
EasyChair Preprint

№ 829

A New Machine Learning Approach for Anomaly

Detection Using Metadata for Model Training

Alexander Prosak, Amitava Gangopadhyay and Hemant Garg

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 15, 2019

A New Machine Learning Approach for Anomaly

Detection Using Metadata for Model Training

Alexander Prosak

Innovation Labs

SWIFT, Inc.

Manassas, VA 20110
alexander.prosak@swift.com

Amitava Gangopadhyay

Innovation Labs

SWIFT, Inc.

Manassas, VA 20110
amitava.gangopadhyay@swift.com

Hemant Garg

Innovation Labs

SWIFT, Inc.

Manassas, VA 20110
hemant.garg@swift.com

Abstract— We report a new approach to train machine

learning (ML) models for binary classification in order to detect

anomalies in application log records. Contrary to the common use

of actual values of different log fields, we used metadata of the log

records (“log schema”) to train and test our ML models. Our

objective was to use ML models to automatically detect anomalous

log records that may carry sensitive or restricted information and

thus prevent their inadvertent transfer (“leakage”) from the source

to destination environments. In addition to all the controls and

measures currently in place to prevent such data leakage, our ML

model approach provides an additional layer of data security to

further reduce the possibility of potential data leaks.

Several ML models (decision tree (DT), random forest (RF) and

Gradient Boosted Tree (GBT)) were trained using a combination of

real (class: “normal”) and synthetic (class: “suspicious”) metadata

for approximately five million log records. The metadata for

“normal” records were extracted from the schema of real historical

log records that do not contain “sensitive” or “restricted”

information. The metadata for likely “suspicious” records were

simulated via artificially injecting structural violations that are not

observed in the known “normal” log records. The final prediction

(“normal” or “suspicious”) for each new record was based upon

the use of a voting classifier. The three ML models (DT, RF and

GBT) in our solution all individually yield high average accuracy

in predictions (1.0, 0.99 and 1.0, respectively) over multiple

experimental runs. Accordingly, the voting classifier consistently

yields highly accurate predictions (1). Combined, our results

suggest that the use of a combination of real and synthetic

metadata derived from log schema and a voting classifier can be

successfully applied to build a robust ML model solution for

anomaly detection in log records.

Keywords—anomaly detection, machine learning, decision

tree, random forest, gradient boosted tree.

I. INTRODUCTION

Anomaly or outlier detection involves identification of one
or more rare, unexpected or suspicious items, events or
observations [1-3]. Some common anomaly detection use
cases in the industry include abnormal traffic pattern detection
in financial transactions, fraud detection in insurance claims,
prevention of network intrusion, and monitoring of unusual
system or user behavior. Traditionally, different statistical
analytical models have been used for the purpose of anomaly

detection in large datasets [3, 4]. The statistical methods
usually involve computations of various statistical parameters
of representative sample data (e.g., moving average, standard
deviation), followed by formulation of rules based upon their
computed values in known “normal” sample data. New
samples that deviate from the defined “normal” patterns are
usually identified as potential anomalies or outliers [4].

More recently, with the advent of “big data”, it is now
recognized that the use of machine learning (ML) models, in
conjunction with dynamic statistical analyses, can provide
more suitable real-time solution to most anomaly detection
problems, particularly in cases where the distribution patterns
of “normal” data in high-velocity massive datasets change
frequently or evolve dynamically over time [5-9]. The ML
modeling approach typically involves data preprocessing,
training and testing of models, and finally detecting anomalies
in new and commonly live streaming data using previously
trained ML models.

The detection of sensitive data as “anomalous” and
prevention of their unintended transfer from a secure source
environment to a non-secure destination environment is
usually called “DLP” (“Data Loss or Leak Prevention”) [10,
11]. In this specific study, our objective was to detect leakage
of sensitive log data during their transfer from the source
environment (secure zone) to its destination (non-secure zone)
environment (Fig. 1). The data from various application logs
in the source data lake may contain sensitive information
related to specific details on financial transactions. While it is
necessary to move data from their source to the destination
data lake, particularly for the purpose of log analytics and
system monitoring, it is also critically important to prevent
any accidental leakage of data in this process.

Fig. 1 The data sources and sinks for the data lakes in the secure zone
and non-secure zone environments

mailto:str8ht@virginia.edu

Here we report the results of our new approach to train
multiple ML models using a training dataset that was prepared
via extracting the schema of known historical “normal” log
records. The training dataset also included synthetic records
with artificially injected schema violations labeled as
“suspicious” records. The ML models in our approach
collectively yield final predictions based upon simple majority
voting on new records as either “normal” or “suspicious”. We
demonstrate that our approach of using a combination of log
metadata and voting classifier consistently yield accurate
predictions.

II. METHODOLODIES

 In Fig. 2, we show a schematic to outline the complete
workflow for data preprocessing, and ML model training,
testing and prediction. Here is a brief description of each of
these stages:

Fig. 2 The ML workflow for data leak prevention

A. Data Preprocessing

In typical ML modeling, actual values of individual
features are used in training datasets as part of data
preprocessing. In our case, we have, however, used the
schema (metadata) of log records in order to train and test our
ML models. As such, our sample data were comprised of
metadata extracted from known “normal” log records
available in the data lake in the non-secure source
environment. The raw log records extracted from the non-
secure environment closely resemble the source log data in the
secure zone environment, and, accordingly, our sample data
are representative of the log records that our ML models are
likely to ingest upon deployment in the secure zone
environment.

Table 1 Representative sample data for the ML models*

(*NOF: No. of fields; FL: field length; Num: numerical; Alph: alpha-
betic; AlphaNum: alphanumeric; En: encrypted; Unen: unencryptted;
Entpy: entropy)

First, the metadata of approximately four million historical
log records were extracted from their immediate storage in
HBase. These pipe-delimited raw log records were parsed via
a custom-built parser to extract the individual fields of the log
records (Fig. 2). Each field in a record was further broken
down into multiple sub-fields based upon its schema elements
(e.g., field length, alphabetic, numeric, special character; also
see Table 1). For the field type schema element, we used a
binary indicator to populate values for its data type fields (0
for no and 1 for yes). For example, if a given field in the log is
of numeric data type for a specific record (e.g., “Field
Length”; see Table 1), the value for that feature was populated
with 1. If the value of the same feature is non-numeric for a
different log record, the value for that record is populated with
0. This process was repeated for each feature and for each
record in the training dataset. Further, Shannon entropy
(discussed later; Table 1) was computed for each feature based
upon its unencrypted value and also encrypted values with
respect to simple, hexadecimal and base64 encryption
methods. Finally, the sign of each field value in the log
(positive or negative) was populated in the “Sign” field of the
feature matrix. Finally, if a given log record had less than
maximum number of features for the entire dataset, the
missing feature values were padded with 0’s in the sample
metadata matrix. Combined, our feature matrix had a total of
10 separate fields (“sub-features”) that describe the metadata
for a single feature. These records were used as “normal”
samples (class 0) in our sample dataset.

In the absence of known “suspicious” samples in the
source log, we programmatically created synthetic (class 1)
samples. This was done via artificially injecting records with
structural violations that are not observed in “normal”
samples. First, a custom program was used to create a
“baseline” for all positive records for each combination of
primary schema elements in the historical dataset. The
baseline creation is important for our dataset because it
ensures that all variabilities within a single field for a
“normal” sample metadata are considered across all records
prior to generation of synthetic suspicious samples. This, in
turn, ensures that synthetic suspicious samples are indeed
different from any of the existing normal samples in the log
records. We used approximately four million class 0 and one
million class 1 records for our sample data.

For each sample, a random unique identifier (UUID) was
assigned and the target variable (class 0 or 1) was labeled.
Further, the values of three primary schema elements repre-
sentting categorical fields (Application name, log type and

flow type) were converted to numerical values using the
StringIndexer() Spark ML library function [12]. This function
is similar to a hashing function that parses over each

categorical feature column and assigns a numerical value to
each categorical value. Next, all records (four million class 0
and one million class 1) were mixed and reshuffled to yield
the final sample data that were used by our ML model training
program and subsequently for model testing. We used an
80/20 split out of a total of approximately five million samples
for our model training and testing.

B. ML Model Training

We used three different ML models for our solutions:
Decision Tree (DT) [13, 14]; Random Forest (RF) [15, 16];
and Gradient Boosted Tree (GBT) classifier [17-19]. Further,
we used a Simple Majority Voting Classifier to yield the final
predictions for each new test sample.

1) Decision Tree (DT)

A decision tree is a structure that resembles an inverted
tree with its root at the top and branches with nodes, arcs, and
finally ending with leaves at the bottom [13, 14]. Nodes are
assigned to feature attributes, whereas the arcs that emerge out
of the nodes are assigned to the features in the dataset. The
leaves of the tree are assigned to one of the target classes (0 or
1). The partitioning of sample data continues recursively until
each subset ends up with a single leaf representing a single
class. As a result, the “path” of nodes links all the relevant
features in their decreasing order of importance from the top
to the bottom of the tree and classify the sample data into their
respective target classes. As noted, in our specific use case,
only two classes were used (class 1 for “suspicious” and class
0 for “normal” samples). Thus, a complete partitioning of
sample dataset via DT algorithm resulted in either 0 or 1 (and
not both) as class values in the leaves.

2) Random Forest (RF)

 The RF algorithm uses labeled training data to create
a collection (“ensemble”) of Decision Trees (hence called
“forest”) and merge them together to yield potentially more
consistent predictions than expected from a single individual
tree [15, 16]. Each tree was trained using a defined percentage
of randomly selected subset from the original training dataset
(66% with replacements). We used an ensemble of X trees in
our RF model. The final prediction of the model (class 0 or
1) was based upon the built-in aggregation logic applied on
the collection of predictions from each of the X trees
constructed beforehand. The RF model usually tends to reduce
the variance in predictions via the use of more trees.

3) Gradient-Boosted Tree (GBT)

Similar to RF, the GBT model also uses ensembles of
decision trees. In contrast to the RF model which builds fully-
grown trees, the GBT model, however, iteratively builds
shallower (and hence weaker) trees. The GBT model uses the
aggregation of predictions from these multiple shallow trees in
order to make final predictions. Unlike RF, where reducing
variance is the primary objective, the GBT model tends to
reduce the bias in final predictions by using more trees [17-
19].

C. ML Model Testing

 In order to leverage the strengths of each of the three
different models (DT, RF and GBT) we implemented a simple
majority voting classifier to produce a single final prediction
based upon the individual prediction from each model
(described above). Each log record is scored by the three
models, and thus yielding three predictions. These predictions
(1’s or 0’s) were persisted in a SQL table for each new log
record identified by their unique ID (UUID). The voting
algorithm joins each of the three output tables corresponding
to each model, and creates a new table with the predictions of
each model in separate columns. The final voting score is
calculated as the average of each row and rounded to the
nearest integer or zero. For example, if the predictions for a
single row are 0, 1, and 1, the rounded average for those
predictions would be 1, essentially taking a majority vote (a
tie results in 1 as the output). The voting algorithm uses model
inputs dynamically, so new models can be added and removed
without necessitating changes in the voting classifier.

Our ML model training program trained each model with
the training subset and saved it as a PMML file in the HDFS.
The trained ML models were tested via using a separate
testing program. The testing program loaded the feature
matrix of the test data that was prepared during the initial data
preprocessing stage prior to model training (section II A).
Next, the testing program loaded each of the three saved ML
models from HDFS. These saved models were used to make
predictions based upon the test data. The voting classifier
subsequently made the final prediction (class 0 or 1) on each
record. The test results were saved in a file in the HDFS for
evaluation on model performance.

In accordance with confidentiality requirement, the details
of scoring program and the source data used for the program
cannot be reported here. Suffice to note that we have created a
separate ML model scoring program where the feature matrix
for new streaming log data will be ingested and the scoring
program will make predictions in real time. This scoring
program is similar to the testing program in all aspects except
for its real-time data ingestion capability. The scoring
program is capable of ingesting streaming data via use of
Spark structured streaming and make predictions in real time.

D. ML Solution Implementation

As noted, the ML models were built using Spark
ML/MLLib libraries [12], and were trained and tested using
source-like data saved in the HDFS in a 6-node Spark cluster.
The data pipeline and saved models were deployed in the
source environment. A custom-built script is run to fetch
sample data from the HBase, prepare a CSV file and save it
locally in the cluster. A shell script was created that is capable
of kick-starting the jobs of data preprocessing, model training
and finally model testing. Once the mode test performance is
evaluated to be satisfactory, the scoring program is run via a
script in order to make real time predictions. In source
environment, the periodic evaluations of model performances
and required retraining of models are supported as part of ML
model life cycle.

III. RESULTS

As noted in section 2, the performance of each model was

evaluated via a testing program using approximately one
million test data that comprised a 20% split of the original five
million samples. The total training time for the three ML
models was estimated to be approximately 2 hours and 30 mins
using about 4 million training samples. As expected, the
elapsed time for ML model testing, on the other hand, was
much smaller (less than an hour). The test results and
performance metrics for each model are shown in Table 2.

Table 2: Performance metrics* for the ML models and the voting

classifier

Models TP TN FP FN Accu. Prec. Rec. F1 AUC

DT 799163 151948 0 0 1.0 1.0 1.0 1.0 1.0

RF 799130 151632 33 316 0.99 1.0 1.0 0.999 0.999

GBT 799163 151948 0 0 1.0 1.0 1.0 1.0 1.0

Voting 799163 151948 0 0 1.0 1.0 1.0 1.0 1.0

(*TP/TN: True Positive/Negative; FP/FN: False Positive/ Negative; Accu.:
Accuracy; Prec.: Precision; Rec.: Recall; F1: F1 Score; AUC: Area Under the
ROC Curve)

IV. DISCUSSIONS

Three features in our historical log dataset (Application

name, Flow type and Log type) mainly control the variability
in the log schema, and are called “primary schema elements”
here. As such, the metadata for a given combination of these
primary schema elements vary only to limited extents across
all positive log records. Conversely, two log records with
different combination of primary predictors may have vastly
different metadata.

As noted, our current modeled solution uses DT, RF and
GBT models. However, we initially experimented with
additional binary classification models (e.g., Naïve Bayes
[21], Support Vector Machine [22]) using the same sample
data. Our experimental results consistently showed that the
use of DT, RF and GBT models followed by a majority voting
classifier yielded the most consistent and highly accurate
results (Table 2). Accordingly, here we limit our discussion to
the latter three models.

The DT model uses a “greedy algorithm” that recursively
partitions the training data into one of our binary classes (class
0 or 1) [23]. Each partition is greedily selected based upon the
best split from a set of possible splits. The split that maximizes
the “information gain” at a given node in the tree is identified
as the best split. Further, the node impurity provides a measure
of homogeneity of the labels at the node. The node impurity is
usually determined via one of two popular attribute selection
methods, “gini index” or entropy. Although we evaluated both
methods in our current implementation, the gini index method
seems to have yielded the most consistently accurate results
for our sample dataset. This is expected because gini index is
more suitable where samples are split into larger partitions and
into smaller number of classes (only two classes in our case).

While DT models consistently yields accurate results over
multiple runs in our testing, use of DT model alone can
impose certain limitations [24]. For example, the DT
algorithm trains only one single decision tree in modeling.
Also, DT structure can be somewhat unstable because it
depends heavily on the feature values in each node of the tree.
As a result, the DT model can have a large impact on the
overall structure of the tree due to small changes in the
features values in the training dataset. Further, DT models are
also prone to overfitting on the training data. For these
reasons, we have used two additional “ensemble” methods
(“bagging” and “boosting”) in our modeling in order to build a
more robust solution. The two ensemble models we have used
for “bagging” and “boosting” are a random forest (RF) model,
and a gradient-boosted tree (GBT) model, respectively.

The RF and GBT models attempt to address the issue of
overfitting observed in the DT model via training multiple
decision trees in parallel. In our RF model, we have used a
66% subset of training data with replacement in order to build
an ensemble of X separate trees [25]. The use of more trees
helps to improve the model performance in two divergent
ways in RF and GBT models. Notably, the RF model reduces
the variance in predictions by using more trees, whereas more
trees in the GBT model tend to reduce the bias observed in a
single tree.

Both RF and GBT models, however, have their strengths
and weaknesses [26]. For example, GBTs train one tree at a
time, whereas the RF models train multiple trees in parallel.
As a result, GBT models can take longer to train than RF
models using the same training data. Note that the GBT
model, however, can use shallower trees than in RF models in
order to reduce the training time. Further, RF models are
usually easier to tune because model performance improves
monotonically with addition of progressively larger number of
trees. The performances of GBT models, on the other hand,
can degrade if the number of trees continues to grow beyond
its optimum number. The two algorithms, when used in
combination via voting, thus leverage the strengths of both
models. This is consistent with our results that RF model
alone make small proportion, yet significant number of false
positive (FP) and false negative (FN) predictions (33 and 316,
respectively; see Table 2), whereas the voting classifier
combines the results of all three models (including GBT) and
makes 100% accurate predictions based upon our test data.

The DT and GBT models consistently yield accurate
predictions over multiple runs (accuracy = 100%; see Table
2). Similarly, the accuracy in predictions from the RF model is
also impressively high (> 99%). Such high accuracy in
prediction from individual models in some cases may indicate
possible “overfitting” of training samples. The issue of
overfitting can be identified via comparative evaluation of
model performance during training and testing. For example,
if a highly complex ML model is used in training, it can result
in high training accuracy, yet the same model is likely to fail
to “generalize” on new samples. Each of our three ML
models, on the other hand, yields highly accurate predictions
on a large subset of testing samples (~ one million that were
not used during model training). This suggests that our two

Fig. 3 Chart of the relative importance of 10 best features in the training
dataset for the DT model. These 10 features collectively account for
~51% of the cumulative feature importance.

target classes (class 0 and 1) are linearly separable in the
feature space of our sample dataset. This is consistent with our
observation that some of the features with highest importance
(e.g., Shannon entropy values) are distinct between the two
classes. As noted, each field in the log record was broken
down to 10 separate sub-features in our dataset (section II A).
Also note in Fig 3, that the 10 features that together contribute
to more than 50% of feature importance in our DT model are
not the 10 “sub-features” of a single feature. Instead, the 10
important features include seven distinct features from the
dataset (ranging from feature number 6 through 67). This
suggests that the DT model predictions are not heavily biased
based on one or two particular features. Further, except for
features 6 and 7, the other features carry somewhat equal
importance (~ 2%: see Fig 3). Combined, these results suggest
that multiple distinctive features in the dataset allow the DT
model to separate the two target classes (0 and 1) on the
feature space with minimal or no overlap.

The RF model yields some incorrect predictions (FP = 33
and FN = 316; Table 2) that constitute a very small fractions
of the total predictions (< 0.01%). Although such a low
percentage of incorrect prediction is acceptable in most use
cases, we chose to build a more robust solution for our use
case. This is because the log records misclassified as
“suspicious” (false positive (FP)) are otherwise candidates for
blocking from the source to destination environment.
Conversely, the 316 false negative (FN) predictions represent
records that are actually suspicious, yet the RF model failed to
classify them correctly. As such, the data leakage of these
records from the source to destination environments cannot be
prevented, and it can pose a data security risk.

Although both false positive and false negative predictions
are undesirable, false negative predictions, as discussed above,
pose greater risk of data leakage in our use case. Accordingly,
one of the acceptance criteria for our ML models was to
achieve minimal or no false negative predictions. To this end,
we have leveraged multiple ML models (DT, RF and GBT),
rather than relying solely on one single model. Our results
suggest that the use of voting classifier to aggregate the
predictions from these three individual models and make final

prediction based on majority voting yield consistently highly
accurate (100%) predictions.

V. CONCLUSIONS

In this study, we have demonstrated the effectiveness of a
new approach of using log metadata to train machine learning
(ML) models for binary classification in detecting suspicious
records that may carry sensitive or restricted information. We
have used a combination of real (“normal”) and synthetic
(“suspicious”) metadata for approximately five million log
records and trained three ML models (decision tree (DT),
random forest (RF) and Gradient Boosted Tree (GBT)). These
three ML models in our solution all individually yield high
average accuracy in predictions (1, 0.99 and 1, respectively)
over multiple experimental runs. The final predictions (class 0
for “normal” and class 1 for “suspicious”) were obtained via a
custom voting classifier based upon the aggregated majority
voting on the predictions form each of the three ML models.
The voting classifier consistently yields highly accurate
predictions (accuracy = 1.0). Combined, our results suggest
that the use of a combination of real and synthetic metadata
derived from log schema and a voting classifier can be
successfully applied to build a robust solution for anomaly
detection in log records.

In the future, we intend to explore the efficacy of deep
learning (DL) models (e.g., Autoencoder, Restricted
Boltzmann Machine (RBM)) as additional methods for
detecting anomalous log records. Similarly, different natural
language processing (NLP) methods can also be potentially
used to detect sensitive information in log records based on
actual values of different fields rather than use of their
metadata (as used in our current ML solution). Finally, in
contrast to our current implementation, the different ML
models and the voting classifier can be deployed as
microservices that can run concurrently and also as self-
contained services, rather than sequentially in a monolithic
application. The use of microservices as ML models can
significantly reduce the training and testing time of the models
and enable the application to make both training and scoring at
the same time.

Disclaimer

The views articulated in this paper are personal to the authors
and do not represent the views of their employers or any other
organization.

Acknowledgement

This research was funded and supported by the Innovation
Labs and Summer Internship Program at SWIFT. We
acknowledge the help and support from the Innovation Lab and
OASIS Delivery team in productizing the solution. We thank
Soumitra Dutta (Cornell Univ.) and Uwe Aickelin (Univ. of
Melbourne) for their very constructive informal reviews of an
earlier version of this manuscript.

REFERENCES

[1] Hodge, V. J.; Austin, "A Survey of Outlier Detection Methodologies"
(PDF). Artificial Intelligence Review. 22 (2): 85–126, 2004

[2] Chandola, V.; Banerjee, A.; Kumar, V., "Anomaly detection: A survey".
ACM Computing Surveys. 41 (3): 1–58, 2009

[3] Zimek, A., Schubert, E., "Outlier Detection", Encyclopedia of Database
Systems, Springer New York, pp. 1–5, 2017

[4] Zimek, A., Filzmoser, P., "There and back again: Outlier detection
between statistical reasoning and data mining algorithms". Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 8
(6): e1280, 2018

[5] Knorr, E. M.; Ng, R. T.; Tucakov, V., "Distance-based outliers:
Algorithms and applications". The VLDB Journal the International
Journal on Very Large Data Bases. 8 (3–4): 237–253, 2000

[6] Ramaswamy, S., Rastogi, R., Shim, K., Efficient algorithms for mining
outliers from large data sets. Proceedings of the 2000 ACM SIGMOD
international conference on Management of data – SIGMOD '00. p.
427., 2000

[7] Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander, J., LOF: Identifying
Density-based Local Outliers (PDF). Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data. SIGMOD.
pp. 93–104, 2000

[8] Angiulli, F.; Pizzuti, C., Fast Outlier Detection in High Dimensional
Spaces. Principles of Data Mining and Knowledge Discovery. Lecture
Notes in Computer Science. 2431. p. 15., 2002

[9] “Machine Learning Techniques for Anomaly Detection: An Overview,”
S. Omar, A. Ngadi, and H. H. Jebur, 2013, International Journal of
Computer Applications, vol. 79, no. 2, pp. 33–41.

[10] Shabtai, A., Elovici, Y., Rokach, L., A Survey of Data Leakage
Detection and Prevention Solutions, Springer-Verlag, 2012

[11] Ouellet, E., Magic Quadrant for Content-Aware Data Loss Prevention,
Technical Report, RA4 06242010, Gartner RAS Core Research, 2012

[12] Apache Spark 2.2.0 MlLib Main Guide, Extracting, transforming and
selecting features: StringIndexer, https://spark.apache.org/docs/2.2.0/ml-
features.html#stringindexer, Accesses on 12/31/2018.

[13] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J., Classification
and regression trees. Monterey, CA: Wadsworth & Brooks/Cole
Advanced Books & Software, 1984

[14] Quinlan, J. R., Induction of Decision Trees. Machine Learning 1: 81-
106, Kluwer Academic Publishers, 1986

[15] Ho T. K., Random Decision Forests (PDF). Proceedings of the 3rd
International Conference on Document Analysis and Recognition,
Montreal, QC, 14–16 August 1995. pp. 278–282, 1995

[16] Ho T. K., "The Random Subspace Method for Constructing Decision
Forests" (PDF). IEEE Transactions on Pattern Analysis and Machine
Intelligence. 20 (8): 832–844, 1998

[17] Breiman, L., "Arcing The Edge", Technical Report 486. Statistics
Department, University of California, Berkeley, 1997,
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf

[18] Friedman, J. H., "Greedy Function Approximation: A Gradient Boosting
Machine", IMS 1999 Reitz Lecture, version April 19, 2001,
https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

[19] Mason, L.; Baxter, J.; Bartlett, P. L.; Frean, Marcus (1999). "Boosting
Algorithms as Gradient Descent", In S.A. Solla and T.K. Leen and K.
Müller. Advances in Neural Information Processing Systems 12. MIT
Press. pp. 512–518, 1999

[20] Quinlan, J. R., Induction of Decision Trees. Machine Learning 1: 81-
106, Kluwer Academic Publishers, 1986

[21] Hand, D. J.; Yu, K., "Idiot's Bayes — not so stupid after all?".
International Statistical Review. 69 (3): 385–399, 2001

[22] Cortes, Corinna; Vapnik, Vladimir N., "Support-vector networks".
Machine Learning. 20 (3): 273–297, 1995

[23] Alkhalid A., Chikalov I., Moshkov M., Comparison of Greedy
Algorithms for Decision Tree Optimization. In: Skowron A., Suraj Z.
(eds) Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak
in Memoriam. Intelligent Systems Reference Library, vol 43. Springer,
Berlin, Heidelberg, 2013

[24] Safavian, S. R., landgrebe, D., A Survey of Decision Tree Classifier
Methodlogy, School of Electrical Engg., Purdue Univ., 1990,
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910014493.pdf

[25] Dietterich, T., "An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting, and
Randomization". Machine Learning: 139–157, 2000

[26] Breiman L., Random forests. Machine learning, 45(1): 5-32, 2001

https://spark.apache.org/docs/2.2.0/ml-features.html#stringindexer
https://spark.apache.org/docs/2.2.0/ml-features.html#stringindexer
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19910014493.pdf

