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Abstract— Characterization of human brain material properties 

in the form of computationally feasible mathematical models is 

a complex problem; especially when the models are used in 

complicated Finite Element simulations. Various models have 

been proposed to include the tissue’s hyper-viscoelasticity, 

most of which are quite complicated and therefore only suited 

to Software-based Finite Element methods. Use of linear 

material models simplifies the problem and saves much time 

and effort, allowing the researcher to verify the results of more 

sophisticated models with lower computational cost. However, 

the preciseness of the results from such models is subject to 

special conditions. This study proposes and validates a 

Generalized Maxwell linear viscoelastic model with five 

constants to be used as an acceptable computational method to 

simulate brain’s viscoelastic behavior at low strain rates. To this 

end, an explicit numerical integration scheme is used to 

simulate the single-DOF tissue response with a Generalized 

Maxwell viscoelastic model. Using the material constants of a 

previous hyper-viscoelastic model, the results are compared 

with those obtained from a previous experiment. The 

comparison shows that the linear GM viscoelastic model is 

predicting the low-strain-rate behavior of the brain tissue with 

acceptable error. 

 

Keywords- Viscoelasticity; Finite Element; Generalized 

Maxwell, Linear Viscoelastic Model; Strain Rate 

 

 

 

1- INTRODUCTION 
 

   The head is often considered as the most critical region of the 

human body for life-threatening injuries as result of accidents. 

The cost incurred by the accidents is estimated to be 160 billion 

Euros per year in the European Union alone [1]. In a 6-year 

period, an average of 1.4 million cases of traumatic brain injury 

occurred in the United States each year, of which 20% resulted 

from motor vehicles accidents. In order to develop effective 

protective measures, a better understanding of the process of 

injury development in the brain is required. [2-5] 

    Over the past three decades, several researchers have 

investigated the mechanical properties of brain tissue in order 

to establish constitutive relationships over a wide range of 

loading conditions. In experimental methods, dynamic 

oscillatory shear tests [4,8,9] and unconfined compression tests 

[10] have been conducted more frequently. The resulting 

constitutive models have been introduced in Finite Element 

(FE) analyses to simulate the actual response of the tissue to 

external stimuli. Among these modes, most of them use hyper-

viscoelastic constitutive material assumption which, when 

combined with the complex geometry of brain parts, lead to 

complicated analyses [11]. The nonlinearity included in such 

models may lead to distorted results if the convergence problem 

is not handled. Therefore, simpler linear models such as the one 

presented here can serve as useful tools for verification of these 

models. 

    In current FE head models, brain tissue is commonly 

assumed to display hyper-viscoelastic material behavior. The 

tissue behaves like a non-linear viscoelastic solid for shear 

strains above 1%. The modelling of the tissue behavior with 

these assumptions leads to somewhat more accurate results than 

linear models. However, it maintains the big drawback of high 
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computational cost and time-consuming nature of these 

constitutive nonlinear models. [5, 6, 12]. Simpler computational 

frameworks such as the one presented herein serve as useful 

tools for engineering approximations of the resulting values of 

stress and strain fields.  

   This study seeks to investigate the extent of validity of a linear 

viscoelastic numerical model for modelling the response of the 

brain tissue to single-DOF loading-unloading cycles of shear 

strain. In order to evaluate the model, the results are compared, 

on various levels, with those of an experimental study. 

 

 

2- METHODOLOGY 

 

2-1- Derivation of Mathematical Models 
 

Generalized Maxwell Model 

     In order to derive a computational framework for solving the 

Generalized Maxwell (GM) model (figure 1), one may derive 

the equation for a single mode spring and damper in series and 

then sum over the number of modes. The effect of infinity 

spring is finally added to complete the model. 

 
 
 
 
 
 
 
 
 

Figure 1- The Generalized Maxwell (GM) model for viscoelastic materials. Ei 

and ɳi are serial spring and damping constants and E∞ is the parallel spring 

constant 

 

    Considering a single mode spring and damper in series and 

the infinity spring in parallel, the stress can be written in terms 

of strain and strain rate in the following form, 

 

 𝜎(𝑡) =  𝐸∞𝜖(𝑡) + 𝜎∗                                                     (1)                                                 

 

where 

  𝜎∗ =  𝜼
dϵ∗

dt
                                                                      (2)                                                                    

 

    Solving and integrating the equation above for 𝜖(𝑡), the 

integral equation for two consecutive steps is obtained in the 

following form, 

 

𝜎𝑛+1
∗ −  𝜎𝑛

∗ =  
−1

𝜆
∫ 𝜎∗(𝑡)𝑑𝑡 + 𝐸(𝜖𝑛+1

∗ −  𝜖𝑛
∗ )

𝑡𝑛+1

𝑡𝑛
            (3)                          

 

    Considering that the integral is from 𝑡𝑛 to 𝑡𝑛+1 ,it’s possible 

to approximate it using Implicit or Explicit method (Forward 

Euler and Backward Euler) 

Substituting, 

 

𝜎∗(𝑡) =  𝐸𝜖(𝑡) − 𝑦(𝑡)                                                     (4)         

                                                          

Where, 

 
𝑑𝑦(𝑡)

𝑑𝑡
=

−1

𝜆
𝑦(𝑡) + 

𝐸

𝜆
𝜖(𝑡)                                                   (5)                                                                     

 

    An explicit numerical method can be obtained to 

approximate the integral in the following form: 

 

  𝜎𝑛+1
∗ = 𝑒

−∆𝑡

𝜆  𝜎𝑛
∗ + 𝑒

−∆𝑡

𝜆  𝐸∆𝜖𝑛                                         (6)                                                 

 

     Now one can add the effects of all the parallel units the 

single-mode model. 𝜎𝑛
∗ is calculated for each unit and finally 

summed to obtain the total 𝜎∗.  

 

𝜎∗ =  𝜎∗
1 +  𝜎∗

2 + ⋯ + 𝜎∗
𝑛                                          (7)      

                                                   

    The total 𝜎∗ is subsequently added to the effect of infinity 

spring to yield the total stress by substituting into equation 1. In 

the above equations, n is the order of GM model denoting the 

number of parallel modes. Time constants need to be calculated 

for every parallel Maxwell unit and considered separately in the 

corresponding stress update algorithm: 

 

      𝜆𝑖 =
𝜼𝑖

𝐸𝑖
                                                                           (8) 

 

 

 

2-2-  Application of Load 

     Two load scenarios were considered as input, namely Load 

Scenario A and Load Scenario B. The load scenarios were 

chosen to replicate a previous experiment on samples from 

human head (Ref [4]) 

 

2-2-1- Load Scenario A 

     In this load scenario, triangular pulses with constant strain 

rate of 1.5 /s were applied to the viscoelastic single-dimensional 

model. The input pulses were obtained from [4] and simulated 

as triangular pulses (Fig. 2). The strain was applied as input by 

using explicit finite difference method with 600 steps and time 

constant of 1.1s. The strain rate was kept constant at the value 

of 1.5/s (Table 1). 

 

𝐸𝑖 

𝜂𝑖 

𝐸∞ 
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Figure 2- Triangular pulses (constant shear rate in loading and unloading) of 

Scenario A [4] 

   

 
Table 1- Characteristics of the Triangular pulses of Scenario A [4]   

Pulse 

number 

Max. 

Strain 

Pulse 

Duration (s) 

strain Rate 

(/s) 

1 0.05 0.06 1.50 

2 0.10 0.13 1.50 

3 0.15 0.20 1.50 

4 0.20 0.26 1.50 

5 0.30 0.40 1.50 

6 0.50 0.66 1.50 

 

 

 

2-2-2- Load Scenario B 

     In this load scenario, triangular pulses with various strain 

rates of 1 /s, 0.1 /s and 0.01 /s were applied to the viscoelastic 

single-dimensional model. Table 2 shows the characteristics of 

the input strain pulses applied to the computational model. 

 

 
Table 2- Characteristics of the Triangular pulses of Scenario B  

Pulse 

number 

Max. 

Strain 

Pulse end 

time (s) 

Strain rate 

(/s) 

1 0.1 0.2000 1 

2 0.1 2.0000 0.1 

3 0.1 20.0000 0.01 

 

 

 

3- Material constants 

   For the 5-branch GM linear viscoelastic model, 5 sets of 

material data including the instantaneous and equilibrium shear 

moduli, time constant, and viscous damping coefficient was 

obtained from Ref [4]. The input data was included in the GM 

model in the form of Prony Series (Table 3) 

 
 

Table 3- constants of the GM model obtained from curve-fitting of a hyper-

viscoelastic model on the experimental results of Ref [4] 

 

 

 

 

4- Results 

   The results of the application of nine strain pulses from two 

scenarios to the GM model are shown in figures 3 and 4. Fig. 3 

indicates the resulting stress from input strain of load scenario 

A with constant strain rate, and Fig. 4 shows the effect of 

changing the strain rate (load scenario B) 

  In all calculations, in order to reach better convergence and 

considering a recovery time as two times a full pulse, explicit 

algorithm has been used with 600 steps.  

GM 

Mode 

Number 

G 

(Modulus) 

(Pa) 

τ (time 

constant) 

(S) 

η (Viscous 

damping 

coefficient) 

Ge 

(Equilibrium 

Modulus) 

(pa) 

Mode 1 835.50 0.012 10.02 182.90 

Mode 2 231.20 0.35 80.92 182.90 

Mode 3 67.10 4.62 310.00 182.90 

Mode 4 3.610 12.13 43.68 182.90 

Mode 5 2.79 54.31 151.49 182.90 
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Figure 3 -Stress-Strain results obtained from applying the input pulses of 
Scenario A to the Generalized Maxwell Model (5 branches) 

 

 

 

 
 

Figure 4 -Stress-Strain results obtained from applying the input pulses of 

Scenario B to the Generalized Maxwell Model (5 branches)  

 

 

 

 

4- Discussion of Results 
 
       

   Nine input strain pulses were applied to a single-DOF linear 

GM viscoelastic model in two load scenarios. The resulting 

stress was calculated by using a finite difference integration 

scheme and plotted against the stress for all pulses (Fig. 3, 4). 

The input strain and material constants were obtained from 

curve-fitting of a hyper-viscoelastic model on a set of 

experimental curves from the literature [4].  

 

   The results from the application of the same load pulses in the 

referenced experiment are shown in Fig 5 and 6. As it can be 

observed, the Generalized Maxwell of order 5 shows acceptable 

qualitative agreement with those of the experiment. As it was 

predicted, the similarity of the trends is more noticeable at lower 

strain rates. The relative error at the end of the loading cycle 

(i.e. at maximum strain) for pulse 3 is 3% with respect to the 

experimental value. This can be observed by comparison of Fig. 

3 and 5. The linearity of the model leads to differences with the 

experimental results which are more pronounced at higher input 

strains and strain rates. At the strain of 0.5, the result of stress 

shows 10% deviation from the experimental results (pulse 6 

from load scenario A). In addition, the quantitative comparison 

of the results reveals the incapability of the linear model in 

prediction of the material behavior at high strain rates and high 

strains (by comparison of the stress in pulse 1 from scenario B 

and the corresponding curve in Fig. 6). At the strain rate of 0.1/s 

and strain of 0.1, the relative error of the linear model with 

respect to experiment results is 33% which is more than the one 

reported by the hyper-viscoelastic model of reference [4] 

(21%).  

 

 
Figure 5-Stress-Strain curve (Curve-fitted) obtained from applying the input 

pulses of Scenario A (constant shear rate) in the experiment of Ref [4] for two 

samples. 

 

 
Figure 6-Stress-Strain curve obtained from applying the input pulses of 

Scenario B (constant shear rate) in the experiment of Ref [4] 
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5- Conclusions 

   In this study, a linear viscoelastic model was used to assess 

the capability of linear computational models to model the 

complex behavior of brain material. 9 input strain pulses were 

replicated from a previous experiment and applied to the model 

and the resulting stress was compared with the ones reported in 

the literature. 

   It was observed that the results of our model show good 

qualitative agreement with those of the experiment. In terms of 

quantity, however, the agreement of the results is restricted to 

lower strain values and strain rates. Also, the impact of strain 

rate on the difference seems to be more noticeable than the 

absolute value of strain input. However, it seems that the 

mentioned deviation does not justify using a nonlinear hyper-

viscoelastic model in some studies instead of a linear 

viscoelastic one which is simpler and has a lower computational 

cost. It should also be noted that, in order to use the linear 

viscoelastic model, the parameters of the model must be 

obtained through direct comparison with experimental results, 

which may lead to improvements in the accuracy of the present 

model. 

     Finally, the comparison of the results reveals that the linear 

model, although not capable to fully trace the hyper-viscoelastic 

nature of the phenomena, displays a maximum relative error of 

10%, which can be justified given the lower computational cost. 

This can especially be useful in real-time simulations of 

surgical procedures, tumor growth and other applications 

involving change in brain tissue with low strain rates. The GUI 

used in this study to simulate and obtain the results can be an 

example of a useful tool for such applications (Figure 7). 

    

 
 

Figure 7- Stress-strain result of the application of pulse No. 2 from Scenario 
B to the model and visualization of the results via Matlab GUI. The GUI was 

developed based on the calculations presented in this paper to better visualize 

the results. 
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