
EasyChair Preprint
№ 3631

Towards an Order and Category Theoretic Model
of Java Generics (extended version)

Moez Abdelgawad

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 21, 2020

Towards an Order and Category Theoretic Model of
Java Generics

(extended version)
Moez A. AbdelGawad∗†

Assistant Professor, Informatics Research Institute, SRTA-City, Alexandria, Egypt
moez@cs.rice.edu

Abstract
The mathematical modeling of generic type systems of main-
stream object-oriented programming languages such as Java,
C#, C++, Scala and Kotlin is a challenge. This is mainly due
to these languages supporting features such as ‘variance an-
notations,’ ‘F -bounded type parameters,’ and ‘type erasure.’
In this paper we present an order-theoretic and lattice-

theoretic approach to modeling generics in nominally-typed
OOP type systems that aims to build a simpler and more
intuitive model than the extant “existentials-based” model.
The approach also uses some elementary notions in category
theory, as a generalization of order and lattice theory.
Our model, as constructed so far, reveals characteristics

and relations underlying type systems of generic mainstream
OOP languages—such as a Galois connection between sub-
classing and subtyping—that seem to have not been formal-
ized and made explicit before. The model also suggests how
support for generics in these languages may be simultane-
ously extended and simplified, including proposing features
such as ‘interval types,’ ‘doubly F -bounded generics,’ ‘default
type arguments,’ and ‘cofree types.’

1 Introduction
In mainstream OOP languages such as Java [41, 43], C# [1],
Scala [61], C++ [2], and Kotlin [3], classes, interfaces, and
traits that are parameterized by one type parameter or more
are, collectively, called generic classes1, or simply generics.
Generics are supported in these languages to enhance the
expressiveness of their type systems [23, 33, 80]. In these
languages, generics provide a counterpart of the ‘parametric
polymorphism’ feature found in functional programming
languages such as ML [60] and Haskell [58].

In the theory of functional programming languages, ‘exis-
tential types’ (also called existentials) are used to model ab-
stract data types [30], which are common in these languages.

∗Also with the Computer Science Dept., Rice University, Houston TX, USA
(Remote Visiting Scholar).
†Also with the Computer and Systems Engineering Department,
Faculty of Engineering, Alexandria University, Alexandria, Egypt
(moez@alexu.edu.eg).
1In this work, interfaces (e.g., in Java) and traits (e.g., in Scala) are treated
as abstract classes. Thus, the term ‘class’ in this paper refers to classes and
other similar type-constructing constructs.

Due to support for variance annotations (e.g., Java wildcards)
in particular, the most well-known model of generics in
OOP languages is also based on existential types (e.g., in the
form of ‘F -bounded existentials,’ or ‘coinductive F -bounded
existentials’ [79]), indicating thereby a strong influence by
research on functional programming languages.
Existential types arise naturally in the context of func-

tional programming. However, as illustrated by the results
and discussions in volumes of research on modeling gener-
ics and wildcards (e.g., [24, 25, 76, 79, 81, 82]), existentials,
while elaborate, do not match well with mainstream OOP
languages, since they—existentials—do not smoothly interact
with OO inheritance and subtyping, which are fundamen-
tal notions in mainstream OOP languages. Accordingly, we
believe that existential types are not a natural and intuitive
basis for a model of generics in OO programming languages.

The mismatch between existential types and fundamental
features of OOP has practical consequences. For example,
generics-related diagnostic error messages emitted by com-
pilers of nominally-typed OOP languages are usually cryptic
messages (such as the notorious error messages containing
“capture of ...” that are produced by javac, the standard Java
compiler), and these messages are often minimally helpful
to OO software developers in fixing errors in their code. As
a consequence, many mainstream OOP developers shy away
from making extensive or advanced use of generics in their
code.

Further, as demonstrated by research on nominally-typed
OO type systems, the centrality of generics to these type
systems has hindered the progress of mainstream OOP lan-
guages, due to the complexity and unnaturalness of the ex-
tant existentials-based model of generics.2

Order theory is the branch of mathematics focused on the
study of (partially or totally) ordered sets. In this work we
demonstrate how an order-theoretic model of OO generics
can be constructed that

1. directly models OO inheritance and OO subtyping (i.e.,
is fundamentally object-oriented in its essence and
nature),

2Check, for example, [55], or the dense sections of the Java Language Spec-
ification (JLS) that specify crucial parts of its generic type system, e.g., [43,
§4.5 & §5.1.10].

Moez A. AbdelGawad

2. includes all main features of OO generics (including
the “complex” features mentioned earlier),

3. does not make explicit use of existential types, and
thus can be a basis for significantly improving and
simplifying the generics-related diagnostic messages
of mainstream OOP compilers, and,

4. suggests how type systems of mainstream generic
object-oriented programming languages can be smoothly
extended to include other generics-related features.

Since every ordered set (a.k.a., ‘poset’) is a category, category
theory can be viewed as a generalization of order theory
(which, in turn, is a generalization of lattice theory). Our
approach, particularly when modeling F -bounded generics
and type erasure, uses lattice theoretic concepts and notions
that, historically, seem to have been studied more extensively
as elementary notions in category theory.
As such, this paper is structured as follows. In §2 we

present a summary of the mathematical prerequisites for con-
structing our order theoretic and category theoretic model
of generic OOP. In §3 we present the model, constructing
it and analyzing it using the tools presented in §2. In §4 we
propose a number of extensions to current generic OOP type
systems that are suggested by the model. In §5 we present
some related work. We conclude in §6, where we present
some discussion and final remarks, and also present potential
future work.3

For the sake of concreteness, the presentation in this paper
focuses on modeling the essential features of generics in
Java in particular. The model presented herein, however, can
readily model also the essential features of other generic
nominally-typed OOP type systems.

2 Mathematical Background
In this section we briefly hint at the main mathematical
notions we use in this paper. Some of the constructs are
standard ones, which we either use “as is” or only give them
names that make them more intuitive for use in an OO con-
text, while others were defined for the purposes of construct-
ing our order-theoretic model of generic OOP.
The most fundamental mathematical construct used in

this work is that of a poset, i.e., a partially-ordered set, which
is simply a set provided with an ordering on elements of the
set [35, 67]. Examples of posets most relevant to this work
are the poset C of classes of an OO program ordered by the
subclassing (a.k.a., inheritance) relation (E), and the poset T
of (parameterized) types in an OO program ordered by the
subtyping relation (<:).
Next, three operators that construct new posets given

some input posets are also used in our approach. In partic-
ular, we use a partial products constructor n, a wildcards

3Appendix A presents a more detailed summary of themathematical notions
used in constructing our model.

constructor △, and an intervals constructor ⇕. As its name in-
dicates, operatorn constructs a partial product of two input
posets relative to a subset of the first input poset. Operators △
and ⇕ construct intervals over an input poset, ordering these
intervals by containment, where △ constructs a restricted
subset of the intervals (ones with ⊤ or ⊥ as their upper- or
lower-bound, resp.) while ⇕ constructs all intervals. Opera-
tors n, △, and ⇕ are new poset constructors that we defined
for purposes of use in this work. Their precise mathematical
definitions are presented in Appendix A.
To model type erasure and F -bounded generics, we also

make use of standard notions of order theory such as Ga-
lois connections, pre-fixed points and post-fixed points, where
a monotonic endofunction F (i.e., a monotonic “self-map”
F) defined over some poset is used as a “points genera-
tor” in the poset. In category theory, where an endofunc-
tor F plays the role of a generator, the three notions gen-
eralize to adjunctions, F -algebras, and F -coalgebras, respec-
tively. In (power)set theory, inductive/coinductive sets corre-
spond to pre-fixed/post-fixed points of a set generator [65,
Ch.21]. Similarly, in functional programming theory, induc-
tive/coinductive types are defined as inductive/coinductive
sets, respectively, where type constructors get modeled as
generators (over the inclusion/subtyping relation).
Similarly, in generic OOP theory we define F -supertypes

and F -subtypes as the types corresponding to pre-fixed points
and post-fixed points of a generic class F that is modeled as
a type generator (over the generic OO subtyping relation).
Additionally, similar to least pre-fixed points and greatest

post-fixed points in order theory (initial algebras and final
coalgebras in category theory, resp.), we also define and use
the notions of the free type (as the ‘most general instantia-
tion’) and the cofree type (as the ‘most specific instantiation’)
corresponding to a (generic) class F 4.

Appendix A presents the mathematical definitions of the
notions mentioned in this section, and provides more details
and some illustrating examples. Nowwe proceed tomodeling
generic OOP using the order theoretic and category theoretic
tools just discussed.

3 An Order Theoretic Approach to
Modeling Generic OOP

The subtyping relation between ground parameterized types
(i.e., ones that contain no type variables) is the basis for defin-
ing the full subtyping relation in generic OOP [47, 65]. Hence,
in this section we focus on presenting the construction of the
subtyping relation between ground types of generic OOP.5

4An example of a free type is the Java type C<?>. Cofree types, e.g., C<!>,
are largely unsupported in generic OO type systems
5The construction of the full subtyping relation, in which type variables
are included in subtyping rules, is left as future work. See §6.

Towards an Order and Category Theoretic Model of Java Generics

A bird’s-eye view of our order-theoretic approach to mod-
eling generics summarizes the approach into the following
four main steps:

• the first and most fundamental step in our approach
is a conceptual one, namely, maintaining a strong and
very clear distinction between inheritance (a.k.a., sub-
classing), as an ordering relation defined on classes,
on one hand, and subtyping, as an ordering relation
defined on parameterized types6, on the other hand,
then,

• secondly (§3.1), describing—using tools from order
theory—how the infinite subtyping relation between
ground parameterized types (which defines a poset)
can be constructed based only on the finite subclassing
relation (another poset) and an auxiliary containment
ordering relation (between wildcard type arguments;
a 3rd poset7), then,

• thirdly (§3.2), analyzing the constructed subtyping re-
lation, and its relation to the subclassing relation (us-
ing tools from order theory and category theory), and,
accordingly, making some observations about generic
OO type systems, and,

• fourthly (§4), suggesting some natural extensions to
generic OO type systems that are motivated by the
preceding construction and analysis steps.

3.1 Constructing The Subtyping Relation between
Ground Parameterized Types

Given a finite subclassing poset C (of classes C ordered
by subclassing E), we construct the subtyping poset T (of
ground parameterized types T ordered by subtyping <:) as
follows.
First, we make a couple of assumptions regarding C. We

assume that a generic class in C (the universe of C) takes
exactly one type argument.We further assume, for simplicity,
that if a generic class inherits from (a.k.a., ‘is a subclass
of’) another generic class then the superclass is passed the
parameter of the subclass as its type argument (e.g., as in the
Java class declaration class C<T> extends D<T>, where T,
the type parameter of C, is used directly as the type argument
of the superclass D).8 We also assume that C always has
two distinct non-generic classes, say Object and Null, that
play the role of the top (⊤) and bottom (⊥) elements of the
subclassing relation E.
Next, if G ⊆ C is the set of generic classes in C, then

operatorsn and △ (see §A) can be used to define the infinite

6In OOP literature, the expression parameterized types is sometimes used
interchangeably with object types, class types, reference types, generic types,
or even just types.
7These three ordering relations lie at the heart of all mainstream generic
OO type systems.
8We keep a study of how these two assumptions can be relaxed to future
work. (See §6.)

Figure 1. Constructing generic subtyping using subclassing.

subtyping relation T between ground parameterized types
as the solution of the following recursive equation

T = CnG △ (T) . (1)

The subtyping poset T, as the (least fixed point) solution
of Equation (1), can then be constructed iteratively, using
the derived iterative equation

Ti+1 = CnG △ (Ti) . (2)

In words, Equation (2) specifies that, given Ti (a finite ap-
proximation of T), operator △ constructs the wildcard type
arguments corresponding to Ti , ordered by containment.
Operator n, as a partial product operator, then constructs
Ti+1 by pairing generic classes (members of G) in C with
the type arguments constructed by △ then adding types
that correspond to non-generic classes in C (check Defi-
nition A.9 in §A), thereby constructing the poset Ti+1 of
ground parameterized types ordered by subtyping (i.e., the
next approximation of T). As is standard in mathematics
(particularly in set theory, order/lattice theory, and domain
theory [32, 35, 36, 38, 40, 73, 77]), the full infinite poset T is
obtained as the limit of this iterative construction process.
We illustrate the order theoretic process of constructing

subtyping from subclassing using a simple Java example.

Example 3.1. Assuming the Java class declaration
class C<T> extends Object {...},

the posetsC,T1,T2 andT3 that correspond to this declaration
can be represented by Hasse diagrams as in Figure 1 (where
O and N are shorthands for classes Object and Null and their
corresponding types, respectively, and where type names T1
to T6 stand for the six types in T2 other than O and N that are
shortened for illustrative use in T3). The similarity of T1 to
subsets of T2 and of T2 to subsets of T3 (subsets highlighted
in red and green) should be noted.

Example 3.2. More figures illustrating examples of con-
structions of subtyping relations (posets T) using more com-
plex subclassing relations (i.e., more complex posets C) can
be found in our earlier work [9, 12, 17].

Moez A. AbdelGawad

We now move on to analyzing the relation between sub-
classing and subtyping, then, accordingly, we formalize a
fundamental property of generic OOP type systems.

3.2 The Erasure Galois Connection (EGC), and
Nominal Typing and Nominal Subtyping

Type erasure—where, intuitively, the type arguments of a
parameterized type get “erased”—is a feature prominent in
Java (and Java-based OO languages such as Scala and Kotlin),
but that can also be defined andmade explicit in other generic
nominally-typed OOP languages.

In the order-theoretic approach tomodeling generics (where
a clear separation between types and classes is maintained),
type erasure is modeled as a mapping, called erasure, from
types to classes.9 Further, as hinted at in §A, the ‘most gen-
eral (wildcard) instantiation’ of a generic class is called the
free type corresponding to the class.10

Crucially, bymaintaining a clear separation between classes
ordered by subclassing, on one hand, and types ordered by
subtyping, on the other, the construction of the subtyping re-
lation using the subclassing relation (as presented in §3.1) al-
lows us to observe that, combined, the erasuremapping (from
types to classes) and the free type mapping (from classes to
types) define a Galois connection between the two funda-
mental relations of generic nominally-typed OOP (see §A
for the definition of Galois connections).
More formally, if Er denotes the erasure mapping that

maps a parameterized type to the class used to construct the
type (i.e., “erases” type arguments of the type)11 and if Ft
denotes the free type mapping that maps a class to its most
general wildcard instantiation12, then a direct expression of
the Galois connection between subclassing and subtyping
in generic OOP states that for all parameterized types t and
classes c we have

Er (t) E c ⇔ t <: Ft (c) (3)

where E is the subclassing relation between classes and <:
is the subtyping relation between parameterized types.

The Galois connection between subclassing and subtyping,
which we call the Erasure Galois Connection (EGC), can be
equivalently expressed, indirectly but in more familiar OOP
terms, as stating that for all classes C and D, if C is a subclass
of D then all instantiations of C are subtypes of D<?> (the
most general instantiation of D) and vice versa—a statement

9To model erased types, the erasure mapping is then composed with a no-
tion of a default type that maps each generic class to some corresponding
parameterized type (i.e., a particular instantiation of the class). As a pro-
posed extension of extant generic OO type systems, we discuss default type
arguments (DTAs) and default types in some more detail in §4.
10For example, a generic class C with one type parameter has the type
C<?> as its corresponding free type. A non-generic class is mapped to the
only type it constructs—a type typically homonymous to the class—as its
corresponding free type.
11E.g., Er (List <Integer>) = List.
12E.g., F t (List) = List<?>.

that is intuitively familiar to all professional mainstream OO
developers.

Formally, Equation (3) can be equivalently re-expressed as
stating that, for all classes C, D, and for all types T, we have

C E D ⇔ C<T> <: D<?> (4)

(note that, for all types T, class C is the erasure of C<T>, i.e.,
Er (C<T>) = C, and that D<?> is the free type corresponding
to class D, i.e., Ft (D) = D<?>).

We illustrate EGC, the Galois connection between subtyp-
ing and subclassing in generic OOP, using an example.

Example 3.3. In Java, the statement

LinkedList E List ⇔ LinkedList<String> <: List<?>

asserts that stating that class LinkedList is a subclass of
List is logically equivalent to stating that LinkedList<String>
is a subtype of the free type List<?>, which is an intuitively
true statement in Java.13

More significantly however, it should be noted that the
EGC (stated as either Equation (3) or Equation (4)) formally
expresses a fundamental property of generic OOP that is a
consequence of generic OO type systems being nominally-
typed [6, 65], namely, that

inheritance is the source of subtyping
in generic OOP. As is clear by its formalization as the EGC,
this fundamental property of generic OOP states, in one di-
rection, that inheritance is a source of subtyping (i.e., the
subclassing relation, which is inherently nominal, causes sub-
typing between parameterized types in generic OOP) and, in
the other direction, it states that inheritance/subclassing is
the only source of subtyping (i.e., subtyping between param-
eterized types comes from nowhere else other than from the
inherently nominal subclassing relation, hence making sub-
typing in generic OOP languages a nominal relation too).14

We ponder over this fundamental property (and its formal
expression as the EGC) and over the value of nominal typing
and nominal subtyping in mainstream generic OOP type
systems a little more in §6.

Beyond revealing the Galois connection between subtyp-
ing and subclassing, and allowing the precise formalization
of a fundamental property of generic OOP, the value of the
order theoretic approach to modeling generic OOP type sys-
tems is further illustrated by the approach suggesting some
extensions to such type systems, which we present in the
next section.

13In this statement, variables t and c in Equation (3) are instantiated to
type LinkedList<String> and class List, respectively; or, equivalently,
variables C, D and T in Equation (4) are instantiated to class LinkedList,
class List and type String, respectively.
14It should be noted that this property of generic OOP—i.e., that inheritance is
the only source of subtyping—is the counterpart of the inheritance is subtyping
property of non-generic nominally-typed OOP [7, 31].

Towards an Order and Category Theoretic Model of Java Generics

4 Suggested Extensions of Generic OOP
Type Systems

As presented in §3, constructing the generic subtyping re-
lation, using tools from order theory, and noting the Galois
connection that exists between subtyping and subclassing,
unitedly suggest how generics in nominally-typed OOP lan-
guages can be extended in four specific directions.

4.1 Interval Types
Although type Null (the type that corresponds to the homony-
mous class Null) is explicitly supported only in few main-
stream OOP languages, in §3 we have explicitly used type
Null as the bottom element of the subtyping relation <: and,
thus, also it was used as an explicit lowerbound of wildcard
type arguments.15 In Java, an (explicit) wildcard type argu-
ment must have type Object as its upperbound or type Null
as its lowerbound. The order theoretic approach to modeling
generic OOP, however, suggests how wildcard type argu-
ments in Java can be extended to support having general
lower bounds and upper bounds, simultaneously. In particu-
lar, it suggests how interval type arguments can be defined
as a generalization of wildcard type arguments, and accord-
ingly how interval types can be defined as a generalization
of wildcard types (i.e., parameterized types with top-level
wildcard type arguments).

Formally, interval types and the subtyping relation be-
tween them can simply be constructed, using tools from
order theory, by simply replacing the wildcards operator △
in Equation (1) of §3.1 with the intervals operator ⇕, which,
given a subtyping relation as input, constructs interval type
arguments and the containment relation between them (see
§A and Appendix A for more on operators △ and ⇕.)
Similar to poset T in §3.1, the poset S of ‘the subtyping

relation on interval types’ can also be constructed iteratively
using the subclassing relation C. Formally, poset S is defined
as the solution of the recursive poset equation

S = CnG ⇕ (S) . (5)

Other than replacing △ with ⇕, the iterative construction of
S proceeds in exactly the same manner as the construction
of T presented in §3.1, namely using the equation

Si+1 = CnG △ (Si) . (6)

We illustrate the main difference between the construction
of T (subtyping with wildcard types) and the construction
of S (subtyping with interval types) using a simple Java
example.

Example 4.1. Assuming the Java class declarations
class C<T> extends Object { ... }

15Type Null, called there ‘the null type,’ is actually used inside the Java type
system, but since it has no name in Java it can be used only implicitly in
Java programs (i.e., it cannot be explicitly specified in developers’ code) [43,
§4.1].

Figure 2. Constructing subtyping (w/ wildcard types and w/
interval types) using subclassing.

class E<T> extends C<T> { ... }
the posets C, T1, T2, S1 and S2 corresponding to these decla-
rations can be represented by Hasse diagrams as in Figure 2.

As can be seen by comparing the diagrams for T2 and
S2 (the middle and rightmost Hasse diagrams in Figure 2,
respectively), interval types are usually more expressive than
(and always no less expressive than) wildcard types, which
is a consequence of operator ⇕ extending operator △ (see
Lemma A.17.) Given the intuitiveness of interval types, we
suggest that type systems of generic OOP languages which
support wildcard types only to consider supporting interval
types to enhance their type expressiveness.

4.1.1 Subtyping Rules for Interval Types. In a generic
OOP type system that supports interval types, the core sub-
typing rules of the type system that are related to interval
types will be as follows.

Nullc E Objectc
Nullt <: Objectt

SubS0
C E D I ⊑ J

C[I] <: D[J]
SubGG

T1 <: T2 T3 <: T4

[T2 −T3] ⊑ [T1 −T4]
Cont

where Rule SubS0 is for constructing S0
16, Rule SubGG (for

subtyping between two parameterized types) corresponds to
the fourth line in the definition of the ordering relation un-
derlyingn (see Definition A.9)17, and RuleCont corresponds
to Equation (7) in the definition of ⇕ (see Definition A.14)18.
Note that the circular dependency between relation ⊑ and
relation <: (in Rules SubGG and Cont) necessitates the exis-
tence of “a base rule” (such as SubS0) to break the circularity
16And, accordingly (using ⇕ and RuleCont), for also constructing the inter-
val type argument [Null − Object] = [?] (corresponding to the wildcard
type argument <?>), which is then used (byn) to construct ‘free types’ and,
thus, also construct S1.
17Note that Rule SubGG makes use of our second assumption on C in §3.1,
namely, the assumption that if a generic classes extends another generic
class, then the type parameter of the subclass is passed “untouched” as a
type argument to its superclass.
18Note that in Rule Cont , the condition T2 <: T3 need not be specified,
since the condition is built in the definition of interval [T2 −T3].

Moez A. AbdelGawad

and get the iterative construction of the two relations kick-
started. The intuitiveness and simplicity of these subtyping
rules is worthy of noting.

4.2 Doubly F -bounded Generics
Similar to having general lower and upperbounds of type
arguments to generic classes (i.e., having interval types), the
order theoretic approach to modeling generic OOP also sug-
gests having general lower and upperbounds of type parame-
ters of generic classes. Given the connections of order theory
to category theory, the approach further suggests how a type
parameter may have a lower or an upper F -bound, thereby
proposing what we call ‘doubly F -bounded generics,’ or dfbg
for short.
To illustrate dfbg, we present basic examples of how F -

bounded generics—generic classes with a type parameter
that has either a lower F -bound or an upper F -bound—may
be declared (written in some hypothetical future version of
Java). The examples are then followed by a discussion of how
dfbg can be mathematically modeled using constructs from
order and category theory.

Example 4.2. Consider the following Java class declara-
tions

class C<T> { ... }
class D extends C<D> { ... }
class E<T extends C<T>> { ... }

class F<T extends F<T>> { ... }
class G extends F<G> { ... }

class A { ... }
class B<T> extends A { ... }
class H<T super B<T>> { ... } // Hypothetical
In these declarations, type parameter T of class C ranges

over all types, class D defines a homonymous type D as a
C-subtype (since D <: C<D>), and, since it occurs inside its
own bound, type parameter T of class E is upper F -bounded
and it ranges over C-subtypes (i.e., the parameterized type
E<D>, for example, is a valid instantiation of class E, since D
is a C-subtype).
Further, like in the declaration of built-in class Enum in

Java, type parameter T of class F is also upper F -bounded and
it ranges over F-subtypes, making the declaration of class
(and type) G, as extending F<G>, a valid declaration.

Also in the above, the declaration of class B makes type
A a B-supertype (since B<A> <: A), then, finally, the (hypo-
thetical) declaration of class H specifies that type parameter
T of class H is lower F -bounded and that it ranges over B-
supertypes, and thus that types H<A> and, implicitly, H<Object>
(since Object is an implicit supertype of A) are valid param-
eterized types.19

19It is worthy to note that our formulation of dfbg and our approach to
modeling F -bounded generics got inspiration from considering functions in
real analysis. For example, check the real function cos (x ≤ cos (x)) having a
‘function-bounded domain’ (illustrated below). Due to the second occurrence

4.2.1 Modeling (Doubly) F -bounded Generics: Induc-
tive and Coinductive Types in Generic OOP. While ana-
lyzing dfbg in [10], we used a coinductive logical argument20
to prove that checking the validity of type arguments inside
some particular bounds-declarations of generic classes is
unnecessary. Also, in [79], Tate et al. conclude that Java wild-
cards are some form of ‘coinductive bounded existentials’.21

Combined, these two factors motivated us to consider, in
some depth, the status of inductive and coinductive types
in our order-theoretic approach [15], which led us to define
the notions of ‘F -subtypes’ and ‘F -supertypes’ of a generic
class F (see §A for the definitions of these notions), and,
accordingly, to offer an order theoretic and category theoretic
model of dfbg.
More formally, as hinted at in Example 4.2, the value of

defining ‘F -subtypes’ and ‘F -supertypes’ in the modeling of
dfbg is clear when we note that a type parameter, say T, with
a lower F -bound ranges over the set of ‘F -supertypes of the
erasure of the lowerbound’, and, dually, a type parameter
with an upper F -bound ranges over the set of ‘F -subtypes of
the erasure of the upperbound.’
It should be immediately noted, however, that further

investigation is needed on the practical value of having lower
F -bounds22, and on whether it is sensible to simultaneously
have both a lower and an upper F -bound for the same type
parameter T.
We keep that investigation to future work. Nevertheless,

we believe dfbg should be considered as an extension of
generic OO type systems that smoothly and intuitively goes
hand-in-hand with considering supporting interval types,
since we believe the general notion of intervals (e.g., from
analysis) is much simpler and more intuitive to mainstream
OO developers than the notion of (bounded) existentials.
Thus, for consistency and homogeneity purposes, if generic
type arguments can have lower and upper bounds (i.e., if

of cos (in the “f -bound” of parameter x), variable x (the first, binding
occurrence of x) ranges only over real numbers that are post-fixed points of
the cos function (hence the “left-handedness” of the graph of the function
illustrated below). However, as is arguably intuitively clear (and as we
coinductively prove in [10]), the second occurrence of cos, unlike the first
occurrence, can be viewed as having all real numbers R as its domain, with
no theoretical or technical difficulties resulting. (Interested readers may like
to check [10, 17] for more details.)

20In mathematical logic, coinductive reasoning can, intuitively, be summa-
rized as asserting that a statement is proven to be true if there is no (finite
or “good”) reason for the statement to not hold [16, 54].
21Given their historical origins [53, 77], induction and coinduction—and
accordingly (co)inductive mathematical objects—are naturally best studied
in lattice theory (as a sub-field of order theory).
22See [74] for some examples on the potential utility of having lower bounds
for type parameters, and see [79] for some suggested restrictions on them.

Towards an Order and Category Theoretic Model of Java Generics

interval types are supported) in generic OOP languages, then
we conjecture that OO developers will expect type parame-
ters to have lower and upper bounds, including F -bounds,
too. Additionally, supporting dfbg may allow viewing inter-
val type arguments (and thus also wildcard type arguments)
as merely being special cases of doubly F -bounded type
parameters—more specifically, viewing them as ‘anonymous
type parameters,’ where the main difference between type
arguments and type parameters, in such a view, will be that
the former have no names (and thus cannot be referenced
explicitly in any code) while the latter are named and, thus,
can be referenced.

4.3 Default Type Arguments and Default Types
A third feature that is influenced by our order theoretic
approach to modeling generics, if not directly suggested by
it23, is the notion of ‘default type arguments’ of a generic
class, and the notion of the ‘default type’ corresponding to
a generic class (which builds on the notion of default type
arguments).

As we envision it, a default type argument (DTA) is a type
that is specified explicitly in the declaration of a generic class
(or is inferred24) as the type argument that should be used
in instantiating the class (to define a parameterized type, as
the default type corresponding to the class) when the class
name alone is used in a context that needs a type (reference)
rather than a class (reference).
We illustrate DTAs and default types using an example

(again, coded in some hypothetical future version of Java).

Example 4.3. Consider the following Java class and vari-
able declarations

class C<T=Object> { ... }
class D<T=Integer> { ... }

// Class names are used as type names
C c; // type of c is C<Object>
D d; // type of d is D<Integer>
In these declarations, the default type argument (DTA) for

type parameter T of class C is specified, using the T=Object
phrase, as type Object, while the DTA of type parameter
T of class D is specified as type Integer. Thus, when the
class names are used in a context where a type name is
expected, as in the declarations of variables c and d, these

23Consideration of default types and default type arguments (DTAs) where
urged on us, in particular, by our consideration of the ‘free type’ corre-
sponding to a class and our consideration of the ‘erasure Galois connection’
(EGC). See §A and §3.2 for more on these.
24In the case of Java in particular, where legacy non-generic code of some
extant generic classes (e.g., the collection classes) may be available, legacy
default type arugments of a “generified” class (with no default type argu-
ments specified) can usually be guessed (e.g., by static analysis tools) by
doing a code comparison, i.e., by comparing legacy non-generic code of the
class with the generic code of the class.

variables have the default types resulting from instantiat-
ing the specified classes with their default type arguments,
namely, C<Object> and D<Integer>, respectively.25

If default type arguments and default type are supported
in a generic OOP language, then the erased type correspond-
ing to a parameterized type (i.e., the type resulting from
the “erasure” of the parameterized type) can be defined as
the composition of the erasure mapping Er (which maps
the parameterized type to a class—see §3.2 for more on Er)
with the default type mapping Dt (which maps a class to its
corresponding default type).

Formally, we thus define the erased typemapping asEt (T) =
Dt (Er (T)) for all parameterized types T, which, in point-free
notation, can be expressed as

Et = Dt ◦ Er .

In words, the definition of Et defines the erased type of a
parameterized type as ‘the default type of the erasure of the
parameterized type.’
We believe supporting default types, and default type ar-

guments upon which default types are based, is a simple
extension of most if not all current generic OO type sys-
tems.26

4.4 Cofree Types
In §2 we briefly mentioned ‘cofree types’ as being the most
specific instantiations of generic classes.

No generic OOP language that we know of explicitly sup-
ports cofree types so far, arguably for good reasons. Nev-
ertheless, motivated by the earlier discussion of free types
and of the EGC, we propose that generic OO type systems
support cofree types using, for example, a syntax such as
C<!> or C[!] to denote the cofree type corresponding to a
generic class C. In accordance with the definition of cofree
types (see §A), a cofree type, say C<!>, will be a subtype
of all parameterized types that are instantiations of class C,
and, semantically, C<!> will have the special value null as
its only instance.27 With such semantics, we will have (e.g.,
in a future Java type system that supports cofree types) the
following subtyping hierarchy

Null <: C<!> <: C<Ty> <: C<?> <: Object

25We also envision that if the default type argument of a generic class is
not specified, then the default type argument of the generic class can be
inferred (as hinted to earlier, if a legacy non-generic version of the class is
available) or—in agreement with the current specification in Java [43] for
erased types—the default type argument can be the upperbound of the type
parameter [43, §4.6](i.e., the upperbound of the parameter, in case no DTA
is specified, will play the role of the “default default type argument!”)
26In fact, based on their perceived simplicity, it is surprising to us that the
two features seem to have not been suggested before for generic OO type
systems.
27In other words, the type C<!>, when used in some context, will be associ-
ating a specific class with for the polymorphic value null, viewing null as
an instance of class C in that context.

Moez A. AbdelGawad

for a generic class C and for all its valid type arguments Ty
(or even for all parameterized types Ty, assuming the type
system also supports admittible type arguments. See §6 for
more on admittible versus valid type arguments).
While initially seeming mysterious and not quite useful,

cofree types actually seem to be currently supported, indi-
rectly, in Java. It should be noted, for example, that, when the
free type C<?> is used as a lower bound of a wildcard type ar-
gument (lower bounds on type parameters are not currently
supported in Java), the actual meaning of C<?> in this con-
text is rather closer to the meaning (i.e., semantics) of C<!>
that we suggest than it is to the standard meaning of C<?>
(i.e., the meaning when C<?> is used as an upper bound, or
when it is used as the type of a regular variable, for example).
We thus conjecture that cofree types like C<!> may indeed
be useful in generic OOP, at least as proper lower bounds of
type arguments, and as lower bounds of type parameters (if
dfbg—see §4.2—is supported).
We illustrate this potential use of cofree types using the

following example.

Example 4.4. If cofree types (and dfbg) are supported in
Java, and assuming C is some generic class, then the following
is a generic class declaration that makes use of the cofree
type C<!> as a lower type parameter bound.
class D<T super C<!> extends C<?>> { ... }
In this declaration, the use of the cofree type C<!> as a

lowerbound of type variable T, combined with using the free
type C<?> as its upperbound, specifies that type variable T
ranges only over parameterized types that are instantiations
of C, not of its subclasses (if any).

Example 4.5. Similarly, if interval types arguments are
supported in Java, and if C and E are two already-declared
generic classes, then the wildcard type

E<? super C<!> extends C<?>>
is a supertype of all instantiations of E that are themselves
instantiations of class C only.

In spite of these possible uses of cofree types, we do ac-
knowledge, however, that a more thorough analysis of how
cofree types interact with the rest of a generic OOP type
system may be needed before explicit support for them can
be added to generic OOP languages.

5 Related Work
In this section we present a rough account of some earlier
research that is somewhat closely related to the work we
present in this paper.
The modeling of generic OO type systems based on ex-

istential types has its roots in the work of Igarashi and Vi-
roli [48, 49], which is the first work to suggest using Cardelli

andWegner’s bounded existential types [30]28 to model ‘vari-
ant parametric types’ (VPTs). Igarashi and Viroli developed
VPTs to ‘enhance the synergy between parametric and in-
clusion [i.e., subtyping] polymorphism in object-oriented
languages,’ stating in [48] that VPTs were ‘inspired by struc-
tural virtual types by Thorup and Torgersen’ [80].
With structural typing—the standard form of typing in

functional programming (FP) languages—clearly on their
minds, Torgersen at al. then presented the first operational
model of Javawildcards [81], viewingwildcard types as being
‘a form of bounded existentials.’

Benjamin Pierce (with others) was one of the first to
point to the significance of nominal typing in mainstream
OOP, and one of the first to present operational models of
nominally-typed OOP ([65, §19.3] and [47, 52]). Subsequent
work highlighting the significance of the nominal subtyping
versus structural subtyping distinction includes the work
of Malayeri and Aldrich in [57], in which the authors at-
tempt to provide a foundation for integrating both forms of
subtyping.
The motivation behind the development of most opera-

tional models of generic OOP was to attempt proving the
type soundness of generic OO type systems, to ponder over
the decidability of type checking, and to suggest decidable
“chunks” of the type systems. As such, in [79], Tate et al. pro-
pose the taming of Java wildcards by suggesting restrictions
on the usage of wildcards. Tate et al.’s work was based on
operational models such as FJ/FGJ [47] and on the earlier
models presented in [24, 25, 76, 79, 81]. In their work, Tate at
al. conclude that Java wildcards are ‘best formalized as coin-
ductive bounded existentials.’ Later, in [78], Tate suggested
adding support for declaration-site variance annotations to
Java, supporting thereby ‘mixed-site variance’ to ‘avoid the
failings of wildcards.’
In spite of the prevalence of operational models in re-

searching OOP type systems, in [68–70], particularly in [69],
the authors develop an untyped denotational model of class-
based (non-generic) OOP. Type information is largely ig-
nored in this work (object methods and fields have no type
signatures) and some nominal information is included with
objects only to analyze OO dynamic dispatch. In 2011, the
first domain-theoretic model of (non-generic) nominally-
typedOOP (calledNOOP) was constructed byAbdelGawad [4,
5] and it included nominal typing information in full. (NOOP
and its construction are summarized in [7, 20].) The goal be-
hind developing NOOP was to help move research on main-
stream OO type systems, that are largely nominally-typed,
to a more foundational, denotational level, rather than an
operational one. Using NOOP , Cartwright and AbdelGawad

28Cardelli, in his pioneering models of OOP [27, 28], ignored the nominality
of subtyping for the sake of simplifying his models (since, if class and type
names and their matching [i.e., subsumption] rules are modeled, ‘many
complex issues arise’ [29, p.2].)

Towards an Order and Category Theoretic Model of Java Generics

concluded that ‘inheritance is subtyping’ in (non-generic)
nominally-typed OOP [31].

Attempts to use category theory in modeling generic (or,
“polymorphic”) OO type systems seem to predate using exis-
tential types in modeling them. To the best of our knowledge,
Canning et al.[26, §5] seem to be the first to reference F -
algebras in the context of modeling OOP, and to thus suggest
F -bounded polymorphism as a model of polymorphic OO
type systems. Even though Pierce, and others, have analyzed
F -bounded polymorphism from a foundational perspective
(again, with a focus on decidability issues) [22, 39, 44, 64],
but the explicit reference to the category theoretic roots of
F -bounded polymorphism seemed to have been missed in
this later work on modeling generic OOP.

Other than this earlier work, it seems to us that the use of
order/lattice theory and category theory to model generic
OO type systems has not been pursued before.

Category theory, though, seems to have also been used in
modeling OOP, not in modeling generic OO type systems,
but rather in modeling the runtime termination behavior
of OO software [50, 51] and even in modeling subtyping in
non-generic Java using coalgebraic specifications [66]. Final
coalgebras were seemingly also used to model infinite data
structures (such as streams and infinite trees), unending pro-
cesses, and “systems” with dynamic state [21, 72]29. It seems
to us this earlier work did not use category theory to model
generic OO type systems because the work was carried out
before the formal introduction of generics and wildcards to
Java [41, 82] and other mainstream OOP languages.
Galois connections have been used before in studying

the semantics of programming languages, in the context of
static analysis (particularly in abstract interpretation [34])
and axiomatizing temporal logic [21, Ch.9], but seemingly
not outside these contexts.

More recently, given that operads in category theory can
be used to model self-similar phenomena [75], AbdelGawad
has presented an outline of the Java Subtyping Operad (JSO)
as an operad that models the iterative construction of the
subtyping relation in generic Java. (This earlier work rep-
resented a significant step in the development of the work
presented in the current paper.) Most recently, it is worthy
of mention that an extended abstract of the approach pre-
sented in this paper was accepted for poster presentation at
ACT’19 [17, 19].30

29In fact it seems that [21], even though it makes no mention of
inclusion/subtyping type polymorphism or generics and little mention
of parameteric type polymorphism, is to date one of the best presentations
of applications of order theory and category theory—both of main interest
to us in this paper—to computer science, particularly their applications in
the field of (automated) construction of programs from their (algebraic)
specifications.
30An updated version of [17] is available at http://eng.staff.alexu.edu.eg/
~moez/research/OOP/gen-act19.pdf.

6 Discussion, Concluding Remarks, and
Future Work

In this paper we presented an order-theoretic approach to
modeling generic OO type systems. The approach, as pre-
sented, demonstrates that in generic OO type systems:

• The infinite subtyping relation between ground param-
eterized types can be constructed (using tools from
order theory) exclusively based only on the finite, nom-
inal31, explicitly-specified subclassing (i.e., inheritance)
relation between classes,

• Type erasure can bemodeled as amapping from param-
eterized types ordered by subtyping to classes ordered
by subclassing,

• Due to the nominality of subclassing and the nomi-
nality of subtyping (since subtyping is based on sub-
classing), the erasure of parameterized types (i.e., the
class used to construct a parameterized type) and the
free types corresponding to classes (i.e., the greatest F -
subtype of a class), together, define a Galois connection
between subtyping and subclassing,

• The Galois connection between subtyping and sub-
classing formally expresses the fundamental property
of generic OOP that ‘inheritance is the only source
of subtyping,’ i.e., that inheritance (a.k.a., subclassing,
between classes) is the only source of subtyping (be-
tween parameterized types),

• Wildcard type arguments can be modeled intuitively
as intervals over the subtyping relation, ordered by
interval containment,

• Generic classes and type constructors can be mod-
eled as generators over the subtyping relation, i.e., as
mappings that take in type arguments (ordered by con-
tainment) and construct parameterized types (ordered
by subtyping),

• Upper F -bounded type variables32 range over F -subtypes,
which can be modeled as post-fixed points or coinduc-
tive types, while lower F -bounded type variables range
over F -supertypes, which can be modeled as pre-fixed
points or inductive types,

• Using the containment relation between generic (i.e.,
wildcard or interval) type arguments, the complex
open and close operations (i.e., capture conversion;
see [42, 43, §5.1.10, p.113]) are not needed in the def-
inition of the subtyping relation between ground pa-
rameterized types,

• During type checking (e.g., while compiling of a generic
OO program), it may be not necessary to check for the

31Since it is always explicitly declared using class names, inheritance/sub-
classing is an inherently nominal relation.
32E.g., type variable T in the Java class declaration class D<T extends
C<T>>.

http://eng.staff.alexu.edu.eg/~moez/research/OOP/gen-act19.pdf
http://eng.staff.alexu.edu.eg/~moez/research/OOP/gen-act19.pdf

Moez A. AbdelGawad

validity of the type argument of the bound of an F -
bounded type parameter33,

• Deriving the subtyping relation from the subclass-
ing relation implies that properties of the infinite and
intricate generic subtyping relation can be derived
exclusively from properties of the finite and simpler
subclassing relation. As such, errors in an OO pro-
gram related to generic subtyping can be explained
in terms of the subclassing/inheritance relation. Ad-
ditionally, given that the order-theoretic approach to
modeling generics does not explicitly use existential
types, these explications (e.g., in compiler error mes-
sages) can make use of no concepts related to existen-
tial types (e.g., “capturing”), and that,

• Noting that the inheritance relation is directly and
explicitly specified by OO developers, and that existen-
tial types and notions related to them (e.g., opening,
closeing, and “capturing” them) are unfamiliar to
most OO developers, it can be conjectured that us-
ing the explicitly-specified inheritance relation when
reasoning about generics, as well as avoiding the ex-
plicit use of any notions related to existential types,
may strongly motivate OO developers to make better
and more confident use of generics while developing
their OO software.

Additionally, we observe that extant structural (i.e., non-
nominal) models of generic OOP largely ignore the nomi-
nal subclassing relation—explicitly declared by OO software
developers—when interpreting the generic subtyping rela-
tion and other features of generic OOP. As discussed in §5
on related work, those models—influenced by their origins
in functional programming—depend instead on concepts
and tools34 developed for structural typing and structural
subtyping.
As such, we conclude that the inclusion of nominality in

anymodels of generic OO type systems is key to constructing
a simpler, more intuitive andmore natural model of such type
systems, which, as we demonstrated in this paper, is due to
the reliance of the definition of the infinite subtyping relation
on the finite inherently-nominal subclassing relation.
Even though a full order-theoretic model of generic OO

type systems has not been constructed yet (we discuss below
plenty of the future work that remains to construct such
a model), yet, given the insights into generic OO type sys-
tems presented above, we believe that the order-theoretic
approach to modeling these type systems has the potential
to offer a model of generic OOP that is more in the spirit of

33Since, based on a coinductive logical argument, we can mathematically
prove that a definition of a function-bounded function that uses the de-
fined function itself in the bound specification defines the same function as
one that uses the unbounded function in the bound specification. See §4.2
and [10] for more details.
34Such as existentials, abstract datatypes, and the opening/closing of type
“packages.”

nominally-typed OO type systems than the existing mod-
els (based on existential types) are, and that is also signifi-
cantly simpler and more intuitive than extant models. Due
to the centrality of generics to modern OO type systems,
we also conjecture that having a simple model of generics,
like the one promised by the order theoretic approach to
modeling generics, will enable researching and progress-
ing mainstream nominally-typed OOP languages on firmer
grounds.

6.1 Future Work
As expressed in the title of this paper, and as is evident from
our presentation of the approach in this paper, we believe the
order and category theoretic approach to modeling generic
OO type systems we present in this paper is far from being
finished or complete (without this incompleteness contra-
dicting in any way the potential the approach has; in fact
quite the opposite). In particular, we believe a complete order
and category theoretic model of generic OO type systems
cannot be constructed unless most (if not all) of the following
issues are properly addressed and the missing details in the
model are appropriately filled in.

Firstly, throughout this paper we have been, intentionally,
unclear about whether we assume type parameters of generic
classes to have general lower and upper bounds, or whether
(like some other research on generics does, e.g., for simplicity)
we assume that type parameters are “unbounded” (more
accurately, are upper bounded by type Object and lower
bounded by type Null). In fact we believe both!

In particular, motivated by our consideration of what we
may call “self F -bounded type parameters” (e.g., like in the
declaration class Enum<T extends Enum<T>>, where not
only is type parameter T used in defining its own bound,
thereby making T be F -bounded, but also the class being de-
fined, namely Enum, is itself used in defining the bound—see
§4.2 for more details), we got into deliberating that there are
two related kinds of type arguments that a generic class may
be passed (i.e., to instantiate it, so as to define a parameter-
ized type), namely, admittible type arguments and valid type
arguments, where valid type arguments are a proper subset
of admittible ones.

To illustrate the main difference between the two kinds of
type arguments, we envision that the set of all parameterized
types (i.e., all members of poset T in §3) defines the set of
admittible type arguments to a generic class, i.e., that can be
passed to the class as parameters regardless of them satisfying
the bounds specified on type parameter(s) of the class. On
the other hand, valid type arguments of a generic class will
then be defined as the subset of all parameterized types (i.e.,
of admittible type arguments) that, in addition, satisfy the
bounds specified on the type parameters of the class. (For
example, according to these definitions, type Object is an
admittible type argument to class Enum, but it is not a valid
type argument [since type Object cannot be a subtype of

Towards an Order and Category Theoretic Model of Java Generics

any other type but itself].) As such, valid type arguments
are class-specific (i.e., vary by class), while admittible ones
are not since, for all classes, they are simply the set of all
(syntactically well-formed) parameterized types.

However, we further noted that distinguishing admit-
tible type arguments versus valid ones, while intuitive and
warranted, also necessitates defining admittible (parame-
terized) types (e.g., types Enum<Object> and Enum<Color>)
and valid (parameterized) types (Enum<Color> is valid, but
Enum<Object> is not since Object is not a valid type ar-
gument), and, thus, also defining admittible subtyping re-
lations (that involve at least one admittible parameterized
type, e.g., Enum<Object> <: Enum<? extends Object>
and Enum<Color> <: Enum<? extends Object>) versus
valid subtyping relations (involving only two valid types, e.g.,
Color <: Enum<Color>). Given that we concluded that the
‘admittible versus valid’ distinction will permeate any model
of generics, we decided (for our current effort) to stop at
this point, and to keep the pursuit of the distinction, in full
extent, to some future work.

Secondly, in §4.1.1 we presented the core subtyping rules
for a generic OO type system that supports interval types (as
a generalization of wildcard types). Including type variables
in the subtyping rules, then defining the syntax, typing rules
and evaluation rules of some tiny generic OO language that
(along the lines of FGJ [47], for example) contains core fea-
tures of generic OO type systems can be used to prove the
type soundness of such a tiny generic OOP language. Due
to time (and space) considerations, we’ve also decided that
including type variables in the subtyping rules, then proving
type soundness of a tiny generic OO language, will also have
to be a venture that can be embarked upon in some future
work.

Thirdly, a somewhat technical concern that arises for the
order theoretic approach is that the third line in the defini-
tion of the mapping f of wildcards (modeling wildcard type
arguments) to intervals (modeling interval type arguments)—
i.e., the third line of Equation (8) in §A—involves using a
wildcard twice, both as an upper bound and a lower bound,
in the definition of the corresponding interval type argu-
ment, which has the potential to cause subtyping relations
for wildcards (ones based on existentials) to differ from those
for corresponding intervals (based on interval containment).
We believe that this concern, while not addressed in our

main work, can be addressed, if substantiated, in some fu-
ture work either by: (1) modifying the definition of intervals
and/or containment rules for intervals, (2) by adding a notion
of nominal intervals (by which an interval can have a name,
and where accordingly two nominal intervals—i.e., intervals
with names—are considered equal only if they have equal
bounds and also have the same name. Anonymous intervals—
with no name—will be compared based only on their bounds.
See [8] for some more details on nominal intervals), or, (3) by
abandoning (or deprecating) the existentials-based wildcard

containment rules (considering these rules as “a failure” [78],
at the risk of possibly thereby causing some backward com-
patibility issues to Java and extant generic OOP languages35)
and supporting the simpler and more intuitive intervals-
based containment rules instead.36 For simplicity, we have
chosen to pursue neither of these alternative options in this
work however. Yet we believe this concern should be prop-
erly addressed—using either of the three suggested means,
or some other ones—in any future work that builds on the
work presented in this paper.

Fourthly, in §3.1 we explicitly assumed that generic classes
pass their type parameter “as is” to their generic super-
classes. While this is a common inheritance pattern among
generic classes, but the assumption in our model precludes
some other inheritance patterns (e.g., class C<T> extends
D<F<T>>). Based on first defining admittible and valid type ar-
guments (the first future work suggested above), we believe
that other more complex inheritance patterns can simply
be modeled by defining a partial product poset construc-
tor n that is more complex than the straightforward one
we defined in this paper.37 In particular, such a new poset
constructor will not construct new parameterized types (i.e.,

35For such languages, to avoid any backward compatibility issues (if they
turn out to be expensive), it may be lesser expensive to support both con-
tainment rules: the standard-but-deprecated existentials-based wildcard
containment rules, using the standard <> syntax for type arguments, to-
gether with the new similar-but-more-intuitive intervals-based rules, using
the [] syntax, for example.
36If interval types (and thus also type intervals, which we called ‘interval
type arguments’ in this paper) are supported in a generic OO type system,
there will be contexts in a generic OO program that expect types (contexts
such as field types, local variable types, method argument types, and method
return types) and other contexts that expect type intervals (such as “type”
arguments to other classes). Contexts where a type is expected can be
divided into either covariant, contravariant, or invariant type contexts. For
the type system to be type safe, we envision that when a type interval is
provided (e.g., as a type variable) in a context that expects a type (rather than
a type interval) then the lowerbound of the provided type interval (which
is a type, not an interval) can be used in contravariant type contexts (e.g.,
method argument types) while the upperbound of the provided type interval
(also a type) can be used in covariant contexts (e.g., method return types).
For invariant contexts (e.g., field or variable types), we envision making
them into ones that expect an interval instead, then require that when a field
or variable is read from (i.e., is used in an “r-position” or a read context, e.g.,
on the right-hand side of an assignment statement) then the upperbound
of the type interval of the field or variable is used (in type checking) while
requiring that the lowerbound is used when the field or variable is written
into (i.e., is used in an “l-position” or a write context, e.g., on the left-hand
side of an assignment statement). While this suggestion is plausible (e.g.,
it agrees with “views” of APIs of generic classes with declaration-site or
use-site variance annotations), we believe it is in need for a more thorough
investigation in some future work, e.g., in the context of some tiny generic
OO type system (our second suggested future work above).
37A main purpose behind the simple definition of n used in this paper is to
make evident the involvement of a partial product (of posets) in the defini-
tion and construction of parameterized types (see Equation (1), Equation (2),
Equation (5), and Equation (6) in §3.1), even if at the price of not handling
all generic class inheritance patterns except the most straightforward ones.

Moez A. AbdelGawad

ones that were not constructed by n in the solution of Equa-
tion (1) in §3.1 or of Equation (5) in §4.1) but will only affect
the ordering relation between the constructed types (based
on the declared inheritance patterns).38

Further, in §3.1 we assume that a generic class takes only
one type parameter. Based on the relative simplicity of using
a list of type parameters in place of a single type parameter,
we believe this simplifying assumption can be easily relaxed,
in any future work that builds on the work presented in
this paper, to allow generic classes to have multiple type
parameters.
Next, it is well-known that subtyping relations with cir-

cular (i.e., self-referential, involving direct self-references)
justifications can be viewed as infinitely-justified subtyp-
ing relation and can thus be modeled by a coinductive in-
terpretation of the subtyping relation [52]. In light of the
use of coinductive types (i.e., F -subtypes) and the use of a
coinductive logical argument in analyzing dfbg (§4.2), cir-
cular subtyping relations may motivate some future work
to consider defining poset T (of parameterized types and
the subtyping relation between them) coinductively, i.e., as
the greatest fixed point of Equation (1) in §(3.1), thereby
allowing T to contain parameterized types that are possibly
infinite (i.e., infinitely nested) as well as subtyping relations
that are possibly infinitely-justified.
While direct self-references are common in OOP, even

more common are indirect self-references, where, for ex-
ample, some class may refer to itself only indirectly by it
referring to some other class (whichmay refer to a third class,
and so on) that eventually refers back to the first class39. Such
definitions and dependencies are sometimes called mutually
circular definitions or reciprocal dependencies. In similitude
to how direct self-references can by modeled using coinduc-
tion and coinductive objects, indirect self-references may be
modeled using mutual coinduction and mutually coinductive
objects.
While mutual coinduction is not widely used (as of yet)

in the semantics of programming languages, indirect self-
references in OOP and observing the mutual dependency be-
tween the definition of the subtyping relation on parameter-
ized types and the definition of the containment relation on
wildcard/interval type arguments (see §3 and §4), motivated
us to define an order-theoretic notion ofmutual (co)induction

38Due to the possibility of nesting type variables, a notion of ‘rank’ may be
also useful in the definition of such a constructor.
39E.g., assuming the absence of primitive types in Java (i.e., if Java is “purely
OO”), the definitions of classes Object and Boolean in Java are mutually
dependent on each other. That is because class Boolean, like all classes
in Java, extends class Object, thereby depending on it; and reciprocally,
without a primitive type bool, the fundamental equals()method inside the
definition (and the public interface) of class Object will return a Boolean,
making the definition of class Object thereby depend on class Boolean.

(rather than a power set theoretic one [62]40) to allow study-
ing least and greatest fixed point solutions of mutually-
recursive definitions in a more abstract order-theoretic con-
text [18]. Some future work may then consider pursuing the
order theoretic treatment of mutual (co)induction further
than we did, then use it as a model of indirect self-references
between classes in generic OO software and, equally im-
portantly, also use it in modeling the mutual dependency
between the containment and the subtyping relations in
generic OO type systems.41

Finally, concerning the use of category theory, in the order
theoretic approach to modeling generics we brought up some
concepts and tools from category theory (such as adjunctions,
monads, F -(co)algebras, initial algebras, final coalgebras)
that can be used to generalize the order-theoretic model of
generics, and to situate it further in the context of category
theory, yet, for simplicity, we also tried to somewhat keep the
role of category theory in the approach to a minimum. But
in fact doing so may not be necessary, or even recommended,
in any future work that builds on the work presented in this
paper.
That’s because we believe that order theory, while defi-

nitely simpler and more intuitive than category theory, may
not be as unifying and powerful (i.e., revealing of underly-
ing commonalities) as category theory is. For example, we
believe it is possible to present the approach, first (order
theoretically) under the more general umbrella of ‘closure
operators’ (where, for example, free types will be ‘closed
types’ since they are fixed points of the closure operator
defined by composing the free type map of the EGC with its
erasure map. See §3.2), then generalizing the presentation to
use monads of category theory (as generalizations of closure
operators). We conjecture that a monadic, category-theoretic
treatment of generics, in some future work, may allow reveal-
ing even further structures and insights underlying generic
OOP type systems.
Also related to applying category theory, based on the

earlier presentation of the outline of JSO as an operad for
modeling the construction of the self-similar generic sub-
typing relation in Java (as discussed in §5), some possible
future work may also consider joining the work presented in
this paper with the JSO operad to possibly present a deeper
category theoretic model of generic OOP type systems—one
that may possibly use the language of higher operads and
higher categories [56].

40In agreement with what Priestley states in [21, Ch.2] (same as [67]), we
believe that ‘Powersets are too nice! Programs built on pure set models
cannot capture all the behaviours that one might wish. Ordered set models
are richer.’
41Doing so will allow for full clarity on asserting, accurately, that generic
classes are passed ‘wildcard/interval type arguments’ rather than ‘parame-
terized types’ as their proper arguments (i.e., will settle, conclusively, the
debate on whether generic classes are parameterized by types or by wild-
cards/intervals, by taking the side of wildcards/intervals).

Towards an Order and Category Theoretic Model of Java Generics

In conclusion, in spite of its volume, we do not believe
the amount of suggested future work that can possibly build
on the approach presented in this paper, some of which we
already acknowledge may need to be performed to fully val-
idate the approach, diminishes in any way the potential the
approach has—in fact quite the opposite. That’s because most
of the suggested future work points to concrete and specific
suggestions as to how to implement the work and how to
address particular issues. As such we believe the approach
shows its potential, even further, by it suggesting how poten-
tial roadblocks may be handled and addressed appropriately,
fully within the standard mathematical frameworks of order
theory and category theory.

References
[1] 2015. C# Language Specification, Version 5.0.
[2] 2017. International Standard ISO/IEC 14882:2017(E) - Programming

Language C++.
[3] 2018. Kotlin Language Documentation, v. 1.2.
[4] Moez A. AbdelGawad. 2012. NOOP: A Mathematical Model of Object-

Oriented Programming. Ph.D. Dissertation. Rice University.
[5] Moez A. AbdelGawad. 2013. NOOP: A Nominal Mathematical Model

Of Object-Oriented Programming. Scholar’s Press.
[6] Moez A. AbdelGawad. 2013. An Overview of Nominal-Typing ver-

sus Structural-Typing in Object-Oriented Programming (with code
examples). arXiv:cs.PL/1309.2348 (2013).

[7] Moez A. AbdelGawad. 2014. A Domain-Theoretic Model of Nominally-
Typed Object-Oriented Programming. Electronic Notes in Theoretical
Computer Science 301 (2014), 3–19. https://doi.org/10.1016/j.entcs.2014.
01.002

[8] Moez A. AbdelGawad. 2016. Towards an Accurate Mathemati-
cal Model of Generic Nominally-Typed OOP (Extended Abstract).
arXiv:cs.PL/1610.05114 (2016).

[9] Moez A. AbdelGawad. 2017. Towards a Java Subtyping Operad.
Proceedings of FTfJP’17, Barcelona, Spain (Extended version available
at arXiv:cs.PL/1706.00274) (2017). https://doi.org/10.1145/3103111.
3104043

[10] Moez A. AbdelGawad. 2018. Doubly F-bounded Generics.
arXiv:cs.PL/1808.06052 (2018).

[11] Moez A. AbdelGawad. 2018. Induction, Coinduction, and Fixed Points:
A Concise Comparative Survey. arXiv:cs.LO/1812.10026 (2018).

[12] Moez A. AbdelGawad. 2018. Java Subtyping as an Infinite Self-Similar
Partial Graph Product. arXiv:cs.PL/1805.06893 (2018).

[13] Moez A. AbdelGawad. 2018. Partial Cartesian Graph Product.
arXiv:cs.PL/1805.07155 (2018).

[14] Moez A. AbdelGawad. 2018. Towards Taming Java Wildcards and
Extending Java with Interval Types. arXiv:cs.PL/1805.10931 (2018).

[15] Moez A. AbdelGawad. 2019. Induction, Coinduction, and Fixed Points
in PL Type Theory. arXiv:cs.LO/1903.05126 (2019).

[16] Moez A. AbdelGawad. 2019. Induction, Coinduction, and Fixed Points:
Intuitions and Tutorial. arXiv:cs.LO/1903.05127 (2019).

[17] Moez A. AbdelGawad. 2019. Modeling Object-Oriented Generics: A
Lattice- and Category-Theoretic Approach. Poster @ Applied Category
Theory 2019 (ACT’19), Oxford University, London, UK (2019).

[18] Moez A. AbdelGawad. 2019. Mutual Coinduction.
arXiv:cs.LO/1903.06514 (2019).

[19] Moez A. AbdelGawad. 2019. Using Category Theory in
Modeling Generics in Object-Oriented Programming (Outline).
arXiv:cs.PL/1906.04925 (2019).

[20] Moez A. AbdelGawad and Robert Cartwright. 2018. NOOP: A Domain-
Theoretic Model of Nominally-Typed Object-Oriented Programming.

arXiv:cs.PL/1801.06793 (2018).
[21] Roland Carl Backhouse, Roy L. Crole, and Jeremy Gibbons (Eds.). 2002.

Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, International Summer School and Workshop, Oxford, UK,
April 10-14, 2000, Revised Lectures. Lectures Notes in Computer Science,
Vol. 2297. Springer.

[22] Paolo Baldan, Giorgio Ghelli, and Alessandra Raffaeta. 1999. Basic
Theory of F-bounded Polymorphism. Information and Computation
153, 1 (1999), 173–237.

[23] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
1998. Making The Future Safe For The Past: Adding Genericity to The
Java Prog. Lang.. In OOPSLA’98, Vol. 33.

[24] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. 2008. A
Model for Java with Wildcards. In ECOOP’08.

[25] Nicholas Cameron, Erik Ernst, and Sophia Drossopoulou. 2007. To-
wards an existential types model for Java wildcards. FTfJP’07 (2007).

[26] Peter S. Canning, William R. Cook, Walter L. Hill, J. Mitchell, and
W. Olthoff. 1989. F-bounded Polymorphism for Object-Oriented Pro-
gramming. In Proc. of Conf. on Functional Programming Languages and
Computer Architecture.

[27] Luca Cardelli. 1984. A semantics of multiple inheritance. In Proc. of the
internat. symp. on semantics of data types (Sophia-Antipolis, France),
Vol. 173. Springer-Verlag, 51–67. http://portal.acm.org/citation.cfm?
id=1096.1098

[28] Luca Cardelli. 1988. A Semantics of Multiple Inheritance. Inform. and
Comput. 76 (1988), 138–164.

[29] Luca Cardelli. 1988. Structural Subtyping and the Notion of Power
Type. In ACM Proceedings of POPL.

[30] Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data
Abstraction, and Polymorphism. Computing Surveys 17, 4 (December
1985), 471–522.

[31] Robert Cartwright and Moez A. AbdelGawad. 2013. Inheritance Is
Subtyping (Extended Abstract). In The 25th Nordic Workshop on Pro-
gramming Theory (NWPT). Tallinn, Estonia.

[32] Robert Cartwright, Rebecca Parsons, and Moez A. AbdelGawad. 2016.
Domain Theory: An Introduction. arXiv:cs.PL/1605.05858.

[33] Robert Cartwright and Jr. Steele, Guy L. 1998. Compatible Genericity
with Run-time Types for the Java Prog. Lang.. In OOPSLA’98, Vol. 33.

[34] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A
Unified Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints. In Proc. of 4th Symp. on Principles of
Prog. Lang. (POPL). 238–252.

[35] B. A. Davey and H. A. Priestley. 2002. Introduction to Lattices and Order
(2nd ed.). Cambridge University Press.

[36] Herbert B. Enderton. 1977. Elements of Set Theory. Academic Press,
New York.

[37] Brendan Fong and David Spivak. 2018. Seven Sketches in Composition-
ality: An Invitation to Applied Category Theory. Draft.

[38] Thomas Forster. 2003. Logic, Induction, and Sets. Cambridge University
Press.

[39] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. 2002.
Recursive Subtyping Revealed. Journal of Functional Programming
(2002).

[40] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and
D. S. Scott. 2003. Continuous Lattices and Domains. Encyclopedia Of
Mathematics And Its Applications, Vol. 93. Cambridge University
Press.

[41] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2005. The Java
Language Specification. Addison-Wesley.

[42] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and
Daniel Smith. 2018. The Java Language Specification. Addison-Wesley.

[43] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and
Daniel Smith. 2019. The Java Language Specification. Addison-Wesley.

https://doi.org/10.1016/j.entcs.2014.01.002
https://doi.org/10.1016/j.entcs.2014.01.002
https://doi.org/10.1145/3103111.3104043
https://doi.org/10.1145/3103111.3104043
http://portal.acm.org/citation.cfm?id=1096.1098
http://portal.acm.org/citation.cfm?id=1096.1098

Moez A. AbdelGawad

[44] Ben Greenman, Fabian Muehlboeck, and Ross Tate. 2014. Getting
F-bounded Polymorphism Into Shape. In PLDI’14.

[45] Paul R. Halmos. 1960. Naive Set Theory. D. Van Nostrand Company,
Inc.

[46] Egbert Harzheim. 2005. Ordered Sets. Springer.
[47] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-

erweight Java: A Minimal Core Calculus for Java and GJ. ACM Trans.
on Prog. Languages and Systems 23, 3 (May 2001), 396–450.

[48] Atsushi Igarashi and Mirko Viroli. 2002. On variance-based subtyping
for parametric types. In In ECOOP. Springer-Verlag, 441–469.

[49] Atsushi Igarashi and Mirko Viroli. 2006. Variant Parametric Types: A
Flexible Subtyping Scheme for Generics. ACM Trans. on Prog. Lang.
and Sys. 28, 5 (September 2006), 795–847.

[50] Bart Jacobs. 1996. Objects and Classes, Coalgebraically. In Object-
Orientation with Parallelism and Persistence. Kluwer Acad. Publ, 83–
103.

[51] Bart Jacobs and Erik Poll. 2002. Coalgebras and Monads in the Seman-
tics of Java. Preprint submitted to Elsevier Science (2002).

[52] Andrew J. Kennedy and Benjamin C. Pierce. 2007. On Decidability
of Nominal Subtyping with Variance. In International Workshop on
Foundations and Developments of Object-Oriented Languages.

[53] B. Knaster. 1928. Un Théorème sur Les Fonctions d’Ensembles. Ann.
Soc. Polon. Math. 6 (1928), 133–134.

[54] Dexter Kozen and Alexandra Silva. 2016. Practical Coinduction.
Mathematical Structures in Computer Science 27, 7 (2016), 1132–1152.
https://doi.org/10.1017/S0960129515000493

[55] Angelika Langer. 2015. The Java Generics FAQ.
http://www.angelikalanger.com/GenericsFAQ/.

[56] T. Leinster. 2004. Higher Operads, Higher Categories. Cambridge
University Press.

[57] Donna Malayeri and Jonathan Aldrich. 2008. Integrating nominal and
structural subtyping. In ECOOP 2008–Object-Oriented Programming.
Springer, 260–284.

[58] Simon Marlow. 2010. Haskell 2010 Language Report.
[59] Andrew McLennan. 2018. Advanced Fixed Point Theory for Economics.

Springer.
[60] R. Milner, M. Tofte, R. Harper, and D. MacQueen. 1997. The Definition

of Standard ML (Revised). MIT Press.
[61] Martin Odersky. 2014. The Scala Language Specification, v. 2.9.
[62] Lawrence C. Paulson. 1995. Set Theory For Verification: II Induction

and Recursion. Journal of Automated Reasoning 15, 2 (1995), 167–215.
[63] Benjamin C. Pierce. 1991. Basic Category Theory for Computer Scientists.

MIT Press.
[64] Benjamin C. Pierce. 1994. Bounded Quantification is Undecidable.

Information and Computation 112, 1 (1994), 131–165.
[65] Benjamin C. Pierce. 2002. Types and Prog. Languages. MIT Press.
[66] Erik Poll. 2000. A Coalgebraic Semantics of Subtyping. Electronic

Notes in Theoretical Computer Science 33 (2000), 276 – 293. https:
//doi.org/10.1016/S1571-0661(05)80352-4 CMCS’2000, Coalgebraic
Methods in Computer Science.

[67] Hilary A. Priestley. 2002. Ordered Sets and Complete Lattices: A
Primer for Computer Science. In Alg. and Coalg. Methods in the Math.
of Program Construction. Springer, Chapter 2, 21–78.

[68] Bernhard Reus. 2002. Class-based versus Object-based: A Denotational
Comparison. Algebraic Methodology And Software Technology, Lecture
Notes in Computer Science 2422 (2002), 473–488.

[69] Bernhard Reus. 2003. Modular Semantics and Logics of Classes, In
Computer Science Logic. Computer Science Logic (CSL’03), LNCS 2803
(2003), 456–469.

[70] Bernhard Reus and Thomas Streicher. 2002. Semantics and Logics of
Objects. Proceedings of the 17th Symp. on Logic in Computer Science
(LICS 2002) (2002), 113–122.

[71] Steven Roman. 2008. Lattices and Ordered Sets. Springer.

[72] J.J.M.M. Rutten. 2000. Universal Coalgebra: A Theory of Systems.
Theoretical Computer Science (2000).

[73] Dana S. Scott. 1976. Data Types as Lattices. SIAM Journal of Computing
5, 3 (1976), 522–587.

[74] Dan Smith and Robert Cartwright. 2008. Java Type Inference is Broken:
Can We Fix It? OOPSLA (2008), 505–524.

[75] David Spivak. 2014. Category theory for the sciences. MIT Press.
[76] Alexander J. Summers, Nicholas Cameron, Mariangiola Dezani-

Ciancaglini, and Sophia Drossopoulou. 2010. Towards a Semantic
Model for Java Wildcards. FTfJP’10 (2010).

[77] Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its
applications. Pacific J. Math. 5 (1955), 285–309.

[78] Ross Tate. 2013. Mixed-Site Variance. In FOOL ’13: Informal Proceedings
of the 20th International Workshop on Foundations of Object-Oriented
Languages (Indianapolis, IN, USA).

[79] Ross Tate, Alan Leung, and Sorin Lerner. 2011. Taming Wildcards in
Java’s Type System. PLDI’11, June 4–8, San Jose, CA, USA. (2011).

[80] Kresten Krab Thorup and Mads Torgersen. 1999. Unifying genericity.
In ECOOP 99–Object-Oriented Programming. Springer, 186–204.

[81] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. 2005. Wild
FJ. In Foundations of Object-Oriented Languages.

[82] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der
Ahé, Gilad Bracha, and Neal Gafter. 2004. Adding Wildcards to the
Java Programming Language. In SAC.

A Mathematical Background
In this section we present the main mathematical notions we
use in constructing an order and category theoretic model
of generics. Some of the constructs presented in this section
are standard constructs in order theory and category theory,
which we either use “as is” or only give them names that
make them more intuitive for use in an OO context, while
others were defined for the purposes of constructing our
model. (For readers interested in more details, we present
some relevant references in the text.)

A.1 Posets and Poset Constructors
Definition A.1 (Posets). A poset (partially-ordered set) P is
a pair of a set P , called the universe of P, and denoted by |P|,
and a binary relation over P that is reflexive, transitive and
antisymmetric (called the ‘underlying ordering relation’ of
P, and usually denoted ≤P) [35, 46, 71].

Example A.2. A familiar example of a total ordering rela-
tion (also called a chain, or a linear order) is the ≤ (less than
or equals) relation on the set of integers Z. (Relation ≤ is
a total ordering because for all m,n ∈ Z, either m ≤ n or
n ≤ m.)

Example A.3. Familiar examples of partial ordering rela-
tions underlying posets include the descendants (‘is descen-
dant of’) and ancestors (‘is ancestor of’) relations on sets
of humans (the existence of siblings forces both relations
to be only partial orderings not total ones), as well as the
scheduling relation between subtasks of a process (e.g., when
run on a multiprocessor or parallel computer).

Example A.4. Posets with underlying partial ordering re-
lations that are of most relevance to this work include, first,

https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1016/S1571-0661(05)80352-4
https://doi.org/10.1016/S1571-0661(05)80352-4

Towards an Order and Category Theoretic Model of Java Generics

the poset C of the inheritance relation (sometimes also called
the subclassing relation, and is sometimes denoted by E) on
the set C , the universe of C, of classes of an OO program,
and second, the poset T of the subtyping relation (usually
denoted by <:) on the setT , the universe of T, of types of an
OO program.

Definition A.5 (Tagging). For a set X , define the +-tagged
(‘plus-tagged’) set X+ as

X+ = {(x ,′ +′) |x ∈ X } ,

and the −-tagged (‘minus-tagged’) set X− as

X− = {(x ,′ −′) |x ∈ X } .

Example A.6. Sets X+ are used to model “covariant wild-
card type arguments” (e.g., type arguments that, in Java, are
defined using the ‘? extends’ clause), while sets X− are
used to model “contravariant wildcard type arguments” (e.g.,
those defined in Java using ‘? super’).

In the following definitions, let P and Q denote two posets
with universes P and Q and underlying ordering relations
≤P and ≤Q, respectively. Further, let S ⊆ P and let S ′ = P\S .
Operators +, ×, and \ denote the standard ‘sum’ (a.k.a.,
‘disjoint union’), ‘product42,’ and ‘difference’ operations on
sets [36, 45], respectively. (See Definition A.11 and §3.1 be-
low.)

Definition A.7 (Poset Products). The product of P and Q,
denoted P × Q, is the poset having the set

|P × Q| = P ×Q

as its universe, and, for (a,b) , (c,d) ∈ P × Q , the ordering
relation ≤ underlying P × Q is defined by

(a,b) ≤ (c,d) ⇔ a ≤P c ∧ b ≤Q d .

Example A.8 (Tagging as a Product). For a set X , the +-
tagged set X+ can be defined as the product of X with the
singleton set {′+′}, i.e., as X+ = X × {′+′}. Similarly, the
−-tagged set X− can be defined as X− = X × {′−′}.

Nowwe present three new, more advanced poset construc-
tors.

Definition A.9 (Partial Products). The partial product of P
and Q relative to S ⊆ P , denoted PnS Q , is the poset having

|PnS Q| = S ′ + S ×Q

as its universe (i.e., all elements of P that are in the subset S
are paired with all elements of Q , then the pairs are added,
via a disjoint union, to elements of S ′ to define the universe
of PnSQ). For elementsT1,T2 ∈ |PnS Q|, if we let R = S×Q

42Of pairings of all elements of the first set with all elements of the second.

then the ordering relation ≤: underlying PnS Q is defined,
according to the forms of T1 and T2, by
T1 ≤: T2 ⇔ T1 ≤P T2 T1,T2 ∈ S ′

T1 ≤: (c,d) ⇔ T1 ≤P c T1 ∈ S ′,T2 = (c,d) ∈ R

(a,b) ≤: T2 ⇔ a ≤P T2 T1 = (a,b) ∈ R,T2 ∈ S ′

(a,b) ≤: (c,d) ⇔ a ≤P c ∧ b ≤Q d T1 = (a,b) ,T2 = (c,d) ∈ R

ExampleA.10. Aswe present in §3, operatorn can be used
to model the pairing (in generic OOP type systems) of some
classes (generic classes, in particular) with type arguments
to construct types.

DefinitionA.11 (Wildcards). Thewildcards poset of a bounded
poset P (i.e., one with a top element ⊤ ∈ P and a bottom
element ⊥ ∈ P), denoted △ (P), is the poset having the set

|△ (P)| = P + (P\ {⊥})+ + (P\ {⊤,⊥})−

as its universe, and for elementsW1,W2 ∈ |△ (P)|, the order-
ing relation ⊑w (wildcard containment) underlying △ (P) is
defined by
(T1,

′ +′) ⊑w (T2,
′ +′) ⇔ T1 ≤P T2 W1 = (T1,

′ +′) ,W2 = (T2,
′ +′)

(T1,
′ −′) ⊑w (T2,

′ −′) ⇔ T2 ≤P T1 W1 = (T1,
′ −′) ,W2 = (T2,

′ −′)

T1 ⊑w (T2,
′ +′) ⇔ T1 ≤P T2 W1 = T1,W2 = (T2,

′ +′)

T1 ⊑w (T2,
′ −′) ⇔ T2 ≤P T1 W1 = T1,W2 = (T2,

′ −′)

Example A.12. The (wildcard) type argument Number is
contained in each of the following wildcard type arguments:
‘? extends Number’, ‘? extends Object’, ‘? super Number’,
and ‘? super Float’.

Definition A.13 (Notation). For convenience, in the follow-
ing definition (and in the rest of this paper) we use the nota-
tion [l − u] to denote the pair (l ,u), where l ,u are elements of
some poset P. The [· − ·] notation (called the ‘interval nota-
tion’) will particularly be used to denote pairs that represent
intervals over P whose lowerbound is l (the first component
of the pair) and whose upperbound is u (the pair’s second
component), i.e., where l ≤P u.

Definition A.14 (Intervals). The intervals poset of a poset P
(not necessarily bounded), denoted ⇕ (P), is the poset having
the set

|⇕ (P)| = {[p − q] |p,q ∈ P ∧ p ≤P q}

as its universe, and for elements [p1 − q1], [p2 − q2] ∈ |⇕ (P)|,
the ordering relation ⊑ (interval containment) underlying
⇕ (P) is defined by

[p1 − q1] ⊑i [p2 − q2] ⇔ p2 ≤P p1 ∧ q1 ≤P q2. (7)

Definition A.15 (Isomorphic Posets). Posets P and Q are
isomorphic if there exists a (set theoretic) isomorphism f :
P → Q and, additionally, p1 ≤P p2 ⇔ f (p1) ≤Q f (p2) for
all p1,p2 ∈ P .

Moez A. AbdelGawad

Definition A.16 (Subposets). Poset Q is a subposet (or sub-
order) of P ifQ ⊆ P and ≤Q is a subset of ≤P (i.e., if ≤Q⊆≤P).
Equivalently, Q is a subposet of P if Q ⊆ P and for all
q1,q2 ∈ Q , q1 ≤Q q2 ⇒ q1 ≤P q2 (i.e., elements of Q are
related by ≤Q only if, as elements of P , they are related by
≤P in P).
Further, poset Q is a full subposet of P if Q ⊆ P and ≤Q

is equal to the restriction of ≤P to elements of Q , or, equiv-
alently, if for all q1,q2 ∈ Q , q1 ≤Q q2 ⇔ q1 ≤P q2 (i.e.,
elements of Q are related if and only if they are related in P).

Lemma A.17 (⇕ extends △). For a bounded poset P, the poset
△ (P) is isomorphic to a full subposet of ⇕ (P).

Proof. Let w ∈ |△ (P)|, and let f : △ (P) →⇕ (P) be the
function that maps wildcards of P to intervals of P defined
by43

f (w) =

[T − ⊤] w = (T ,′ −′)

[⊥ −T] w = (T ,′ +′)

[T −T] w = T

. (8)

First, we check, using the definitions of f , ⊑w and ⊑i ,
that f preservingly maps the wildcard containment relation
underlying △ (P) to the interval containment ordering rela-
tion underlying ⇕ (P), i.e., that for every pair of elements
w1,w2 ∈ |△ (P)|, we have w1 ⊑w w2 ⇔ f (w1) ⊑i f (w2)

(function f is then called an ‘order-embedding’ [35]).
Next, by inspecting its definition, function f is clearly an

injection (a one-to-one function). If the codomain of f is
restricted to its image f (△ (P)), then f (with its codomain
restricted to its range) is also a surjection (i.e., an onto func-
tion), and thus is reversible, and hence an isomorphism from
△ (P) to f (△ (P)). Furthermore, the domain of the inverse
function f −1 is the set f (△ (P)). As such, the poset △ (P) of
wildcards over P is isomorphic to its image poset f (△ (P))
of intervals.
Finally, using the definitions of △ and ⇕, it is straightfor-

ward to confirm that the image f (△ (P)) is a full subposet of
⇕ (P), by confirming that | f (△ (P))| ⊆ |⇕ (P)|, then confirm-
ing that for allw1,w2 ∈ |△ (P)|, if i1 = f (w1) and i2 = f (w2)

then we have

i1 ⊑i | |f (△(P)) |i2 ⇔ i1 ⊑i i2 ⇔ w1 ⊑w w2

i.e., that any two elements of | f (△ (P))| are related (by inter-
val containment) in f (△ (P)) if and only if they are related
(by interval containment) in ⇕ (P), hence—by the first proof
step—if and only if their two preimages are related (by wild-
card containment) in △ (P). �

Definition A.18 (Note on Lemma). Given Lemma A.17, op-
erator ⇕ is said to extend operator △. While preserving all
elements of △ (P), and the relations between them, the poset
⇕ (P) of intervals (of P) has no less elements than the poset
43In an OOP context, function f will map wildcard type arguments to
interval type arguments.

△ (P) of wildcards (of P), and the elements of ⇕ (P) are related
in full consistence with relations between elements of △ (P).

Example A.19. Operators n, △ and ⇕ are poset construc-
tors that we newly defined for the purpose of constructing
an order theoretic model of generics.44

Having presented posets and some order theoretic tools
useful in constructing them, we next present the definitions
of some notions that are useful in analyzing posets and re-
lations between them. As we will see in §3 and §4, these
following notions are also useful in suggesting extensions
to generic OOP type systems.

A.2 Galois Connections, Pre-Fixed Points, and
Post-Fixed Points

Like before, in the following definitions let P and Q denote
two posets with universes P and Q and with underlying
ordering relations ≤P and ≤Q, respectively.

Definition A.20 (Galois Connections). Two mappings F :
P→ Q and E : Q→ P (sometimes written as F : P� Q : E)
define a Galois connection between posets P and Q if and
only if for all p ∈ P , q ∈ Q

F (p) ≤Q q ⇔ p ≤P E (q) .

Mapping F is then called the lower adjoint (or, sometimes,
the left or free adjoint) of the connection, while E is called its
upper adjoint (or, sometimes, the right or forgetful adjoint).

Example A.21. Under the standard orderings of integers,
Z, and real numbers, R, the mapping e : Z→ R that embeds
(“upcasts”) integers into reals (e.g., mapping 3 to 3.0 and 4
to 4.0) is a lower adjoint of the floor function ⌊·⌋ : R → Z
and is an upper adjoint of the ceiling function ⌈·⌉ : R →

Z [37, 67, 75].

Definition A.22 (Adjunctions [in CT=Category Theory]).
In the context of category theory, Galois connections (be-
tween two posets) are generalized to adjunctions (between
two categories) [37, 63, 75], and lower/upper adjoints are
called left/right adjoints, respectively.

Definition A.23 (Pre-/Post-Fixed Points). A mapping F :
P → P is called an endomap over poset P (since it maps P
into itself). An element p ∈ P is called a fixed point of an
endomap F : P → P if F (p) = p. If F (p) ≤P p, then p is
called a pre-fixed point of F . If p ≤P F (p), then p is called a
post-fixed point of F .45
44For more details on operators n, △ and ⇕, check [12–14]. In [12–14], the
three operators n, △ and ⇕ are not defined directly over posets but are
defined, rather, over directed (acyclic) graphs (DAGs)—i.e., over the ‘Hasse
diagrams’ of posets.
45A fixed point of an endomap is necessarily both a pre-fixed point and a
post-fixed point of the map. A pre-fixed point, though, may not necessarily
be a fixed point, nor, dually, may a post-fixed point be a fixed point of the
map. As clear from the definitions, a point that is simultaneously a pre-fixed
point and a post-fixed point of some endomap is also a fixed point of the
map.

Towards an Order and Category Theoretic Model of Java Generics

Definition A.24 (Algebras and Coalgebras [CT]). In the
context of category theory, where endofunctors generalize
order theoretic endomaps, pre-fixed points generalize to
algebras of an endofunctor F (a.k.a., F -algebras) while post-
fixed points generalize to coalgebras of endofunctor F (a.k.a.,
F -coalgebras).

Definition A.25 (Inductive and Coinductive Sets). In the
context of (power) set theory, if F : ℘ (U) → ℘ (U) is amono-
tonic function over subsets of a setU ordered by inclusion
⊆ (i.e., if for all X ,Y ⊆ U , X ⊆ Y =⇒ F (X) ⊆ F (Y)), then
F is called a generator overU , and the pre-fixed points of F
are then called (F -)inductive sets while the post-fixed points
of F are called (F -)coinductive sets [65, Ch. 21] and [39].)46

Definition A.26 (G-subtypes and G-supertypes [OOP]). In
the context of generic OOP, a generic class G : T→ T maps
parameterized types (ordered by subtyping, <:) to param-
eterized types (i.e., maps types into themselves). As such,
in homage to terminology used in category theory, we call
a type t ∈ |T| a G-subtype if t <: G (t), while t is called a
G-supertype if G (t) <: t .47

Example A.27. For a very simple, almost trivial example,
type Object is a G-supertype of any generic class G in a
generic Java program.48 In fact, since it is the top element
of the subtyping relation, type Object is the greatest (some-
times also called the largest) G-supertype.

Definition A.28 (LFPs and GFPs). In the context of order
theory, least pre-fixed points and greatest post-fixed points, if
they exist, are usually of special significance. In a complete
lattice L (a fundamental object of study in lattice theory [35,
40, 67, 71, 73, 77]), these special points are guaranteed to
exist for any monotonic endomap F defined over L, and
these points correspond precisely to lfps—least fixed points—
and gfps—greatest fixed points—of L [77].49

Definition A.29 (Downsets and Up-sets). A subposet U of
P is called the downset ↓ (p) of an element p ∈ P if for all
q ∈ P, q ≤ p → q ∈ |U|, i.e., the downset contains elements
of P that are less than or equal to p. Dually, the up-set ↑ (p)

46For more on correspondences between order theory, power set theory,
and category theory, check [11].
47Thus,G-supertypes andG-subtypes in generic OOP precisely correspond
to algebras and coalgebras in category theory, and to pre-fixed and post-
fixed points in order/lattice theory, respectively.
48Here, it is assumed that G has an unbounded type parameter; or that this
statement about type Object applies to admittible type arguments that may
not necessarily be valid type arguments (to classG). Even though a detailed
treatment of admittible versus valid type arguments is kept for future work,
§6 includes a brief discussion.
49Beyond mathematics and computer science, (least and greatest) fixed
points have applications in many scientific fields, e.g. in economics and
finance [59]. Fixed points also have strong affinity with eigenvectors (and
eigenvalues) of operators (i.e., matrices) in linear algebra. Like fixed points,
eigenvectors and eigenvalues also have many applications outside mathe-
matics, e.g., in machine learning algorithms, and in quantum physics and
quantum computing.

of p is the subposet of P that contains elements of P that p is
less than or equal to.

Definition A.30 (Slices and Coslices [CT]). In the context
of category theory, a slice category (sometimes called an over
category) corresponds to a downset, while a coslice category
(sometimes called an under category) corresponds to an up-
set. A final object in a slice category is called a limit. An
initial object in a coslice category is called a colimit.

Definition A.31 (Free Objects and Cofree Objects [CT]).
In the context of an adjunction composed of two functors
L : A � B : R between two categories A and B, the
notion of a comma category (L/R) can be used to define
slices (B/A) and coslices (A/B) of category B corresponding
to each object A of categoryA. Such slices and coslices may
also have limits and colimits, respectively. Limits of slices, if
they exist, are then called free objects of the category, while
colimits of coslices, if they exist, are called cofree objects of
the category.50

Example A.32. The ‘free monoid’ corresponding to a set
X is the monoid of finite sequences of elements of X , while
a quiver is the ‘free category’ corresponding to a directed
graph [75].

Definition A.33 (G-slices and G-coslices). In the context
of generic OOP (and the EGC between classes and types.
See §3.2), the G-slice corresponding to a generic class G is
the set of all types that are subtypes of some instantiation
of G (which includes all instantiations of G and their sub-
types, including, e.g., type Null), while the G-coslice is the
set of all types that are supertypes of some instantiation ofG
(which includes all instantiations ofG and their supertypes,
including, e.g., type Object).

Example A.34. Note the difference between the set of G-
subtypes and theG-slice of a generic classG . EveryG-subtype
belongs to theG-slice, but not every member of theG-slice is
a G-subtype. The same observation applies toG-supertypes
and the G-coslice. As such, we have

G-subtypes ⊆ G-slice and G-supertypes ⊆ G-coslice.

Example A.35. The set (G-slice ∩G-coslice) contains ‘all
parameterized types that are instantiations ofG’ and nothing
more. On the other hand, the set (G-subtypes ∩G-supertypes)
is always empty (unless G is a non-generic class).
50Given the duality of these two notions, in category theory literature
sometimes a convention opposite to ours is used in their definitions (i.e.,
in such literature, free objects are defined by colimits of coslices, while
cofree objects are defined by limits of slices). We adopt our convention,
however, for the sake of its convenience and its extra intuitiveness in an
OOP context (e.g., so as to call the commonly-used type C<?> the ‘free type’
corresponding to a generic class C, rather than, strictly-speaking, having to
call it the ‘cofree type’ corresponding to C, which we reserve as a name for
the rarely-supported type C<!>. See Definition A.36 below and §(4.4) for
more on free and cofree types).

Moez A. AbdelGawad

Definition A.36 (Free Types and Cofree Types). In the con-
text of generic OOP, again in homage to terminology used
in category theory, we define the free type corresponding to
a (generic) classG as the ‘most general instantiation’ of class
G, or, equivalently, as the maximum type of the G-slice, and
define the cofree type corresponding toG , if it at all exists, as
the ‘least general (i.e., most specific) instantiation’ of G, or,
equivalently, as the minimum type of theG-coslice. (The mo-
tivation behind the definition of these new OOP notions is

made clearer in §§3.2 and 4.2, where we discuss the Erasure
Galois Connection and doubly F -bounded generics.)

Example A.37. In generic Java, the free type corresponding
to a generic class C (informally, sort of “the free type that
comes with” the generic class) is the wildcard type C<?>. As
to cofree types, however, no OOP language that we know of
directly supports them so far. (See §4.4 for further discussion
of cofree types.)

	Abstract
	1 Introduction
	2 Mathematical Background
	3 An Order Theoretic Approach to Modeling Generic OOP
	3.1 Constructing The Subtyping Relation between Ground Parameterized Types
	3.2 The Erasure Galois Connection (EGC), and Nominal Typing and Nominal Subtyping

	4 Suggested Extensions of Generic OOP Type Systems
	4.1 Interval Types
	4.1.1 Subtyping Rules for Interval Types

	4.2 Doubly F-bounded Generics
	4.2.1 Modeling (Doubly) F-bounded Generics: Inductive and Coinductive Types in Generic OOP

	4.3 Default Type Arguments and Default Types
	4.4 Cofree Types

	5 Related Work
	6 Discussion, Concluding Remarks, and Future Work
	6.1 Future Work

	References
	A Mathematical Background
	A.1 Posets and Poset Constructors
	A.2 Galois Connections, Pre-Fixed Points, and Post-Fixed Points

