rather than during expensive and availability-

critical operation time [15]. For that purpose, model-based and 

data-driven simulation approaches are used [16–19]. When 

integrated into a framework, these approaches also enable 

virtual CPS engineering and commissioning [20] to reduce 

time, effort, and faults during physical commissioning. 

Connecting CPS Dev & Ops. Despite great advances in (DT-

based) simulation, a residual risk remains when deploying 

virtually validated services and functions to the real world. To 

further reduce CPS operation risks due to model and simulation 

uncertainty [20], verification approaches ensure that the 

virtual design space reflects physical reality accurately enough. 

Such verifications can be achieved by, e.g., linking the Ops DT 

(i.e., real world data) and the Dev DT (i.e., the virtual simulation 

space) to compare virtual with physical CPS behavior. To 

ensure interoperability and compatibility in case of evolving 

and diverging DTs, adaptive frameworks for DT data 

abstraction are proposed [21,22]  to facilitate long-term 

upstream and downstream DT data exchange and data reuse. 

O&M Space. In the operation space, DTs are used for remote 

operation and optimization of CPS assets and processes and 

predictive maintenance [23,24]. These DTs, e.g., minimize 

energy consumption and maximize asset lifetime and yield. 

Frequently such DTs rely on Model Predictive Control (MPC) 

facilitated through data-intensive machine-learning algorithms 

like Deep Neural Networks (DNN) [25]. Self-adaptive systems 

support CPS operations in, e.g., assuring dependability and 

resilience [26–29], and in adapting to changing environments 

and mission goals using, e.g., runtime models, goal-driven 

optimization techniques, and control theory [30–35], as well as 

to evolving software system needs by, e.g., relying on a modular 

design, architecture-based adaptation, and reuse [36–41]. 

DevOps in the CPS Software Engineering Lifecycle. Agile 

software practices, including DevOps, are increasingly adopted 

by regulated industries, where safety and standard compliance 

are cornerstones in software development for operation- and 

mission-critical CPS (used interchangeably in the following). 

These industries rely on rigorous engineering processes to 

deliver certifiable or certification-ready software. As concluded 

in [42], agile practices and CI/CD pipelines produce high-

quality and certifiable software ready to be delivered more 

frequently to the end-user. However, such IT DevOps practices 

cannot be directly adopted due to stricter safety, compliance, 

and CPS architecture requirements. Leite et al. [8] made a 

similar observation when analyzing the DevOps concept and 

challenges in the IT sector. They note that adopting DevOps 

practices imposes significant challenges on system 

architecture, embedded systems, and IoT, including their 

design, management, and operation. 

The Vision of DevOps for CPS. The increasing interest of 

regulated industry in DevOps practices resulted in proposals of 

concepts and roadmaps [43–49] pursuing the introduction of 

DevOps for CPS design and operations. Most of these works put 

the DT at the center of DevOps to serve as knowledgebase for 

organizing and automating DevOps processes in CPS. While all 

these and similar works we have found postulate that the DT 

can facilitate DevOps principles for CPS, we could not find any 

work that addresses CPS and DT service design for DevOps. 

Summing up, significant progress has been made in all four 

value streams individually. In these value streams, the DT and 

self-adaptive systems engineering are becoming increasingly 

important to reduce uncertainty in the emergent and highly 

complex CPS landscape [50]. Particular strengths of today’s DT-

based CPS IPSS are their data-driven prediction capabilities 

and the DT’s ability to manage and exchange data across 

lifecycle phases. However, these data exchange capabilities, 

especially today's downstream and O&M capabilities, do not 

support frequent and reliable software service deployment, a 

key aspect of DevOps in IT environment [8]. To the best of the 

authors’ knowledge, no work has addressed the research 

questions of adopting modern (IT-like) DevOps deployment 

strategies (DS) for critical CPS OT environments. 

2.3 Deployment Strategies and Architectures 

In this section, we discuss the challenges of adopting IT DSs for 

the CPS OT environment. To that end, we describe state-of-the-

art (SotA) IT DSs, whose characteristics are summarized in 

Table 1. We adapted this table from a presentation by the Cloud 

Native Foundation [51] and added the characteristics of SotA 

OT DSs. Figure 2 shows two conceptual architecture models to 

discuss the differences between IT and OT software service 

deployment and the IT and OT DevOps lifecycle processes. 

Architectural Aspects. The most significant difference, 

when comparing the architectures in Figure 2, is that two 

networking technologies are used in the CPS architecture: (a) 

an IT network (NW) to support business and development 
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processes and (b) an OT NW to support operations processes 

and to handle and respond to user requests (subsequently also 

denoted as user traffic (UT) and operations dataflow (ODF)). 

The air gap in Figure 2 indicates that these NWs are strictly 

separated, similar to the support processes implemented in 

these NWs. The traffic generated by these support processes 

(e.g., business, dev, and ops processes) is denoted as 

management traffic (MT) and management dataflow (MDF). 

The separation into traffic types is used throughout this work 

as an essential characteristic to describe DSs and the relations 

between users, supporting processes, service instances, and 

the information processing and communication (IPC) 

resources executing these services. 

While there are many similarities between IT and OT NW 

technologies, there are also significant differences. Both NWs 

are designed for availability and high throughput rates. Since 

OT NWs are used to interact with the physical environment for 

critical application control, OT NW safety and integrity are 

essential for CPS operation. Further, the OT IPC resources and 

services must support real-time IPC in the sub-millisecond 

range to properly control “fast” physical processes. To meet 

these requirements, the OT IPC resources are organized in a 

strictly hierarchical manner (as indicated in Figure 2 by the IPC 

resource cluster). Resource-constrained embedded devices, for 

example, are located near IPC resource "users" to provide real-

time control of physical assets and processes. Special purpose 

OT protocols and NWing technologies ensure safe and timely 

data transfer within and across OT NW hierarchy levels, called  

Automation Pyramid (AP) levels [52]. A detailed discussion of 

the AP and their impact on DevOps, DT, and CPS service design 

follows in Section 3. Next, we discuss different DSs. 

IT Deployment Strategies. We start with the service DSs 

used in modern Cloud and IT IPC environments listed in Table 

1. The simplest DSs is to recreate all service instances. In this 

case (a) the services running in the “current release” IPC cluster 

are stopped, and subsequently, (b) the new services are started 

in the same cluster. During this procedure, the system is not 

available to users. The deployment, usually fully automated, is 

managed by the individual DevOps team(s) responsible for the 

specific service. In an IT IPC environment, the MT and UT can 

be routed through a load balancer (LB) that inspects, filters, 

and forwards the different traffic types to their destinations. 

The LB’s services are typically decoupled from the system 

service instances and operated in their individual IPC cluster.  

The LB provides a standard interface to individual services, 

which enables the implementation of sophisticated DSs that, 

e.g., (a) ensure service availability during deployment (i.e., zero 

downtime), (b) enable testing of services and their comparison 

to current services in the real operation environments (i.e., real 

traffic testing), and (c) to perform the real traffic testing on 

specific users or user groups (i.e., targeted users).  For example, 

shadow deployment allocates all the IPC resources to deploy all 

new service instances alongside the current release. 100% of 

incoming UT is routed to the current and new service releases, 

while only the responses of the current release are forwarded 

to the users. Hence, the shadow DS allows to compare releases 

causing zero downtime. The A/B testing DS, for example, 

allocates only IPC resources required for 30% of the overall 

user traffic. In this case, user requests are split and processed 

by the current (i.e., A) and new (i.e., B) service releases, as 

shown in Figure 2. The LB routes the responses from A and B 

to their respective users. Such a DS allows comparing user–

reactions based on different service behavior. The LB’s purpose 

is to manage and hide the complexity of these DSs. 

OT Deployment Strategies. Implementing the above IT 

DSs and features in an OT environment is accompanied by 

several challenges. First, the strict real-time constraints and the 

interaction with distributed physical assets (represented by 

the users in Figure 2) prevent from using a “central” LB in OT 

environments. Instead, these constraints enforce a hierarchical 

structure that historically evolved to a NW of heterogeneous 

devices, protocols, and technologies. This structure and 

interaction with physical assets make IPC resources' dynamic 

allocation and management challenging [53]. As of Figure 2, it 

is feasible to realize only one dedicated IPC resource cluster to 

implement CPS functionality. Consequently, OT IPC resources 

are shared between (a) the Dev teams and processes, (b) the 

Ops teams and processes, and (c) the real-time and mission-

critical CPS processes (i.e., the actual users). Balancing all these 

“stakeholders” requirements and constraints makes designing 

and adopting DevOps and IT-like DSs for CPS challenging.  

 

Table 1: Features of IT and OT Deployment Strategies 

 

 

Figure 2: Conceptual IT and OT Deployment Models 
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Based on our experience in the field, we can say that most 

software updates are executed manually by dedicated and 

specially trained Ops teams (i.e., operation and commissioning 

engineers) that have local or remote access to the OT IPC 

cluster. This manual updating allows to easily apply changes to 

subsystems, i.e., targeted users as shown in Table 1. However, 

changes can typically only be applied if these subsystem or the 

entire CPS is taken offline (which results in heavy costs and 

high risks). Very recently, automated remote updates are 

becoming popular. Most notably, future vehicles are enforced 

by law to support software updates for security patching. The 

automotive industry addresses this via automated over-the-air 

(OTA) updates [54], the first step towards IT-like deployment.  

Summing up, CPS are designed and developed as relatively 

static systems for a specific behavior and environment. Their 

maintenance is scheduled for fixed intervals, and significant IT-

like hardware and software changes are usually not planned or 

supported only to a limited extent. Some sectors make their 

first steps towards more frequent software service updates. 

However, to the best of the author’s knowledge, no OT DS exists 

that supports modern deployment features such as real-traffic 

testing on targeted users at zero downtime. 

2.4 Research Questions and Methodology 

The research objectives of this work are (a) to propose a self-

adaptive service-oriented CPS model that uses the DT as a 

common knowledgebase throughout the DevOps lifecycle 

phases. Based on this model, we aim (b) to propose and 

evaluate the design of a novel A/B testing DS designed 

explicitly for OT environments to facilitate CPS DevOps by the 

features summarized in Table 1. From these objectives, we 

derive the following research questions (RQs), which 

contribute to the question of “how CPS and its DTs shall be 

designed to realize DevOps for CPS OT environments”:  

RQ1 What are the design requirements of self-adaptive CPS 

IPC services and their DT(s) to enable IT-like service deployment? 

RQ2 How shall DTs be structured to create a high-fidelity 

context for autonomous CPS adaption? 

RQ3 What does a DT-enabled self-adaptive CPS's conceptual 

model (aligned to [55] Fig. 1) look like? 

RQ4 Can the model covering RQ3 be instantiated to 

implement the proposed A/B testing for CPS?  

In the article presented here, we address RQ1, RQ2, and RQ3 

through the following methodology: We derive and analyze the 

design requirements and models covering system and device 

scale based on (a) previous work [53,56], (b) the integration of 

design patterns for self-adaptive systems and CPS engineering 

[57–60], and (c) the analysis and integration of concepts from 

several industrial reference architectures and frameworks 

[61–67]. We align the resulting requirements and models to the 

AP [52] underlying industrial CPS (see Figures 3 and 4). 

Subsequently, we address RQ4 by proposing design models 

that facilitate the implementation of A/B testing for CPS. For 

validation, we implement and validate the A/B testing DS on an 

evaluation platform for distributed mission-critical CPS IPSS. 

3  CPS and DT Design 

In this section, we address the first three (design-related) RQs. 

To that end, we have compiled Figure 3, which shows multiple 

conceptual viewpoints on CPS aspects with a strong focus on 

the inherent hierarchical structure and organization of CPS.  

3.1  Structure and Organization 

CPS IPSS Structure. All views (a-f) that are shown in Figure 3 

are vertically aligned to the AP levels. This alignment shall 

reflect that all views are strictly related to each other and that 

individual design aspects within a single view may impact the 

 

Figure 3: Views Showing Conceptual Models of the Hierarchical CPS Structure from a DevOps, Service, and DT Perspective 
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design and function of other views. In particular, view (a) maps 

the four DevOps value streams to (b) the AP levels. View (c) 

shows which IPC technologies are used on the individual AP 

levels, and (d) shows the typical physical layout of a CPS IPSS 

and its IPC clusters. View (e) maps the IT and OT deployment 

models as of Figure 2 onto the AP levels. Finally, view (f) shows 

the Dev DT and the Ops DT which are compositions of the 

individual DT instances distributed across the AP levels. The 

tiny boxes in view (d) indicate that these DT instances are 

further separated and distributed across the IPC NW resources. 

IT NW. AP level 5 is called business or management level. At 

this level, the DT provides key performance indicators (KPIs) 

of the overall CPS IPSS to drive business decisions. On level 4, 

the planning level, DTs are used for strategic system operations 

and design planning, development, simulation, and verification 

& validation. Due to their functional aspects levels 5 and 4 can 

be mapped to the Design & Dev space value stream. Modern IT 

solutions such as public and on-premises clouds are used for 

information processing and exchange at these levels.  

OT NW. Level 3 denotes the supervisory level responsible 

for supervisory control and data acquisition (SCADA) of a plant 

(fleet). Level 2 is the control level, responsible for domain and 

asset control. In particular, the programmable logic controllers 

(PLCs) are connected via the field level technologies (i.e., 

sensor, actuators, fieldbus networks on level 1) to the physical 

assets and processes under control on level 0. The domain 

controllers are intermediate layers to increase CPS fault 

tolerance and ease the coordination of distributed assets and 

processes. The lower AP levels implement the mission-critical 

IPC and CPS functions. Hence, they are designed for availability, 

integrity, safety, and time-synchronous cyclic real-time IPC. 

CPS Functionality and Services. The IPC and CPS functions 

are actually implemented by the distributed service instances 

shown in Figure 3(e), which are executed on the IPC resources 

(a) to coordinate and control the physical assets and processes 

(i.e., the “physical users” of the cluster), (b) to coordinate and 

implement the support processes, and (c) to manage IPC 

cluster resources and their usage. The composition and 

cooperation of these IPC service instances within and across AP 

levels are essential for implementing the CPS functionality. 

The DT as Enabler Technology. As of Section 2, the DT 

serves as common knowledgebase in the Dev and Ops space. 

We propose this DT knowledgebase as enabler technology to 

ensure proper composition, cooperation, and management of 

the service instances and their deployment across AP levels. To 

that end, the envisioned DT must provide a context that reflects 

the physical assets, the physical processes, and the IPC 

resources to be monitored, maintained, (re)configured, and 

updated throughout the DevOps lifecycle. That DT context must 

be accurate enough at all times for (a) decision-makers to make 

the right decisions remotely, (b) for developers to deploy and 

validate those decisions in virtual (design) space (c) for 

developers and operators to deploy and validate the releasable 

design in the physical (operation) space (i.e., real traffic 

testing), and (d) to then close the loop by operationalizing the 

virtually and physically validated design in the physical space.  

The Dev DT and Ops DT layouts (shown in Figure 3(f) and 

explained above) provide such an accurate DT-enabled context 

by facilitating individual twinning fidelities within and across 

AP levels. For example, the control DT instance is a high-fidelity 

real-time representation of physical asset and process states to 

implement proper closed-loop control. On the higher AP levels, 

the twinning fidelity of the same states can be reduced to, e.g., 

KPIs on level 5 describing the number of produced goods. This 

fidelity adaptation is achieved by data preprocessing and 

filtering between the AP levels, which is necessary to meet the 

different IPC requirements that change between AP levels. The 

adaptive twinning fidelity between AP levels also allows 

addressing different computational needs of twinning, (model-

based) prediction, and simulation. Overall, the separation of 

the DT into a layered Dev DT and Ops DTs simplifies DT 

instance and communication design because only the 

requirements of specific AP levels have to be considered. 

3.2  Design Requirements 

Paradigm Change. Traditionally, users (learned to) adapt 

their behavior to the provided system functions. Nowadays, the 

system learns from the user and continuously adapts its service 

to user behavior, maximizing value for all stakeholders.  This 

paradigm shift in system behavior is introduced with the IPSS 

concept in CPS, which must be accompanied by a paradigm shift 

in CPS design. Hence, modern CPS IPSS are no longer designed 

as static, siloed, special purpose systems. Instead, they need to 

become increasingly dynamic to adapt to changing needs, 

environments, and technologies. As of Sections 1 and 2, this 

requires CPS OT design to integrate agile processes and DSs. 

Abstraction & Interoperability. From a technology point 

of view, one of the big challenges in OT design is that mutually 

largely incompatible networking concepts control different 

levels in the AP. Even between the same technologies, there 

might exist vendor-specific incompatibilities. Hence, a lot of 

manual integration and configuration work is required for 

design changes. The standardization and introduction of new 

fieldbus technologies and industrial Ethernet shall address this 

issue by using the IP suite as an enabler for data exchange 

across AP levels, making the traditional AP structure flatter and 

easier to handle [52]. However, according to Wollschläger et al. 

[11] this will not decrease the prevalent heterogeneity of 

communication protocols and technologies. Instead, 

heterogeneity will rather be set to increase in the future. 

Therefore, the harmonization of the CPS IPSS services above the 

networking and communication layer is essential to ensure 

vertical and horizontal interoperability (requirement R1).  

Autonomy. The analysis presented in [56] states that the 

need for adaptation in CPS may arise due to technology 

advances, standardization, dynamic device integration 

unknown at the design time, and due to security flaws, which 

might result in changes of the communication infrastructure, 
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protocols, or the software architecture itself. Hence, CPS must 

also be capable of adapting to future changes in its system 

requirements and its technology stack (R2). As described in 

Section 2, such CPS adaptations are commonly performed 

manually. However, these adaptations must be automated 

using CI/CD pipelines [8] to effectively achieve CPS DevOps. At 

the same time, the deployment to the operations space must be 

autonomous (i.e., no human-in-the-loop) to ensure CPS 

availability and integrity (R3).  

Service-Orientation & Modularity. To establish auto-

nomous adaptation across AP levels, the strict separation of 

management (e.g., IPC service and network configuration, 

monitoring, and arbitration) and operation (e.g., asset control 

and CPS monitoring) concerns becomes essential (a) to provide 

freedom from interference, (b) to cope with design and 

adaptation complexity, and (c) to ensure system evolution 

through modularity. Such a separation addresses technological 

evolution and interoperability and enables the independent 

development and evolution of operations and management 

functions. Therefore, management and operation traffic (i.e., 

data flows) and management and operation services shall be 

strictly separated. Interactions between operation and 

management shall be minimal and implemented by well-

controlled interfaces (R4) [53]. 

Context. From an adaptation point of view, the hierarchical 

control pattern described in [57] is well suited to coordinate 

the above described decentralized, hierarchical, multi-step, 

and multi-technology CPS adaptations. DTs already available in 

CPS IPSS can be reused and extended to serve as knowledge 

repositories for contextual and coordinated adaptation. In 

particular, the Ops DT instances can provide the high-fidelity 

context-awareness to maintain CPS availability and integrity 

by: (a) ensuring that adaptations are only made in non-critical 

CPS states; and (b) canceling or delaying adaptations early if 

CPS performance is to be violated. So-called management DTs 

can run aside Ops DTs to maintain system integrity by creating 

self-awareness about IPC service, resource, and adaptation 

states required for coordinated adaptation across all AP levels. 

3.3  DT-enabled Self-Adaptive CPS Model 

This section introduces the conceptual model of a DT-enabled 

self-adaptive CPS (see RQ3) to establish a common ground for 

the subsequent development of detailed CPS service design 

models and adaptation strategies. Figure 4 shows our proposed 

adaptation model that is aligned to the conceptual self-adaptive 

system model described in [55] Fig. 1.  

 DT-enabled Self-Adaptation. The managing and managed 

subsystem boundaries in Figure 4 show the fundamental 

architecture of a self-adaptive system. The managed system 

(i.e., the entire CPS physical instance) is comprised of the 

SCADA and control services responsible for plant (fleet) control 

and physical system control. For that purpose, these services 

are executed on the OT IPC resource cluster on field, plant, and 

fleet levels. Sensors are used to replicate the physical system 

and process states into the (virtual) services for real-time 

closed-loop control. The actuators replicate the results back to 

the physical space, affecting physical system behavior.  

Similar to the described closed-loop control mechanism, the 

managing system senses the current IPC resource and service 

states using probes and monitoring services. The DT services 

replicate these states into the virtual space. By this, also the 

physical system states can be replicated since they are already 

stored for processing within IPC resources. The so-created CPS 

virtual instances (i.e., the Dev DT and Ops DT) accurately reflect 

the entire CPS context (i.e., the CPS physical instance) to 

support CPS monitoring, control, maintenance, and adaptation. 

The software agents replicate virtually applied adaptations 

back into the physical space using effectors, thereby adjusting 

IPC and physical system states and behavior.  

DT-enabled Context. The described DT-enabled close-loop 

mechanism can establish the context-awareness required by 

the managing and managed systems for autonomous CPS 

adaptations. As already discussed, the accuracy of this context 

depends on the twinning fidelity, which depends on the 

twinned states/parameters and the individual twinning rates 

of these parameters. In the CPS context, the twinning fidelity 

also depends on the requirements and capabilities of the AP 

levels, which is not reflected in the conceptual model shown in 

Figure 4. The DT context here focuses on accurately covering 

highly dynamic physical and virtual (i.e., IPC resource and 

service) states to accurately reflect the CPSs’ underlying 

embedded mechatronic control infrastructure.  

DT-enabled DevOps. The Dev and Ops support processes 

shown in Figure 4 interact with the Dev DT and the Ops DT to 

observe and adapt CPS behavior in virtual space. It, is the 

responsibility of the DT services to distribute and apply virtual 

changes to the physical CPS instance. 

 

Figure 4: Conceptual DT-enabled Self-Adaptive CPS Model 
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4 Technical Self-Adaptive CPS Design Models 

Generic Device-Level Design Model. Based on our previous 

work [53,56] and the analysis of the above-identified design 

requirements R1-R4 against the AP, we conclude that the 

needed OT service and communication adaptations must be 

coordinated hierarchically across AP levels. However, the 

design requirements must be addressed on the device level to 

provide fine-granular CPS OT function and service adaptation.  

The implementation of these properties on the device level 

heavily depends on the used operating systems (OSs) and 

supported virtualization technologies such as hypervisors, 

containers, and virtual machines. Since selecting these tech-

nologies depends on individual use case needs and hardware 

capabilities, we describe a generic device-level design model 

that can be tailored for specific implementation needs.  

Figure 5 shows our proposed generic design model for OT 

devices. The model is structured into layers representing the 

OT stack. The top three layers implement the actual CPS 

functionality. The underlying layers provide the necessary IPC 

resources. OT and IT are strictly separated, represented by the 

usage of different OSs. A mediator controls and coordinates the 

interaction between OT and IT. The OT-side is responsible for 

CPS control and the twinning of operation parameters 

represented by the operations DT on the data layer. The IT-side 

is responsible for managing and configuring both IT and OT 

components. The management DT represents the current IT 

and OT IPC states to coordinate the adaptation on the device 

and between devices. Since this coordination is strictly 

separated from the time- and mission-critical OT functions, the 

use of IT tools and protocols is feasible. Management and 

operation only need to interact during system adaptation.  

Following the decentralized adaptation patterns as of [57], 

effectors (E) and probes (P) need to be implemented on all 

layers for each service and function to enable context- and self-

aware adaptation at runtime. The implementation of effectors 

and probes depends on the individual technologies and 

functions to be adapted. Hence, service and function design 

shall follow the Microservice architecture pattern for the 

Industrial Internet-of-Things (IIoT) [56] to facilitate 

independent service, effector, and probe development, as well 

as DevOps principles [8]. Next, we discuss the design of the 

individual layers from bottom to top. 

Like the device design, the network (NW) layer is separated 

into two communication planes, i.e., the operation and 

management NWs. Gateways (GWs) are commonly used as 

mediators and protocol translators between two incompatible 

NWs. These GWs also require effectors and probes for 

management as of [53,58]. The interface layer connects the 

device with the NW layers. The OS layer provides device 

hardware (HW) abstraction and management functions, and 

standard services for software development. The commu-

nication (com.) layer consists of one or more network and 

protocol stacks (PSs) to provide compatibility with multiple 

(fieldbus) network technologies. The data layer aggregates 

data based on the DT concept. The service layer implements the 

actual functionality using features of all lower layers. The 

mediator may span multiple layers coordinating the data flow 

and service access between operation and management. 

Summing up the above design strategies, each device acts in 

principle like a software-controlled and software-defined data 

flow and service-provisioning gateway between the operation 

and management domain. Hence, design, management, and 

configuration strategies known from software-defined 

networking (SDN) [58,68] and the service mesh principle [53] 

are applicable. For example, the CoC pattern [58] is targeted 

toward the hierarchical management of heterogeneous 

networks, and the dependable mesh networking patterns [53] 

are targeted toward the integrated management of 

heterogeneous (Micro)services, networks, and devices. Both 

approaches propose using distributed controllers and 

hierarchical knowledge repositories for management. 

Runtime Adaptation & Verification Model. Next, we 

apply the above strategies and models to transfer the A/B 

testing DS from the IT domain to the OT domain. In particular, 

our DT–enabled DevOps for CPS (as of Table 1) shall support: 

(i) Shadow deployment of new services for (ii) real-traffic 

testing (iii) on targeted users (i.e., specific assets and (sub-

)processes) in the “real” CPS OT operation environment with 

the ability to (iv) operationalize the newly deployed services 

(after virtual and physical validation), and thereby (v) causing 

zero CPS downtime during the entire deployment procedure. 

To that end, we integrate the generic device-level model into 

the architecture adaptation model. Figure 6 shows the resulting 

A/B testing model of distributed OT control services. In 

particular, the proposed model enables the verification of a 

(redesigned) control algorithm (i.e., the B service) by deploying 

B to the operation environment. At the same time, B’s behavior 

and performance shall be compared to the currently active 

control algorithm (i.e., the A service). To that end, the IPC 

resources required by B must be allocated and configured, and 

B’s network and inter-service communication links must be 

established while A continues its normal operation. B shall 

start its shadow operation aside of A after configuring B’s IPC 

 

Figure 5: Generic Self-Adaptive Device Design Model 
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resources and services. The hierarchical DT services are 

responsible for managing the deployment (see Section 3).  

CPS integrity shall be preserved by ensuring freedom of 

interference between A and B. Therefore, the signals from B to 

the actuators are blocked by software and not forwarded to the 

fieldbus network, ensuring that A is the only service controlling 

the physical system. Whereas, A and B receive the same sensor 

signals and can interact with and use all IPC resources above 

the fieldbus level. At these higher AP levels, freedom of 

interference is provided by separating not only the MDFs and 

ODFs but also the individual dedicated ODFs of A and B as 

shown in Figure 6 by using, e.g., priority-based flow control and 

time-triggered communication technologies [69].  

The DT-based management services ensure integrity and 

availability by the autonomous coordination of the adaptation 

sequence. In addition, they continuously monitor the entire 

adaptation sequence and the A/B shadow operation (a) to 

abort eventually and roll back applied changes preserving CPS 

availability and integrity, and (2) to record and twin A, B, IPC, 

and CPS behavior and performance. Dev and Ops can use the 

twinned data for live and historical analysis in the design space. 

CPS services in the OT domain typically operate in a cycling 

and time-synchronous manner, which allows the 

implementation of relatively simple time-triggered software-

switching mechanisms to activate B and deactivate A within the 

same processing cycle. Therefore, A and B must agree on a 

specific point in time (i.e., a specific processing cycle) where 

that switch is set for A and B simultaneously, which enables 

switching services A and B during operation. Since A can 

continue its operation beside B, a rollback can be performed 

using the same switch mechanism. 

 Implementation Model. Next, we implement the above 

models on an OT control device. Therefore, we propose the 

pipeline-based IPC model shown in Figure 7. Figure 8 shows 

the corresponding task scheduling diagram for A/B testing.  

The dataflow (DF) shown in Figure 7 is separated into a so-

called management plane (MP) and operation plane (OP). Each 

plane is encompassed by the indicated twinning fidelity, i.e., the 

twinned parameters and the twinning rate. The tasks (i.e., 

circles representing threads, processes, and containers) on the 

OP within the blue box are operated in a cyclic time-

synchronous mode, as shown in Figure 8. All other tasks 

outside that box operate in an asynchronous mode and can run 

whenever CPU resources are free. The protocol stacks, located 

on the subscriber and publisher sides, also represent tasks.  

The input and output flow tasks are responsible for dataflow 

dispatching, monitoring, and priority-based flow control. The 

asynchronous management services (i.e., DT services as of 

Figure 5) can push adaptation and configuration requests to 

the operation plane's input flow control. These requests are 

forwarded to the cyclic input processing tasks. These tasks 

primarily receive data from the OP, besides the requests from 

the DT service from the MP.  

As of Figure 8, the input processing tasks are the first tasks 

executed at each cycle start t0, indicating the current point in 

time. Other devices and tasks on the OP operate synchronously 

to cycle t0, which is achieved via hardware-supported 

distributed time-synchronization mechanisms. This 

synchronous operation is essential for accurate real-time 

closed-loop control and data exchange between OT services.  

In principle, an execution cycle consists of four stages as of 

Figure 7: (1) (Pre-)processing and transfer of all input signals 

(i.e., subscriptions) to the data layer, where they are stored in 

the local high fidelity DTs. (2) Execution of the control 

algorithms that read the input signals and write the resulting 

control signals back to the DT in virtual space. (3) Forwarding 

of the closed-loop control signals to their specific destinations, 

such as actuators and other control devices. (4) Execution of 

asynchronous tasks like management, visualization, and 

logging tasks. These four principle steps bring us to the detailed 

discussion of our design and execution sequence. However, 

before going into the details, we make a short excurse to 

explain the underlying synchronization principle. As of Figure 

5, the mediator is responsible for service and data layer 

synchronization. We decided to use the Disruptor pattern [67] 

as a basis for its implementation. The Disruptor is a bounded 

ring buffer data structure, as shown in the legend of Figure 7. It 

is designed to replace queues as synchronization mechanisms 

in multi-threaded producer-consumer applications that follow 

the event-based pipeline execution pattern. For such 

applications, the Disruptor enables high throughput ratios, low 

latency, and low jitter [70]. The Disruptor achieves this by 

using sequence counters as the only synchronization 

mechanism between threads, combined with a CPU-friendly 

memory layout and memory access pattern to exploit modern 

multi-core CPU hardware features. Further details on these 

mechanisms and analysis are given in [70] and [71]. 

In our above-described cyclic application, each cycle start 

denotes an event and multiple tasks are executed in sequence 

to operate on the same data entry (i.e., buffer entry), which 

perfectly matches the pipeline principle. However, the 
 

Figure 6: A/B Testing Model for OT Environments 
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Disruptor structure needs to be adapted to meet our OT and 

adaptation requirements: (1) We must provide service and 

function adaptation at runtime, and (2) we must ensure that 

(producer) tasks on the OP, such as the input processor tasks, 

are not blocked if slower tasks (most likely on the MP) cannot 

take pace with the production and processing speed of the OP. 

Addressing point (1), we implemented the Disruptor as a 

shared-memory data structure, which enables adding and 

removing pipeline stages and tasks before every cycle starts. To 

that end, the management services can send an adaption 

request. As of Figure 8, the input tasks process this request 

shortly before (i.e., tprep for preparation time) the actual cycle 

start, which enables altering the individual pipeline stages and 

tasks in every cycle. The so-enabled adaptation of tasks and their 

execution order allows seamlessly changing the provided control 

device functionality at runtime.  

Addressing point (2), we modified the original Disruptor 

synchronization mechanism (i.e., the barrier mechanisms as of 

[71]) that prevents producers from overtaking consumers. We 

replaced the initially blocking mechanisms with a wait-free 

non-blocking mechanism. This mechanism ensures that the 

input processing tasks can always reserve a buffer entry for the 

next cycle. To that end, we introduce a transaction-based 

synchronization mechanism for consumers, under the premise 

that all consumers after pipeline stage 2 are only allowed to 

read from the Disruptor memory buffer. Whenever a producer 

(i.e., the input processing tasks) reserves a buffer entry, this 

entry is invalidated via a wait-free update (i.e., store-release 

instruction) of the cycle timestamp. This ensures that the 

producer is not blocked from making progress while all 

(asynchronous) consumers recognize the entry invalidation. 

In the previous sections, we identified availability and 

integrity as essential for CPS. However, every adaptation at 

runtime introduces uncertainty and may result in availability 

and integrity violations. To minimize device-level adaptation 

risks, we first assign newly deployed operation tasks to a lower 

scheduling priority class. Hence, service B tasks are assigned to 

the class P2, as of Figure 8, which shall ensure on a modern 

multi-core CPU (in our analysis, we assumed four cores) that all 

other tasks can make progress, even in the case that B blocks 

an entire CPU core. Service B is terminated if management 

services detect IPC resource usage limit violations. Otherwise, 

the operator can decide to trigger the above described switch-

ing mechanisms to seamlessly deactivate A while making B the 

active service to interact with the physical system level. 

5 Evaluation and Discussion 

Regarding coverage of research questions RQ1 to RQ4, we can 

report as follows: As for RQ1, we derived design requirements 

of self-adaptive CPS IPC services and their DT(s), starting from 

a value-driven perspective of IPSS service needs on their 

underlying CPS IPC platform. This led us to the key 

requirements related to context-aware self-adaptability while 

assuring CPS availability and integrity. 

Integrating context-awareness is achieved via the layered 

and distributed DT design that links all AP levels. The so 

established DT context is not limited to static and slowly 

changing physical properties and states like in traditional DT 

 

Figure 7: Implementation Model (i.e., Dataflow Model) of a DT-enabled Architecture-based Self-Adaptive Control Device 

 

Figure 8: Scheduling Diagram A/B Testing 
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concepts. Instead, our DT context focuses on covering highly 

dynamic physical and virtual states to accurately reflect the 

CPSs’ underlying embedded mechatronic control infrastruc-

ture, including its IPC resources and services. Such high fidelity 

is achieved by distributing and integrating the modular DT 

instances at all CPS scales (i.e., system, device, service) and AP 

levels. By this, every DT instance can operate at its individual 

fidelity for its dedicated purpose. Multiple DT instances agree 

on a common fidelity for data exchange by that establishing an 

adaptive CPS context across AP levels. As for RQ2, such a design 

enables a high-fidelity adaptive context across AP levels. 

As for RQ3, we have developed a conceptual model of a DT-

enabled self-adaptive CPS that allows replicating the entire 

physical CPS context (i.e., physical asset, IPC resource, and IPC 

service states) into the virtual space and back again. This 

bidirectional twinning of the CPS context can be used by Dev 

and Ops teams for CPS monitoring, analysis, and adaptation. 

As for RQ4, we instantiated the above conceptual model and 

demonstrated the feasibility of the proposed context- and self-

aware deployment, adaptation, and A/B testing on a evaluation 

platform for distributed CPS control. From our perspective, the 

most relevant part of the demonstration is that our proposed 

DT concept can serve as a distributed knowledgebase for 

hierarchical coordinated CPS adaptation. In particular, we 

showed that complex CPS functions that span multiple AP 

levels could be deployed to the Ops space for validation without 

causing CPS interferences and downtime. From a design view, 

our results reveal that the proposed DT-enabled self-adaptive 

CPS models can be instantiated for specific real-world use 

cases, i.e., the A/B testing of services at device and system scale 

while meeting the strict OT availability, integrity, and real-time 

constraints of sub-millisecond cycle times. The demonstrated 

DS also shows that a modular design enables the DevOps-like 

closed-loop optimization of CPS service changes through 

architecture-based self-adaptation and verification at runtime.  

The proposed models come also with challenges in terms of 

implementation complexity. Compared to traditional solutions, 

they require more IPC resources in terms of processing power, 

memory usage, and communication bandwidth to implement 

their functionality. Hence, future extended evaluation activities 

include investigating detailed timing, maximum tolerable IPC 

resource usage on device, NW, and system scale, and a detailed 

adaptation behavior analysis under uncertain CPS conditions. 

6 Conclusion 

Guided by the CPS IPSS Automation Pyramid architecture and 

the IT DevOps concept, this article proposes generic technical 

design models that facilitate the implementation of adaptive 

and evolvable IPSS based on DT’s. The use case that served as a 

design objective is A/B testing of CPS IPSS service changes in 

the operation-critical CPS environment at runtime. The main 

contribution of this work is to ensure full CPS IPSS availability 

and integrity during CPS adaptation and A/B testing. This 

contribution is pivotal for transferring the DevOps concept 

known in the IT domain to the OT domain, which opens the 

door for entirely new opportunities in terms of bringing closely 

together IPSS design and adaptive operation, both from a 

technical and organizational perspective. 
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