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Abstract 

A low amount of training data for many state-of-the-art deep learning-based Face Recognition (FR) systems 

causes a marked deterioration in their performance. Although a considerable amount of research has 

addressed this issue by inventing new data augmentation techniques, using either input space 

transformations or Generative Adversarial Networks (GAN) for feature space augmentations, these 

techniques have yet to satisfy expectations. In this paper, we propose a novel method, named the Face 

Representation Augmentation (FRA) algorithm, for augmenting face datasets. To the best of our 

knowledge, FRA is the first method that shifts its focus towards manipulating the face embeddings 

generated by any face representation learning algorithm in order to generate new embeddings representing 

the same identity and facial emotion but with an altered posture. Extensive experiments conducted in this 

study convince the efficacy of our methodology and its power to provide noiseless, completely new facial 

representations to improve the training procedure of any FR algorithm. Therefore, FRA is able to help the 

recent state-of-the-art FR methods by providing more data for training FR systems. The proposed method, 

using experiments conducted on the Karolinska Directed Emotional Faces (KDEF) dataset, improves the 

identity classification accuracies by 9.52 %, 10.04 %, and 16.60 %, in comparison with the base models of 

MagFace, ArcFace, and CosFace, respectively. 
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1. Introduction 

Face images are one of the most popular biometric modalities which have been continuously utilized in 

Face Recognition (FR) systems [1]. It is used in a wide range of contexts with the aim of identity 

authentication and its applications vary from daily life and finance to military and public security [2]. In 

fact, in comparison with other biometrics, such as the fingerprint, iris, or retina which are ubiquitously used 

for authorizing individuals, FR can provide us with the most convenient way to capture visual information 

without the need for any extra activity from the subject. In recent years, FR has been one of the most 
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proactively studied areas in Computer Vision [3]. Particularly, with the advent of deep learning and 

architectures like Convolutional Neural Networks (CNNs) [4], a large number of efficient facial recognition 

methods with outstanding performance have been invented to address this challenge [5-12]. These 

successful algorithms depend heavily on the performance of neural networks which use a cascade of layers 

comprised of neurons that are able to learn different levels of abstractions and representations from the 

input data [2]. These representations are more powerful substitutions for hand-crafted features from facial 

attributes such as Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF) [13, 

14]. Their principal advantage is that they obviate the need for manually and exhaustively searching for the 

best features representing one’s face. Moreover, the process of learning representations via deep learning-

based algorithms makes the generated features surprisingly discriminative in that the inter-class diversity 

and intra-class compactness within the training data are all taken into account by the network itself [15].  

However, there are still problematic scenarios in which FR systems fail to realize the expectations. For 

instance, in real-life situations, the imagery of a person’s face has a high chance of being in a variety of 

facial expressions, occlusions, poor illumination, low resolution, etc. [16-18], and all these factors cause 

substantial degradation of the overall performance of the current FR algorithms. Thus, different approaches 

have been adopted to rectify the negative impact of such barriers in FR systems [19-21]. Some have opted 

for experimenting and devising new loss functions whose capability to better feedback to their neural 

network in the backpropagation step, enables the extracted deep features to be more discriminative and 

clearly separable [2, 6, 9, 22-26]. In addition to these works, different architectures have been implemented 

to extract feature maps which are more useful in terms of facial representations.  

Moreover, developing larger and more variant datasets has been one of the main stimuli which have been 

pushing the boundaries in recent FR systems [27]. Nevertheless, although some of these benchmark datasets 

can be found in large volumes, we often lack such a training set of images when it comes to real use cases. 

A typical case would be a situation in which the goal is to train a deep learning-based method on a private, 

in-house set of identities that have been chosen by a multimedia organization for video indexing purposes. 

The data-gathering phase can be very time and labor-consuming and sometimes even impossible, and it 

acts as an impediment in the way of achieving a tailored amount of training datasets. These have motivated 

researchers to pave the way by introducing different data augmentation techniques.  

Data augmentation refers to a set of techniques that are used to increase the number of training datasets 

without the loss of previously annotated data. The benefit of such methods is that it equips the trained model 

with more generalizability and acts as a regularizer in the case of overfitting which is one of the most 

frequent complications when dealing with a small amount of training data [28, 29]. Overall, there are two 

mainstream categories of methods for augmenting data. The first set of methods has the aim of manipulating 

the data in the input space in that they simply take the input image and apply different geometric 

transformations such as translations, cropping, vertical and horizontal flipping, rotation, etc [30]. Even 

though these methods are proven to be extremely useful in some other challenges like image classification, 

object detection, and image captioning in computer vision, in the case of FR they cannot be as helpful as 

they expected. The main reason is that in order for any FR system to capture a reliable visual representation 

of a face crop image, the content should be aligned in terms of facial landmarks. This means that any 

geometric alteration on these which conspicuously happens when one uses these classical methods, can 

perturb the overall performance of FR pipeline. These challenges have motivated the researchers to shift 

their studies’ direction toward more modern and domain-specific solutions [31-33], leading to the second 

set of methods, which are known to be Generative Adversarial Networks (GANs) [34]. These methods are 

the well-known type of generative models which are used with the objective of transforming the input data 
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in feature space with the aim of generating new augmented image data. This group of models is capable of 

adjusting the facial attributes existent in a face image such as hair style, expression, posture, skin color, etc. 

to a target style. However, in most cases, these generative models cannot create realistic outputs and these 

models deal with the high complexities of reconstructing the feature space to input space, without having 

any considerable improvement on the downstream task, which in our case, is classification on the identity 

of the samples. 

In order to address these difficulties, in this paper we propose the Face Representation Augmentation (FRA) 

algorithm. This algorithm augments the posture of a given face image in the latent space. This means that, 

given a set of embeddings representing a specific person, the proposed approach alters the embedding to 

sustain the identity-related features with a transformed pose feature. The FRA algorithm can help the 

existing facial recognition systems especially when the number of training samples is imbalanced or less 

than expected. Our main contributions in this paper are itemized in the following: 

1. A novel algorithm for facial posture augmentation inside the latent space to reduce the complexity of 

the image augmentation problem. 

2. Generating noiseless, non-duplicated embeddings which are proved to be linearly separable. 

3. Extensive experiments were conducted on the Karolinska Directed Emotional Faces (KDEF) [35] 

dataset and improved the identity classification accuracies in comparison with the base models of 

MagFace, ArcFace, and CosFace, respectively.  

The rest of the paper is organized as follows. In Section 2, we briefly review the related works on face-

specific data augmentation and representation learning. Then, in Section 4, we present the details of our 

proposed methodology. In Section 4, we demonstrate the results of our experiments in comparison with 

other related state-of-the-art approaches. Finally, the conclusion will be drawn in Section 5.  

 
 

2. Related works 

In this section, we present an overview of face-specific data augmentation techniques. These are categorized 

into two groups classical and generative-based methods in 2.1. Additionally, we review the related literature 

of FR algorithms in 2.2. 

 

2.1. Face-Specific Data Augmentation 

To begin with, five data augmentation techniques for face photos were reported by Lv et al. [29]. These 

techniques were landmark perturbation, hairdo synthesis, glasses synthesis, postures synthesis, and lighting 

synthesis. Vincent et al. [36] tried to synthesize more data by applying different types of noise such as 

Gaussian and Salt-and-pepper with the objective of training Stacked Denoising Autoencoders on more 

complicated samples. Wang et al. [37] addressed the issue of data augmentation in picture classification 

using conventional transformation techniques and GANs. They also suggested a technique for learning 

network-based augmentations that better enhance the classifier in the setting of generic photos rather than 

face images.  

Moreover, although the hair is not an intrinsic part of the human face, it interferes with facial recognition 

since it obscures the face and changes its appearance. Using DiscoGAN, which was developed to find cross-

domain relationships using unpaired data, Kim et al. altered hair color. In addition to the color, Kim et al. 

in [38], suggested changing the bang by transferring an unsupervised visual characteristic using a 

reconfigurable GAN. An online compositing technique was used in the face synthesis system proposed by 

Kemelmacher-Shlizerman et al. [39]. The system might produce a series of fresh photographs with the input 

person's identification and the questioned look using one or more photos of their face and a text query like 
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curly hair. Jiang et al., in [40], proposed Pose and expression resilient Spatial aware GAN (PSGAN). It 

starts by using Makeup Distill Network to separate the reference image's makeup into two spatially aware 

makeup matrices. After that, a module called Attentive Makeup Morphing is developed to let users describe 

how a pixel's appearance in the source picture is altered based on the reference image. In order to ease 

applications in the real-world setting, PSGAN is the first to concurrently accomplish partial, shade tunable, 

and pose/expression robust makeup transfer. In order to separate the makeup from the reference picture as 

two makeup matrices, an MDNet is also included. The flexible partial and shade adjustable transfer is made 

possible by the spatially aware makeup matrices. To learn all cosmetics attributes [41], including color, 

form, texture, and position, it comprises an enhanced color transfer branch and a new pattern transfer 

branch. They present makeup in this work as a combination of color transformation and pattern addition, 

and they create a thorough makeup transfer technique that works for both delicate and dramatic looks. They 

suggest using warped faces in the Ultraviolet (UV) space while training two network branches to eliminate 

the disagreement between input faces in terms of form, head posture, and expression. They also create a 

new architecture with two branches for color and pattern transfer. They present brand-new cosmetics 

transfer datasets with extreme fashions that were not taken into account in the earlier datasets. 

 

2.2. Representation Learning for Face Recognition  

Representation learning refers to a set of algorithms that are designed to solve a variety of challenges like 

image retrieval [42-44], the person [45, 46] and vehicle [47, 48] re-identification, landmark detection, and 

fine-grained object recognition [49, 50]. The task of face recognition in computer vision is heavily 

dependent on learning representations that have fine intra-class and large inter-class distances [51]. 

Previous works [6, 22, 25, 52, 53] have mainly adopted different, more robust loss functions with the aim 

of learning representations that satisfy the aforementioned requirements. 

In [52], a deep convolutional neural network, named FaceNet, was proposed which learns facial 

representations with the help of triplet loss. The main objective of this work is to achieve an embedding 

f(x) from an image x into a d-dimensional Euclidean space Rd. The obtained embedding is generated in a 

way that the squared distance among the embeddings from one class is small and that of the embeddings 

from different classes is large. This algorithm achieves 99.63% and 95.12% accuracy in LFW [54] and 

YouTube Faces Database [55] respectively. Liu et al. [53] have proposed a new look at the loss functions 

which are based on the Euclidean margin between the produced embeddings. For CNNs to learn 

discriminative facial characteristics with clear and innovative geometric interpretation, they suggest the A-

Softmax loss. The assumption that faces also lie on a manifold is fundamentally compatible with the learnt 

features' discriminative spread on a hypersphere manifold. In order to approximate the learning problem 

that minimal inter-class distance is greater than maximum intra-class distance, they develop lower the 

margin set between such classes. 

In [22], the authors have proposed ArcFace, a major modification of the Softmax loss to further improve 

the robustness of the learned deep features. By utilizing the arc-cosine function to calculate the angle 

between the current feature and the target weight and adding an additive angular margin to the target angle, 

the target logit can be obtained. Then, these logits are rescaled by a fixed feature norm followed by exactly 

the same steps in the Softmax loss function. Their approach has the following advantages over the others. 

(1) Directly optimizing the geodesic distance margin (2) State-of-the-art performance in several benchmark 

datasets: achieving 99.53% accuracy (3) Easiness in terms of implementation (4) Efficiency in terms of 

computational complexity. 
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In [25], the authors reformulated the Softmax loss as a cosine loss with the aim of introducing a novel loss 

function, named Large Margin Cosine Loss (LMCL). Their improvement is to further maximize the 

decision margin in the angular space by introducing and training a deep model called CosFace. In this deep 

model, LMCL guides the convolutional layers to learn features with huge cosine margins. Their results 

demonstrate that they have achieved 97.96% accuracy in face verification on the MegaFace benchmark, 

which has been a major improvement in comparison to previous works.   

Meng et al. [6] proposed a new set of losses that enable the network to learn embeddings whose magnitude 

represents the quality of the given face. By extending ArcFace [22] and introducing the MagFace loss 

function, they demonstrate that the more likely the subject is to be recognized, the bigger the magnitude of 

the generated embedding becomes. MagFace learns to generate these universal embeddings by pulling the 

easier samples within a class of identities to the class center and pushing them away from the origin. This 

makes the embeddings robust to ambiguity and the absence of high discriminative features which 

prevalently exist in unconstrained face images in real scenarios. They have achieved 99.83% verification 

accuracy in the LFW benchmark dataset. In Table 1, a comparison of these works is depicted. 

 

Table 1. Verification accuracy of MagFace, CosFace, ArcFace, and SphereFace. These models are 

evaluated on CALFW, CPLFW, AgeDB, LFW, and CFP-FP datasets. 

Method CALFW [56] CPLFW [57] AgeDB [58] LFW [54] CFP-FP [59] 

MagFace [6] 96.15 92.87 98.17 99.83 98.46 

CosFace [25] 96.18 92.18 98.17 99.78 98.26 

ArcFace [22] 95.96 92.72 98.05 9981 98.40 

SphereFace [53] 95.58 91.27 97.05 99.67 96.84 

 
Moreover, although these approaches have significant performance, directly applying GAN approaches 

appears to have a few disadvantages. Models collapse, difficulty in training and convergence problems, and 

poor image generation effect, along with the unreliable results of the generator for unconstrained input 

images, cause the generated image examples to be incapable of being utilized for industrial data 

augmentation tasks [06 ,06] . 

 

3. Proposed approach 

3.1. Overview 

This section presents the proposed FRA algorithm. As can be inferred from Figure 1, our method includes 

four steps. These are as follows: face detection and alignment, input preparation: facial landmark and 

representation extraction, pose feature extraction, and representation augmentation. Steps 1 and 2 comprise 

our data preprocessing pipeline which is explained in Section 3.2. Steps 3 and 4 represent our main 

contribution to this paper and are explained in Section 3.4. 
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Figure 1. The overall procedure of FRA. FRA is composed of four steps to generate a new representation 

vector with identity i, emotion e, and posture p, by applying a target posture p on a base image with identity 

i and emotion e. 

 

3.2. Dataset preprocessing and preparation 

Our data preprocessing step includes three main phases. These three phases are depicted in Figure 1. As is 

seen in the first phase, we feed the raw face images to the Multi-task Cascaded Convolutional Networks 

(MTCNN) algorithm [53] which is a robust face and landmark detector. MTCNN provides us with 5 

landmark points, including the center of both eyes, the tip of the nose, and the left and right corners of the 

lips, and a bounding box that perfectly encloses the face area within the image without any padding. In this 

phase, we also align the face images by feeding the acquired facial landmarks along with the face image 

itself to the method of warp affine which exists in OpenCV [62], a famous library with ready-to-use 

computer vision-related algorithms.  

In the second phase, we feed the aligned face images to MLXTEND1 so as to determine more facial 

landmarks. As is shown in Figure 1, MLXTEND outputs 68 facial key points which we use to construct 

binarized images with pixel value 0 (completely black) for the background and 1 (completely white) for 

facial landmarks. On the other hand, we need to have fixed-size embeddings for each sample within the 

dataset. These embeddings are in fact the training data for the combiner module which will be explained in 

Section 3.4. In our case, we use two of the most reliable and robust face representation learning algorithms, 

namely MagFace [6] and FaceNet [52], for obtaining embeddings for each image. MagFace’s learning 

procedure is for a universal embedding that is quality aware, meaning that the easier the sample is for the 

recognition task, the closer its feature vector becomes to the center of the class. Furthermore, FaceNet is an 

algorithm that directly learns a mapping from the samples to a compact Euclidean space and the distances 

correlate to the similarity degree of a given pair of face images. In Phase 3, the binarized images generated 

in Phase 2 are fed to the AE model in order to generate an embedding vector representing posture features. 

                                                
1http://rasbt.github.io/mlxtend/   
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Finally, in Phase 4, pose and face representation vectors are fed into the combiner module to generate an 

augmented face representation vector. 

 

3.3. Facial Landmark Restoration using Autoencoders 

Autoencoders (AE)  are a particular type of neural networks whose main functionality is to encode the input 

into a meaningfully compacted representation and decode this into the input space afterwards [63, 64]. 

Following this paradigm, in this paper, we have been inspired by  the work done by Meng et al. [65] and 

decided to use an AE-based model for encoding our input space (binarized images of landmarks explained 

in Section 3.2) into the latent space (embeddings), as shown in Figure 2. Given Si as a sample of facial 

landmarks image, the output of F(Si) is a reconstructed image S’i, where F(Si) is, 𝐵 ∗ 𝐴. After the AE 

model’s convergence, we can discard B (decoder) and take only A which has learned to encode the input 

into an optimized and meaningful latent space representation denoted by Vi. It is worth mentioning that Vi 

plays a vital role in our proposed method which is the latent representation of the posture of the face. Figure 

2 illustrates the proposed AE-based model and its architecture. 

 

 

 
Figure 2. A general architecture of an autoencoder-based model. FRA utilizes a typical convolutional 

autoencoder with a bottleneck of size 512. This bottleneck vector is used in further steps. 

 

3.4. Combining Feature Vectors and Feature Extraction using Vision Transformers 

Vision Transformers (ViT) are deep learning models whose versatility in various fields such as natural 

language processing, speech recognition and computer vision has made them a prominent choice for 

researchers [66]. In comparison with the conventional CNNs, ViT models have achieved competitive 

superior results in vision tasks like object detection [67], image recognition [68], image super-resolution 

[69], and segmentation [70, 71].   

 
At the core of ViT models, there is a mechanism of attention that has been probably one of the most 

significant concepts in the domain of deep learning. Its inspiration is the biological attributes of human 

beings in that, to recognize an object, we tend to focus on the most distinctive parts of that entity instead of 

paying attention to all parts of it as a whole [72]. In terms of deep neural networks, this can be interpreted 

as assigning importance scores for a given set of features where the higher scores are for more relevant 

features and the lower ones for the features with less saliency [73]. As can be observed from Figure 3, the 

model learns to have more focus on the parts which represent the target object in the image.  
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Figure 3. The paradigm of combining two representation vectors using ViT. The combiner takes two 

representation vectors with a size of 512 and combines them into a 32x32 matrix to be processed by a 

vision-transformer component. 

 

Moreover, transformers [74] refer to a set of neural networks which use the mechanism of attention. These 

models consist of multiple encoders and decoders whose architectures are identical to each other. In these 

models, a multi-head self-attention (MSA) mechanism is used for encoding the input, followed by decoders 

which include an extra attention layer in order to process the encoder’s output. Self-attention is a function 

denoted in Equation (1).  

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄.𝐾𝑇

√𝑑𝑘
) . 𝑉   

s.t.  𝑄 =  𝑊𝑄𝑥, 𝐾 =  𝑊𝐾𝑥, 𝑉 =  𝑊𝑉𝑥 

 

(1) 

 

where 𝑊𝑄, 𝑊𝐾, and 𝑊𝑉 are weight matrices used in linear transformations on inputs x to produce Q, K, 

and V. The attention score is then calculated by 𝑄. 𝐾𝑇 as the dot product of the query and each key, scaled 

by the dimension dk of the key K. Put x = "x1, x2, x3, ... , xn" to calculate an answer based on a collection 

of queries Q, keys K, and values V. In MSA, Q, K, and V are projected linearly and this is done for h 

consecutive times with different learned weights. Then, by applying the self-attention mechanism on each 

of the outputs in the previous step simultaneously, we obtain h outputs which are heads. Then, these heads 

are concatenated to achieve the final output. The following demonstrates these computations in 

mathematical terms.  

 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ). 𝑊𝑂  
s.t. ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄 , 𝐾𝑊𝐾 , 𝑉𝑊𝑉) 

(2) 

 

MSAs, compared with CNNs, transform feature maps with huge data-specific kernels and this makes them 

as expressive as the CNN-based architectures [75]. The key difference exists where convolutions diversify 

feature maps whereas MSAs combine them. According to [76], the Fourier analysis of feature maps 

demonstrates that convolutions boost high-frequency components whereas MSAs, on the other hand, 

attenuate them.  

Furthermore, finding elements that are more pertinent for the depiction of the altered posture is made easier 

by the multi-head attention layer. In order to do this, the scaled dot product attention gives greater weight 

to the characteristics of the input facial representation and encoded posture that is more pertinent while 
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providing less weight to the features that are less relevant [77]. The procedure chooses features from various 

input regions and aids in improving representation performance since there are several heads in the attention 

layer. 

In this paper, we have opted for using a ViT-based architecture for extracting features. As stated before, 

this policy ensures that the model is trained to attend to the most salient feature values within the identity 

and posture-related feature vectors simultaneously.  Considering E of size 𝑅𝑒 as the embedding obtained 

from a pre-trained facial representation learning algorithm and Vi of shape 𝑅𝑣 as the bottleneck vector 

generated by the autoencoder part of FRA, we concatenate and reshape the produced feature vector to make 

it of shape 𝑅(𝑒 + 𝑣)/32 × (𝑒 + 𝑣)/32.  

3.5. Generating Pose-Aware Face Embeddings 

After the ViT module in our proposed model, the output is normalized, making it into the range of 0-1, after 

which it is fed to a fully connected layer. This layer helps us produce an output of a 1-d shape which is also 

considered the embedding generated by our model.  

3.6. Multi-Task Loss Function 

In the training procedure, we utilized a Multi-part Loss Function (MLF) as the learning objective. This 

MLF comprises a Binary Cross-Entropy (BCE) loss function, which is used to train the autoencoder, so it 

can reconstruct the posed style better. Since the activation function of the last layer of our autoencoder is 

Sigmoid, it can lead to loss of saturation (plateau) [78]. This saturation could prevent gradient-based 

learning algorithms from convergence. In order to avoid this issue, it would be better to have a logarithm 

function in the objective function to undo the exponential function within the Sigmoid. This is why BCE is 

preferred, because it uses a logarithm function, unlike Mean Squared Error (MSE). 

The second part of our loss function is a type of N-pair Loss [79]. N-pair loss generalizes triplet loss [52] 

to include comparison with multiple negative samples. The objective of this function is to keep the distance 

between the anchor and positive smaller than the distance between the anchor and negative representations, 

as shown in Figure 4. 

 
 

Figure 4. Effect of the proposed loss function during the learning process. The N-pair loss allows the model 

to distinguish between pose-variant representation vectors with the same identity and emotion, as well as 

possible. 
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The proposed multi-task loss function is defined as follows, 

 
𝐿𝑡𝑜𝑡𝑎𝑙 =  − ∑

𝑁

𝑖

(𝑦𝑖 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝𝑖)  +  (1 − 𝑦𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑝𝑖) )  +  𝐿𝑡(𝑋𝑎, 𝑋𝑝, 𝑋𝑝𝑜𝑠𝑒
𝑛 ) 

+ 𝐿𝑡(𝑋𝑎, 𝑋𝑝, 𝑋𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦
𝑛 ) + 𝐿𝑡(𝑋𝑎, 𝑋𝑝, 𝑋𝑒𝑚𝑜𝑡𝑖𝑜𝑛

𝑛 ) 

(3) 

 

in which, yi and pi denote the reconstructed pose style and the original pose style, respectively, and also 

𝐿𝑡(𝑋𝑎, 𝑋𝑝, 𝑋𝑛) is defined as 
 

 
𝐿𝑡 =

1

𝑁
∑

𝑁

𝑖

𝑚𝑎𝑥 (𝑑(𝑓(𝑋𝑖
𝑎), 𝑓(𝑋𝑖

𝑝
))  − 𝑑(𝑓(𝑋𝑖

𝑎), 𝑓(𝑋𝑖
𝑛)) + 𝑚, 0) 

(4) 

 

where m is a margin applied to impose the separability between genuine and imposter pairs, and f denotes 

the proposed architecture. d is the euclidean distance applied on normalized features and it is given by 

Equation (5). 

 𝑑(𝑥𝑖  , 𝑦𝑖) = ‖𝑥𝑖 −  𝑦𝑖‖2

2
 (5) 

In Equation (6), a and p denote the anchor (generated) representation and the positive (real) representation, 

respectively. Additionally, 𝑋𝑝𝑜𝑠𝑒
𝑛 , 𝑋𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝑛 , and 𝑋𝑒𝑚𝑜𝑡𝑖𝑜𝑛
𝑛  denote the negative representation w.r.t pose, 

identity, and emotion of the anchor face, respectively. Specifically, negative pose representations have the 

same identity as the anchor, but with different poses. The same holds for negative emotion representation. 

But, for negative identity representation, the representation of another person is chosen randomly, 

regardless of what pose or emotion it has. The goal of the triplet loss is to achieve, 

 𝑑(𝑓(𝑋𝑖
𝑎), 𝑓(𝑋𝑖

𝑛)) >  𝑑(𝑓(𝑋𝑖
𝑎), 𝑓(𝑋𝑖

𝑝
)) + 𝑚 (6) 

The optimal state for each single triplet loss is achieved when 𝑑(𝑓(𝑋𝑖
𝑎), 𝑓(𝑋𝑖

𝑝
)) is equal to zero and 

𝑑(𝑓(𝑋𝑖
𝑎), 𝑓(𝑋𝑖

𝑛)) is greater than the predefined margin. 

 

4. Results and Discussion 

In this section we first introduce the benchmark dataset that we have used for evaluating our proposed 

method. Then, we elaborate the details of our implementation and introduce the metrics used in this paper. 

Finally, we demonstrate our experimental results and discussion. 

4.1. Datasets 

With the object of benchmarking our results, we have used the KDEF dataset. It is a publicly available 

dataset of 4900 face images, covering 140 unique identities. The images demonstrate face images with 

varying pose and emotion styles. Some samples of these datasets are shown in Figure 5.  
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Figure 5. A few samples of the KDEF dataset. The KDEF dataset provides face images of 140 different 

people in various postures and emotions. 

 

4.2. Implementation details 

We carried out our experiments on a machine with a Core i7-1165G7 @ 2.80GHz CPU with 64 Gigabytes 

of RAM and a GeForce RTX 2060 12 GB GPU. All models were implemented and trained using the Pytorch 

framework. Table 2 shows the hyperparameter setting. 

 

Table 2. Details of the training procedure and the utilized FRLs. The hyperparameter settings are shown.  

FRL arch. # epochs Init. learning rate Dropout 

rate 

Triplet 

margin 

ViT 

Embedding dim FC dim # Heads # Layers Patch 

size 

MagFace 255 0.001 0.4 10.0  

 

256 

 

 

256 

 

 

4 

 

 

4 

 

 

8 

ArcFace 320 0.001 0.4 10.0 

CosFace 157 0.001 0.05 10.0 
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Furthermore, with the object of fairly evaluating the proposed FRA, we divided KDEF datasets based 

on identities with the following distributions: 

● We randomly selected all samples from 99 identities which nearly comprise 70.7 % of all identities 

in KDEF as our training data. 

● We randomly selected all samples from 11 identities which nearly comprise 7.8 % of all identities 

in KDEF as our validation data. 

● We randomly selected all samples from 30 identities which nearly comprise 21.5 % of all identities 

in KDEF as our testing data. 
 

4.3. Experimental Results 

This section details our comprehensive experimental results. Table 3 shows the achieved accuracy 

of the Support Vector Machine (SVM) [80] classifier on the embeddings generated in three 

different experiments. These experiments are: 

 

(1) Pre-augmentation accuracy: In this experiment, the training happens on the embeddings extracted 

using three different FRLs, namely MagFace, ArcFace, and CosFace, and the testing accuracy is 

achieved on the testing partition of these embeddings (Train/Test split ratio is set 80/20). In this 

experiment, we used no augmentation technique at all and this is done to find a baseline for the quality 

of the original data in the chosen benchmark dataset. 

(2) Generated embeddings’ accuracy: In this experiment, we first augmented the original embeddings 

to obtain the transformed embeddings. Then, we trained the SVM on the original data and tested its 

performance on the generated embeddings by the proposed algorithm. This is done to demonstrate 

how much the proposed model is able to sustain the identity, posture, and emotion-related features 

without any degradation.  

(3) Post-augmentation accuracy: In this experiment, we have augmented the embeddings of the 

training split using FRA, where the test split is the same as (1). Then, we trained the SVM classifier 

on the training part and tested it on the testing one. 

 
Table3. Evaluation results of FRA. Pre-augmentation and post-augmentation accuracies show the 

effectiveness of FRA. Generated embeddings’ accuracy denotes the sustainability of FRA. 

FRL Target (1) Pre-

augmentation

Accuracy (%) 

(2) Generated 

embeddings’ 

Accuracy 

(%)   

(3) Post-

augmentation 

Accuracy (%) 

 

 

MagFace 

Posture 82.38 98.12 96.66 

Identity 86.19 93.61 95.71 

Emotion 44.76 92.43 99.04 

 

 

Posture 89.12 99.3 97.9 
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ArcFace  Identity 86.61 91.6 96.65 

Emotion 53.55 92.98 100 

 

 

CosFace 

Posture 99.12 99.91 99.12 

Identity 79.91 88.11 96.50 

Emotion 54.14 87.61 97.37 

 
Based on Table 3, it is observed that our proposed algorithm improves the classification accuracy, not only 

identity-wise but also in terms of emotion and posture. For instance, SVM outputs 86.19% accuracy on the 

MagFace embeddings but after the augmentation, this score goes up to 95.71% in Post-augmentation. For 

the same data, the generated embeddings are much more representative which improves the classification 

accuracy on the identity of the SVM outputs by 93.61%. This enhancement can also be validated for 

ArcFace and CosFace since our algorithm increases the accuracy in all three experiments. In addition, FRA 

can improve the accuracy of SVM embeddings remarkably. In addition to improving the classification 

accuracy with respect to the identities of the embeddings, FRA improves that pose and emotion-wise. Based 

on Table 5, the accuracy of the SVM classifier is increased from 86.19% for MagFace embeddings to 

95.71% after augmentation. This improvement for ArcFace and Cosface is from 86.61% to 96.65% and 

from 79.91% to 97.37%, respectively. 

Furthermore, our generated embeddings should ensure the fact that they are linearly separable. This means 

that the embeddings can be classified using a linear classifier such as SVM with a linear kernel. In our 

experiments we used an SVM classifier with a linear kernel and based on Table 5, we can deduce that FRA 

is able to improve the accuracy in Phase 2 and Phase 3 by a large margin, effectively enhancing the 

performance of SVM with a linear kernel. 

Moreover, in order to show the independence of FRA from any FR algorithms, we adopted three such 

approaches, namely MagFace, ArcFace, and CosFace. Based on Table 5, after augmenting the embeddings 

generated by each of these algorithms, the classification accuracy of the SVM classifier is increased 

significantly and this proves the fact that FRA is not dependent on any specific FR algorithm as its 

requirements.  

In addition, for our algorithms’ performance to be verified thoroughly, the reconstructed binary images 

which are created by the AE part of the proposed approach are presented. These images are illustrated in 

Figure 6, showing the original image, and the AE’s output when dealing with MagFace embeddings, 

ArcFace embeddings, and CosFace embeddings. Also, the training and validation loss in the training 

procedure of our proposed pipeline is shown in Figure 7.  
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Original landmarks AE-generated landmarks 

for Magface FRL 

AE-generated landmarks 

for Arcface FRL 

AE-generated landmarks 

for Cosface FRL 

Figure 6. Some instances of reconstructed binarized facial landmark images. These reconstructed images 

denote how good the AE is performing for each FRL model. The CosFace model reconstructs the most 

landmarks more precisely. 
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Total Loss Magface BCE Loss Magface Npair Loss Magface 

   

Total Loss Arcface BCE Loss Arcface Npair Loss Arcface 

   

Total Loss Cosface BCE Loss Cosface Npair Loss Cosface 

Figure 7. Total loss, BCE loss and Npair loss curves achieved by various FRL methods. 

 
 

The curves of Precision-Recall (PRC), Receiver Operating Characteristic (ROC), and confusion matrices 

of all experiments for MagFace, ArcFace, and CosFace are shown in Figures 8-16. 
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a) Pre-augmentation PRC (pose) b) Pre-augmentation PRC (id) c) Pre-augmentation PRC 

(emotion) 

   

d) Post-augmentation PRC 

(pose) 

e) Post-augmentation PRC (id) f) Post-augmentation PRC 

(emotion) 

Figure 8. PRC curves for MagFace FRL. As the curves indicate, post-augmentation PRC curves (d, e, and f) have 

significant improvements in comparison to pre-augmentation PRC curves (a, b, and c) for pose, identity, and emotion, 

respectively. 
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a) Pre-augmentation ROC (pose) b) Pre-augmentation ROC (id) c) Pre-augmentation ROC 

(emotion) 

   

d) Post-augmentation ROC 

(pose) 

e) Post-augmentation ROC (id) f) Post-augmentation ROC 

(emotion) 

Figure 9. ROC curves for MagFace FRL. As the curves indicate, post-augmentation ROC curves (d, e, and f) have 

significant improvements in comparison to pre-augmentation ROC curves (a, b, and c) for pose, identity, and emotion, 

respectively. 
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a) Pre-augmentation Confusion (pose) b) Pre-augmentation Confusion (id) c) Pre-augmentation Confusion 

(emotion) 

   

d) Post-augmentation Confusion (pose) e) Post-augmentation Confusion (id) f) Post-augmentation Confusion 

(emotion) 

Figure 10. Confusion matrices for MagFace FRL. As the confusion matrices indicate, post-augmentation matrices (d, 

e, and f) have significant improvements in comparison to pre-augmentation matrices (a, b, and c) for pose, identity, 

and emotion, respectively. 
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a) Pre-augmentation PRC (pose) b) Pre-augmentation PRC (id) c) Pre-augmentation PRC 

(emotion) 

   

d) Post-augmentation PRC 

(pose) 

e) Post-augmentation PRC (id) f) Post-augmentation PRC 

(emotion) 

Figure 11. PRC curves for ArcFace FRL. As the curves indicate, post-augmentation PRC curves (d, e, and f) have 

significant improvements in comparison to pre-augmentation PRC curves (a, b, and c) for pose, identity, and emotion, 

respectively. 
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a) Pre-augmentation ROC (pose) b) Pre-augmentation ROC (id) c) Pre-augmentation ROC 

(emotion) 

   

d) Post-augmentation ROC 

(pose) 

e) Post-augmentation ROC (id) f) Post-augmentation ROC 

(emotion) 

Figure 12. ROC curves for ArcFace FRL. As the curves indicate, post-augmentation ROC curves (d, e, and f) have 

significant improvements in comparison to pre-augmentation ROC curves (a, b, and c) for pose, identity, and emotion, 

respectively. 
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a) Pre-augmentation Confusion 

(pose) 

b) Pre-augmentation Confusion 

(id) 

c) Pre-augmentation Confusion 

(emotion) 

   

d) Post-augmentation Confusion 

(pose) 

e) Post-augmentation Confusion 

(id) 

f) Post-augmentation Confusion 

(emotion) 

Figure 13. Confusion matrices for ArcFace FRL. As the confusion matrices indicate, post-augmentation matrices (d, 

e, and f) have significant improvements in comparison to pre-augmentation matrices (a, b, and c) for pose, identity, 

and emotion, respectively. 
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a) Pre-augmentation PRC (pose) b) Pre-augmentation PRC (id) c) Pre-augmentation PRC 

(emotion) 

   

d) Post-augmentation PRC 

(pose) 

e) Post-augmentation PRC (id) f) Post-augmentation PRC 

(emotion) 

Figure 14. PRC curves for CosFace FRL. As the curves indicate, post-augmentation PRC curves (d, e, and f) have 

significant improvements in comparison to pre-augmentation PRC curves (a, b, and c) for pose, identity, and emotion, 

respectively. 
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a) Pre-augmentation ROC (pose) b) Pre-augmentation ROC (id) c) Pre-augmentation ROC 

(emotion) 

   

d) Post-augmentation ROC (pose) e) Post-augmentation ROC (id) f) Post-augmentation ROC (emotion) 

Figure 15. ROC curves for CosFace FRL. As the curves indicate, post-augmentation ROC curves (d, e, and f) have 

significant improvements in comparison to pre-augmentation ROC curves (a, b, and c) for pose, identity, and emotion, 

respectively. 
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a) Pre-augmentation Confusion 

(pose) 

b) Pre-augmentation Confusion 

(id) 

c) Pre-augmentation Confusion 

(emotion) 

   

d) Post-augmentation Confusion 

(pose) 

e) Post-augmentation Confusion 

(id) 

f) Post-augmentation Confusion 

(emotion) 

Figure 16. Confusion matrices for CosFace FRL. As the confusion matrices indicate, post-augmentation matrices (d, 

e, and f) have significant improvements in comparison to pre-augmentation matrices (a, b, and c) for the pose, identity, 

and emotion, respectively. 

 
 

4.4. Discussion 

FR has long been a popular field of study among specialists and academics in the field of biometric 

recognition and it has the advantages of being non-contact, amiable, and simple to accept. Although 

remarkable performance has been shown by some state-of-the-art approaches presented in the literature, in 

real-world scenarios, there still exists the demand to improve such algorithms. For better handling such 

uncontrolled contexts especially when we face a lack of data, DA techniques are introduced to increase the 

number of training samples by applying different manipulations. Classical techniques for image 

transformations such as rotation, skewing, flipping, blurring, etc., and also GAN-based ones which utilize 

deep generative models and disentangled features to create more realistically transformed face images have 

well been studied for DA in the domain of FR. However, these techniques have their drawbacks. Classical 

techniques mostly manipulate face images in a way that distorts their alignment causing FR algorithms’ 

performance when generating distinct representative embeddings dramatically decrease. To prove this, we 

have experimented with four different transformations, namely, horizontal flip, skewing, blurring, and 

notifying. We augmented samples in the KDEF dataset and increased the training dataset size to be 4 times 

more than the original dataset and used different FR algorithms for generating embeddings. Then we 
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classified the embeddings using SVM with respect to their identities. Table 6 details the results achieved 

by this experiment.  
  

Table 4. Evaluation of MagFace, ArcFace, and CosFace using traditional augmentation techniques on the 

KDEF dataset. Post-augmentation accuracy scores achieved denote the ineffectiveness of these techniques 

for FR tasks. 

 

FR Algorithm 

Accuracy Score 

Pre-augmentation Post-augmentation 

MagFace 20.49% 18.54% 

ArcFace 20.12% 17.01% 

CosFace 18.19% 11.33% 

 

Table 4 shows that augmenting the face images using the classical approaches does not result in any 

improvement and they, in fact, degrade the quality of embeddings. For instance, for the MagFace algorithm, 

the accuracy obtained by SVM is decreased by 2% after applying DA. 

Moreover, we conducted another experiment using three state-of-the-art generative-based algorithms 

namely, CPM [41], AttGAN [81], and PSGAN [40]. Following the previous experiments, we augmented 

the face images and obtained the classification accuracy before and after augmentation. Table 7 shows the 

results achieved by this experiment. 

 

Table 5. Evaluation of augmentation techniques using GANs on the KDEF dataset. In the best case, the 

post-augmentation accuracy has increased a little and in some cases, it has caused a degradation in accuracy. 

 

Algorithm 

Accuracy Score 

Pre-augmentation Post-augmentation 

CPM [40] 20.49 % 17.82 % 

AttGAN 20.49 % 26.70 % 

PSGAN [39] 20.49 % 23.40 % 

 
Based on Table 5, it can be claimed that these generative models do not contribute to classification accuracy 

improvement. Therefore, in order to address this issue, in this paper, we propose a new algorithm, named 

FRA, which effectively augments the training data for FR algorithms. FRA functions with original 

embeddings and manipulates them in a way to be representative of the same identity of the embedding and 

also a differed postural information existent in these representational embeddings. Results achieved by our 

extensive experiments indicate the efficacy of FRA in augmenting samples in the FR domain. 
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5. Conclusion 

Since data scarcity is a common problem in deep learning-based solutions, it can be very challenging to 

build up FR systems that are robust enough to recognize face images with extreme diversity. In this paper, 

we proposed a novel method that augments the face data in latent space. The proposed method utilizes two 

major components, one of which is an autoencoder and the other is a ViT-based model. The former is used 

to encode the binarized input images consisting of sparse facial landmarks into a latent space. The latter is 

used for extracting features from the combined embeddings coming from a pre-trained FRL algorithm and 

the autoencoder part of our model. Lastly, the output of the proposed model is an embedding representing 

the main identity with the same emotion but with a different posture. This way, we managed to improve the 

classification accuracy by 9.52, 10.04, and 16.60, in comparison with the based models of MagFace, 

ArcFace, and CosFace, respectively. 
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