
EasyChair Preprint

№ 560

Disclosure Analysis of SQL Workflows

Marlon Dumas, Luciano Garćıa-Bañuelos and Peeter Laud

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 5, 2018

Disclosure Analysis of SQL Workflows

Marlon Dumas1, Luciano Garćıa-Bañuelos1, and Peeter Laud2

1 University of Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

2 Cybernetica, Estonia
peeter.laud@cyber.ee

Abstract. In the context of business process management, the imple-
mentation of data minimization requirements requires that analysts are
able to assert what private data each worker is able to access, not only
directly via the inputs of the tasks they perform in a business process,
but also indirectly via the chain of tasks that lead to the production of
these inputs. In this setting, this paper presents a technique which, given
a workflow that transforms a set of input tables into a set of output tables
via a set of inter-related SQL statements, determines what information
from each input table is disclosed by each output table, and under what
conditions this disclosure occurs. The result of this disclosure analysis is
a summary representation of the possible computations leading from the
inputs of the workflow to a given output thereof.

1 Introduction

Data minimization is one of the principles underpinning the European General
Data Protection Regulation (GDPR) as well as previous privacy frameworks and
standards such as ISO 29100 [3]. In the context of Business Process Management
(BPM) this principle entails that workers, contractors, and other stakeholders
involved in the execution of a business process, should only have access to pri-
vate data to the extent it is required to perform the tasks for which they are
responsible. In order to verify compliance vis-a-vis of this requirement, analysts
need to have a fine-grained understanding of what private data each worker is
able to access, not only directly via the inputs of the tasks they perform, but
also indirectly via the chain of tasks that lead to the production of these inputs.

Previous work on business process privacy analysis [1] has led to techniques
for boolean (“yes-no”) disclosure analysis. These techniques allow an analyst to
determine whether or not a given stakeholder has access to a data object or
data collection (e.g. a document or a database table). However, it does not allow
analysts to determine what part of the data collection (e.g. what attributes) are
accessible to each stakeholder and under which conditions.

This paper proposes a finer-grained disclosure analysis technique which char-
acterizes how the contents of the database on top of which a business process
is executed, affects each output of the process, specifically, which columns of
which tables become part of an output, in which manner, and under which con-
ditions. The proposed technique tasks as input a SQL workflow, which we define

as a process model in the standard BPMN notation3 in which each task corre-
sponds to a SQL statement executed against a database. Each SQL statement
in the workflow queries a set of input tables from the database and produces
new tables, which can be later used by subsequent tasks in the workflow. The
table (or set of tables) that are taken as input by the first SQL statements in
the workflow are called the inputs. Conversely, the tables produced by the last
SQL statements in the workflow are called the final output(s), while the tables
produced by intermediate tasks in the workflow are called intermediate outputs.

As a running example, Figure 1 presents an example SQL workflow from
an Aid Distribution process, in which a country facing a catastrophe, requests
aid from the international community. The situation requires distributing goods
to the population via maritime transportation. Henceforth, a SQL workflow is
executed to identify ships in nearby locations and to allocate berths to ships,
such that ships can move people and goods from/to the requesting country.

Compute
reachable

ports

Compute
feasible

ports

Allocate
ship to port/

berth

Ports
Reachable ports Feasible ports

Parameters

(deadline,

ship name)

Berths

Ship/berth
allocations

Slots

Ships

Fig. 1. Conceptual model of the Aid distribution scenario

Some of the inputs used in this workflow are confidentail (e.g. ship location
and capacities) and the countries involved in the process seek to minimize their
exposure to different stakeholders. Accordingly, an analyst needs to determine:
(i) who gets access to which input tables during the performance of the pro-
cess? (ii) what information (e.g. table columns or functions over columns) are
disclosed? and (iii) under what conditions this disclosure occurs? The disclosure
analysis technique proposed in this paper supports this task by determining what
information is disclosed via each intermediate and final output of the workflow,
and under which conditions (i.e. for which table rows) this disclosure occurs.

The rest of the paper is structured as follows. Section 2 formalizes the notion
of SQL workflow. Section 3 presents the disclosure analysis technique, while
Section 4 presents how the output of this technique can be simplified and visually
presented. Section 5 discusses related work, while Section 6 draws conclusions.

3 http://www.bpmn.org/

2 SQL Workflows

For the disclosure analysis, we assume that the overall computation is specified as
a set of inter-related SQL statements over a database. Each step takes some input
tables and derives new information that is stored in output tables which might
be used by subsequent steps. Each task in the SQL workflow is associated with
a SQL statement. Listing 1.1 presents the script associated with task “Compute
reachable ports” from the running example.

Listing 1.1. SQL script associated with task “Compute reachable ports”

1 create function earliest arrival(
2 ship_latitude double precision, ship_longitude double precision,
3 port_latitude double precision, port_longitude double precision,
4 max_speed bigint) returns bigint as
5 $$
6 select ceil((point(ship_latitude, ship_longitude)
7 <@> point(port_latitude, port_longitude)) / max_speed)::bigint
8 $$
9 language SQL immutable returns null on null input;

10

11 select port.port_id as port_id,
12 earliest arrival(ship.longitude, ship.latitude, port.longitude,
13 port.latitude, ship.maxspeed) as arrival

14 into reachable ports

15 from ports as port, ships as ship, parameters as p

16 where earliest arrival(ship.longitude, ship.latitude,
17 port.longitude, port.latitude, ship.maxspeed) <= p.deadline
18 and ship.name = p.shipname
19 and port.port_id = port.port_id;

The syntax used in the script is that of PostgreSQL and, as it can be seen, the
underlying query is not trivial. In this example, the script includes a user defined
function (i.e. earliest arrival) that computes the time for a ship to reach
a port given their coordinates and the ship’s speed. Each task can be associated
with any number of user-defined functions and at least one select-into statement
that would store the outcome of the computation on a (temporary) table, to
be consistent with the intent specified in the conceptual model. In Listing 1.1,
such select-into statement is defined in lines 11-19. Moreover, it can be seen
that such statement takes as input tables ports, ships and parameters
(highlighted in line 15) and stores the result in table reachable ports (line
14), consistent with the model. The select statement, in turn, calls the function
earliest arrival in lines 12 and 16, which is defined in lines 1-9.

SQL workflows may include sophisticated constructs to captures conditional
branching and concurrency, as per the BPMN standard. For simplicity, the dis-
closure analysis is performed not on the whole SQL workflow but on the set
of the runs of it. A run is the set nodes and edges that are visited on a SQL
workflow to track one possible execution of the workflow.

To illustrate the concept of run, consider the sample workflow in Figure 2,
which contains AND gateways (cf. diamonds decorated with +) and XOR gate-
ways (cf. decorated with ×). The semantics of such gateways, as defined in the
BPMN specification [8], is the following. An AND gateway activates all the ele-
ments on the outgoing paths and synchronizes the completion of all the elements

A

B

C

D

D

m

n

o

p

q

r

s

vs ve
g1 g2

g3

g4

Fig. 2. Sample SQL workflow and its runs

on the incoming paths. Conversely, a XOR gateway activates only one outgo-
ing path (cf. based on a predicated associated with the edge) or waits for the
completion of one of the incoming paths. Henceforth, a run of this workflow is a
connected subgraph of the process model that contains the start (entry) and the
end (exit) node, and such that at most one outgoing edge of each XOR-split is
represented. In the example shown in Figure 2, there are exactly two runs, one
of which is highlighted.

Before describing the method, we need to introduce some notation. Con-
ceptually, a SQL workflow can be represented as a directed graph, formally
defined as tuple W = (V, E ,P,O,F ,V×,V+,AD,AQ). There, V is the set of
nodes and E ⊆ V × V the set of control flow edges. For convenience, we assume
that V = P ∪ V× ∪ V+ ∪ {vs} ∪ Ve, where P denotes the set of data processing
nodes, G× the set of AND gateways, V+ XOR gateways, vs is the start node,
and Ve is a non-empty set of end nodes (e.g. ve). A SQL workflow must have
exactly one start node and at least one end node. O is the set of data objects
and F ⊆ (O×P)∪ (P ×O) the set of dataflow edges. Similarly, AD : O → SQL
is a mapping that associates data objects with SQL data definition statements,
and AQ : P → SQL a mapping that associates processing nodes with SQL data
manipulation statements. Finally, we will write •v = {v′ ∈ V|(v′, v) ∈ E} to
denote the set of predecessors of node v and v• = {v′ ∈ V|(v, v′) ∈ E} to refer
to the set of successors of v.

Consider the workflowW. We write P(W) to denote the set of all runs ofW,
iif for every ρ ∈ P(W) with ρ = (V ′, E ′), all the following conditions hold: (i) ρ is
subgraph ofW, i.e. V ′ ⊆ V and E ′ = E ∩(V ′×V ′), (ii) ρ includes start/end nodes
of W, i.e. vs, ve ∈ V ′, (iii) ρ includes exactly one path incoming/outgoing XOR
gateways, i.e. ∀g ∈ V ′ ∩ V× : | • g ∩ V ′| = |g • ∩V ′| = 1, (iv) ρ includes all paths
incoming/outgoing nodes other than XOR gateways, i.e. ∀g ∈ V ′ \ V× : •g ⊂
V ′ ∧ g• ⊂ V ′, and (v) all the nodes in ρ are in a path from the start node and
finishes in at least one of end node ve, i.e. ∀v ∈ V ′,∃ve ∈ Ve : (vs, v), (v, ve) ∈ E ′∗.
The set P(W) can be trivially computed if W is acyclic, using a tailored depth-
first search traversal as presented in [9]. When the input SQL workflow contains
loops, it is possible to unroll all the loops one iteration. The method described
here can then be applied on the resulting acyclic workflow.

Note that the notion of a run is defined over the control flow edges of the
input workflow. However, the data dependencies can be trivially derived for each
run ρ by computing the subgraph over dataflow nodes (i.e. data objects) and
edges induced by the set of data processing nodes of ρ. Formally, O(ρ) ⊂ O
denotes the set of data objects associated with run ρ and is defined as O(ρ) =
{o ∈ O|∃v ∈ V ′ : (v, d) ∈ E ′ ∨ (d, v) ∈ E ′}.

Finally, given a run ρ of a SQL workflow W, we would need to derive the
SQL script that the run would execute. Such a script can be derived from the
SQL statements associated with data objects and data processing nodes, by
concatenating them following a topological order of the nodes in the run. It is
this script that serves as input to the disclosure analysis described below.

3 Disclosure analysis

3.1 Databases, schemas, and queries

Workflow runs (cf. previous section) can be straightforwardly turned to relational
algebra workflows. These workflows carry the same information, without the
syntactic baggage of SQL. These workflows are defined in Fig. 3, also depending
on the definitions of relation and database schemas, as stated below.

A relation schema is r(a1 : D1, . . . , an : Dn;Disr), where r is relation name,
a1, . . . , an are attribute names, D1, . . . , Dn are sets, and Disr is a set of subsets of
the set of attributes {a1, . . . , an}. The last component indicates, which attributes
or sets of them must be unique in a relation satisfying this schema. An element
of Disr describes a possible index for a table satisfying the relation schema r. In
our analysis, we require Disr to contain at least one set of attributes.

Let D[r] denote the set D1 × · · · ×Dn. A relation R over the schema r is a
subset of D[r], such that for each {ai1 , . . . , aik} ∈ Disr and each (xi1 , . . . , xik) ∈
Di1×· · ·×Dik there is at most one (y1, . . . , yn) ∈ R satisfying yi1 = xi1 , . . . , yik =
xik . Let Xr denote the set of all relations over the schema r. For x ∈ D[r], let
x[ai] denote the value of attribute ai on x.

A database schema is dbs = (t1 : r1, . . . , tm : rm), where t1, . . . , tm are table
names and r1, . . . , rm are relation schemas. A database over the schema is a
tuple of relations D = (R1, . . . , Rm), where Ri is over ri. For a fixed dbs, let Y
denote the set of all databases over the schema dbs, and let D[ti] denote the set
D[ri]. For a database Y ∈ Y, let Y.ti ⊆ D[r] denote its table ti.

Suppose that we have selected the primary keys for each table in the database.
That means, for each t : r in the database schema, we have selected indexr ∈ Disr.
We can then think of a relation R over the schema r(a1 : D1, . . . , an : Dn;Disr)
as a set of partial functions fr1 , . . . , f

r
n from the cartesian product

∏
ai∈indexr Di to

each of the sets D1, . . . , Dn. All these partial functions are defined on the same
domain. If ai ∈ indexr, then the function fri must be a partial projection.

The syntax for workflows of simple database queries is given in Fig. 3. The
workflow is executed against a database with a certain schema dbs. The meaning
of the syntax for queries Q is the following.

Q ::= t | Q1 × · · · ×Qk | [Q]a→a′ | σ(Q; e)
| πa1,...,ak (Q) | cola←e(Q) | let t = Q1 in Q2 | Q1 ∪Q2

| Q1 ∩Q2 | Q1 ne Q2 | groupa1,...,ak

(a′1
⊗

1),...,(a
′
l
,
⊗

l)
(Q)

e ::= a | ⊗(e1, . . . , ek)

Fig. 3. Syntax of queries

– The query t returns the table t. This table must exist in the current database.
– The query Q1×· · ·×Qk returns the cartesian product of the results of queries
Q1, . . . , Qk. We require that the names of the attributes in Q1 × · · · × Qk
are unique, i.e. the queries Q1, . . . , Qk result in datasets which have non-
intersecting sets of attributes.

– [Q]a→a′ executes the query Q. Its result is a relation with a certain schema;
this schema must contain attribute a, which is then renamed to a′.

– σ(Q; e) filters the result of the query Q with the expression e. The expres-
sion e, which must return a Boolean value, is built up from attributes and
arithmetic / relational / logical etc. operations ⊗. We expect the expressions
e to be well-typed, but will not discuss this here any more.

– πa1,...,ak(Q) projects the result of Q onto attributes a1, . . . , ak. The dataset
returned by Q must have these attributes in its schema.

– cola←e(Q) runs Q and then adds a new column (a new attribute) to the
result. The name of the attribute is a. Its value for each row is computed
from the existing attributes of this row according to the expression e.

– let t = Q1 in Q2 is used to build workflows. It executes the query Q1 against
the current and gives the resulting dataset the name t. It will then execute
the query Q2 against the database the contains the current database, as well
as the the table t.

– Q1 ∪Q2 and Q1 ∩Q2 return the union and the intersection of the results of
Q1 and Q2, which must have the same schema.

– Q1neQ2 returns all such rows r1 from the result of Q1, such that there exists
no row r2 in the result of Q2, such that the boolean expression e holds. This
construction is used to build outer joins.

– groupa1,...,ak(a′1
⊗

1),...,(a
′
l,
⊗

l)
(Q) expresses grouping and aggregation of the result

of Q. The resulting dataset will have attributes a1, . . . , ak, a
′
1, . . . , a

′
l, with

{a1, . . . , ak} forming the index. There will be a row with particular values
of a1, . . . , ak if the result of Q had at least one row with these values. The
attribute a′i in the query result will be the aggregation by

⊗
i of the attributes

a′i in all these rows in the result of Q.

Fig. 3 gives us a rich language for expressing SQL workflows, allowing the use
of various types of filters, joins, and projections. Note that the ORDER BY com-
ponent of a SQL statement does not change the resulting relation, hence sorting
does not appear among our relational algebra operations. However, sorting may
be combined with the row_number() function that exists in some SQL dialects.
More generally, the row number generation can be done after the dataset has

been partitioned according to the values of some other column(s). The row num-
bers of sorted datasets have been used in the last step of the scenario depicted
in Fig. 1. Such use of ordering and row numbers can be modelled with the help
of grouping and aggregation.

3.2 Dependency graphs and summaries

A dependency graph (DG) is a directed graph G = (V,E, s, t, . . .), where s, t :
E → V give the source and the target nodes of arcs. The DG also has the
following additional components:

– There are subsets of nodes I,O ⊆ V . The in-degree of any node in I and the
out-degree of any node in O is 0. The in-degree of any node in O is 1. These
nodes represent the inputs coming to, and the outputs produced by the DG.

– There is a set Op of possible operations. Each internal node v (i.e. v ∈
V \(I ∪O)) has a label λ(v) ∈ Op.

– For each internal node v, its incoming arcs are linearly ordered; let <v denote
the ordering relation. The number of incoming arcs of an internal node v is
equal to the number of operands that the operation λ(v) expects.

Let V be a set of values; the operations in Op consume and produce values.
Given the semantics J⊗K : V∗ → V of each operation ⊗ ∈ Op, the dependency
graph G defines a mapping JGK : VI → VO. If G has no directed cycles, then
this mapping is defined by assigning a value to each node of G, with the values
for input nodes given by the input to JGK; the values of intermediate nodes
v computed by applying λ(v) to the values of direct ancestors of v; and the
values of output nodes being equal to the values of their direct ancestors. For
dependency graphs with directed cycles, the semantics can be defined using a
fix-point construction [11], if there is a partial order on V with the least element
⊥, and if the operations are monotonic. In this deliverable, we do not have cyclic
dependency graphs, hence we will not discuss this any more.

A dependency graph may be infinite, with infinitely many inputs and outputs,
as well as with nodes having an infinite number of incoming edges. In the latter
case, the operation in the node must make sense for infinite number of inputs
(e.g. it may be conjunction or disjunction of booleans). If G is infinite then JGK
is still well-defined as long as for each output node vO there is a bound BO, such
that any path in the graph ending in vO has length at most BO.

The computations of an SQL workflow can naturally be expressed as infinite
dependency graphs. Given a table t with the schema r(a1 : D1, . . . , an : Dn) and
its index indexr, we express its use in a workflow by the input nodes vti,K for each
attribute ai and each possible value K of the index attributes of t. Additionally,
the use of the table t is expressed by the input nodes vt∃,K , denoting whether the
row with the index value K is present in the database. As the index attributes
typically come from infinite sets (e.g. integers), there are infinitely many possible
values K. The input nodes vti,K and vt∃,K are followed by computation nodes for
the expressions e occurring in the workflow. Again, these are replicated as many

times as there are possible values for index attributes in the relations that they
work on. We end up with a graph with output nodes wj,K′ and w∃,K′ for each
possible value K ′ of the index of the resulting dataset. The attributes of the
index of the resulting dataset, and hence also the set from which the values K ′

come from, can be computed from the query as shown in Fig. 4.

Q indexQ
t

∏
ai∈indexr

Di, where r(a1 : D1, . . . , an : Dn) is the schema of t

Q1 × · · · ×Qk indexQ1
× · · · × indexQk

[Q]a→a′ indexQ
σ(Q; e) indexQ
πa1,...,ak (Q) indexQ
cola←e(Q) indexQ
let t = Q1 in Q2 indexQ2

, where indext ← indexQ1

Fig. 4. Computing the index set of the query

We represent the infinite dependency graphs as finite summaries. The sum-
mary dependency graph (SDG) has the same components (V,E, I,O, λ,<) as a
DG. However, there is additional structure for the nodes and the edges.

– There is a set of possible index sets S. The elements of S are typically the
set of integers, the set of strings, the unit set (a set with a single element).
For handling a particular database schema, S must contain all sets Di that
are associated to some attribute in the index of some table in this schema.

– Each node v ∈ V has the dimension dim(v) and input dimension
−→
dim(v).

They are both sets.
• In our representation, both dim(v) and

−→
dim(v) are sets that can be ex-

pressed as polynomials over S. A polynomial over a set of sets X is a
set of the form

∑n
i=1

∏mi

j=1Xij , where Xij ∈ X , and
∑

denotes the non-
intersecting union (or: sum) of sets. Hence there is a finite representation

for dim(v) and
−→
dim(v).

– Each node v has a mapping δ(v) from
−→
dim(v) to dim(v).

• In our representation, the mapping δ(v) is a canonical polynomial map.

Let
−→
dim(v) =

∑n
i=1

∏mi

j=1Xij and dim(v) =
∑s
i=1

∏ti
j=1 Yij . A canonical

polynomial map is built up from identity mappings between Xij and
Yi′j′ (which must be the same set) as follows:
∗ A canonical mapping c :

∏m
j=1Xj →

∏t
j=1 Yj is defined by an injec-

tive mapping γ : {1, . . . , t} → {1, . . . ,m} satisfying Xγ(j) = Yj for
all j ∈ {1, . . . , t}. The mapping c is given by

c((x1, . . . , xm)) = (xγ−1(1), . . . , xγ−1(t)) .

∗ A canonical mapping from
∏m
j=1Xj to

∑s
i=1

∏ti
j=1 Yij consists of an

index q ∈ {1, . . . , s} and a canonical mapping of the previous kind

from
∏m
j=1Xj to

∏tq
j=1 Yqj .

∗ A canonical mapping from
∑n
i=1

∏mi

j=1Xij to
∑s
i=1

∏ti
j=1 Yij consists

of n canonical mappings of the previous kind.

• If δ(v) is not the identity mapping, then the node v must have exactly
one incoming arc.

– Each arc α ∈ E still has a single target node t(α). But an arc may have
several source nodes, i.e. s(α) ⊆ V .

– Each arc α ∈ E has a mapping δ(α) from
−→
dim(t(α)) to

∑
v∈s(α) dim(v).

• Mapping δ(α) is again a canonical polynomial map.

A summary dependency graph Gsum is expanded to a potentially infinite
dependency graph G = expand(Gsum) in the following manner:

– For each node v in the summary dependency graph, there are nodes {(v, x) |x ∈
dim(v)} in the actual dependency graph, which have the same operation λ(v).

• We call the node (v, x) in the actual dependency graph the instance x
of the node v in the SDG.

– For each arc α going to a vertex v in the summary dependency graph, and

for each element x ∈
−→
dim(v), there is an edge from the node δ(α)(x) to the

node δ(v)(x). Note that the output of δ(α)(x) is a pair of some node w ∈ s(α)
and a value y ∈ dim(w).

• Let x ∈ dim(v). If δ(v) is the identity mapping and thus v ∈ Gsum may
have several input arcs, the ordering <(v,x) of the inputs of the vertex
(v, x) ∈ G is inherited from v. The vertex (v, x) has the same number of
input arcs as the vertex v does.
• Otherwise, the vertices (v, x) ∈ G may have any number of inputs, per-

haps an infinite number. In this case, λ(v) must be an associative and
commutative operation, and make sense for infinite number of inputs.

In our analysis, we translate an SQL workflow into a summary dependency
graph. The semantics of a summary dependency graph is the same as the se-
mantics of the dependency graph resulting from its expansion. This semantics
can be related to the semantics of the SQL workflow in a manner that shows
their equivalence. We simplify the summary dependency graph, removing spuri-
ous dependencies, while changing the semantics of the graph only in a manner
that still relates it to the SQL workflow. From the resulting graph, we can read
out the actual dependencies of each output, including the actual computation,
as well as the conditions of outputting them.

The translation of a query Q to a summary dependency graph works in
syntax-directed manner. We first translate the database schema, resulting in a
Partial Summary Dependency Graph (PSDG) consisting of only input nodes.
Beside the PSDG, we also get a mapping from the attributes of tables to the
nodes. This PSDG is given as the input to the translation of Q. The result is
another PSDG, which is post-processed to add the output nodes. The translation
is given in App. A. Fig. 5 shows the result of translating the workflow consisting
of Listing 1.1, followed by the query

1 select rport.port_id, port.name,
2 earliest arrival(ship.longitude, ship.latitude, port.longitude,
3 port.latitude, ship.maxspeed) as arrival
4 from reachable_ports as rport, port, ship, parameters as p
5 where port.port_id = rport.port_id
6 and ship.name = p.shipname

into a SDG. We have removed dead nodes, and identity nodes from this figure.
In this figure, the rectangles with sharp corners denote the nodes of SDG. In
the top row, it lists the name of the operation and the ID of the node v. The
following rows list the components of dim(v), these components are elements of
S. An arc α, where δ(α) is the identity mapping, is depicted as line ending in
an arrow, possibly with a short label in the middle, indicating the position of
the value flowing along this arc in the operation at t(α). If δ(α) is not identity,
then it is depicted inside a rectangle with rounded corners. At the top of this
rectangle is the label of the arc (if any), and other rows show, which dimension
components of the target node correspond to which dimension components of
the source node.

4 Simplifications and output presentation

4.1 Simplifying the SDG

We have implemented a number of simplifications of SDG, both structural and
semantical. Below we discuss these simplifications on the basis of the full scenario
depicted in Fig. 1. A simplification operation, applied to a certain node or a group
of nodes, checks whether the local context of these nodes matches some pattern.
If it does, then these nodes are replaced with some other nodes that have the
same effect semantically (or an effect that is similar in the view of our task to
find which inputs end up where, how, and when), but have simpler structure.

The SDG is a very helpful data structure in determining the applicability
of simplifications. The applicability of many simplifications can be determined
locally, i.e. by considering a subgraph of bounded diameter. Also, more com-
plex structural transformations have applicability checks which consist of simple
traversals of the graph. Hence the current set of simplifications may be easily
extended, depending on the needs of analysed scenarios.

One simplification may enable others. We thus run the simplifications in the
order that seems to make the most sense; some simplifications (e.g. the removal
of dead nodes) are run many times. In the following, we will describe some
simplifications that our analyzer currently runs.

Removal of dead nodes. A node that has no descendants may be removed,
unless it is an output node. Running this removal many times, we will remove
all nodes that are not backwards reachable from any output node.

Folding of identity operations. An ID node (the node whose operation is
identity; our translation from relational algebra expressions, given in App. A,
produces many such nodes) can be cut out of paths: if v is an ID node and

Input parameters.deadline 7
0 unit pm_idx

2

Input parameters.shipname 9
0 unit pm_idx

5 unit pm_idx <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Exists: parameters 10
0 unit pm_idx

5 unit pm_idx <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input port.latitude 13
0 integer port_id

3

2 integer port_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

3

3 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input port.longitude 14
0 integer port_id

4

2 integer port_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

4

3 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input port.name 15
0 integer port_id

3 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

TakeDim port_id 18
0 integer port_id

2 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

3 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

2 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Exists: port 19
0 integer port_id

2 integer port_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

3 integer port_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.latitude 22
0 integer ship_id

1

1 integer ship_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

1

4 integer ship_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.longitude 24
0 integer ship_id

2

1 integer ship_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

2

4 integer ship_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.name 25
0 integer ship_id

1 integer ship_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

4 integer ship_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Input ship.speed 27
0 integer ship_id

2

1 integer ship_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

2

4 integer ship_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Exists: ship 28
0 integer ship_id

1 integer ship_id <-
0 unit pm_idx
1 integer ship_id
2 integer port_id

4 integer ship_id <-

0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 80
0 unit pm_idx
1 integer ship_id
2 integer port_id

distance 84
0 unit pm_idx
1 integer ship_id
2 integer port_id

1

/ 89
0 unit pm_idx
1 integer ship_id
2 integer port_id

1

=? 92
0 unit pm_idx
1 integer ship_id
2 integer port_id

<=? 95
0 unit pm_idx
1 integer ship_id
2 integer port_id

and 98
0 unit pm_idx
1 integer ship_id
2 integer port_id

and 101
0 unit pm_idx
1 integer ship_id
2 integer port_id

and 1187
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

=? 1192
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

=? 1195
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 1198
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

and 1201
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

CC C

distance 1204
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

1

/ 1209
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Out[stepA] 1295
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Out[stepA] 1298
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Out[stepA] 1301
0 unit pm_idx
1 integer ship_id
2 integer port_id
3 integer port_id
4 integer ship_id
5 unit pm_idx

Fig. 5. Initial SDG

α is the arc leading to it, and β is any arc with the source v, then β may be
replaced with the arc β ◦ α: we define s(β ◦ α) = s(α), t(β ◦ α) = t(β) and
δ(β ◦ α) = δ(α) ◦ δ(β), assuming that δ(v) is the identity mapping (which is
always the case in the SDGs that we construct). After all arcs leaving v have
been replaced, v is dead and can be removed by the previous simplification.

Splitting nodes with sum dimensions. A node v with dim(v) =
∑n
i=1

∏mi

j=1Xij ,
where n > 1, is replaced with n nodes having the same operation, each corre-
sponding to one component of dim(v). This transformation makes subsequent
structural simplifications easier to apply.

Folding the “&”-nodes. If v and v′ are both computing boolean conjunctions,
and there is an arc α from v′ to v, then we add arcs from all predecessors of
v′ to v (with the correct δ(·)-mapping) and remove the arc α. If there were
no other arcs leaving v′, then it is dead.

Joining nodes with identical computation. If two nodes have the same op-
eration and the same inputs, they can be turned to a single node. In our
SDGs, the recognition of these nodes is complicated by the need to deter-
mine if a suitable isomorphism between their dimensions exists.

Reducing the dimension of a node. In our SDG-s, the dimensions of nodes
are products of elements of S. If for some node v in SDG, the predecessors of
the nodes corresponding to v in the infinite dependency graph do not depend
on some component of the elements in dim(v), then this component may be
removed from dim(v).

Joining components of dimensions. Let v be a node that computes a boolean
result, and let dim(v) =

∏n
i=1Xi. Suppose that we have deduced that there

are indices i, j ∈ {1, . . . , n}, such that a node (v, (x1, . . . , xn)) in the ex-
panded dependency graph may be true only if xi = xj . This may happen
in a workflow that creates complex joins of tables, joining the same ta-
ble many times while requiring the primary keys to be equal; we use these
equality checks to deduce that v implies xi = xj . It may also happen due
to uniqueness constraints on attributes, when conjunctions of several com-
parisons involving these attributes are formed. If we have identified that the
i-th and the j-th component of dim(v) have to be equal for v to be true, and
when v being false only implies that certain outputs are not made, then we
can identify these components and thereby reduce the dimension of v. This
reduction works differently from the previous simplification, and has to be
propagated along the SDG in both directions.

Arithmetic simplifications. A conjunction with a single input, or a sum
with a single input can be turned to an ID node. A conjunction with a
FALSE-input can be turned to FALSE-node (with no inputs). A COALESCE-
operation can also be simplified if we know that some of its arguments cer-
tainly are, or certainly are not NULL.

Fig. 6 depicts the results of the simplifications applied to the SDG in Fig. 5.

4.2 Presenting the result of the analysis

The dependencies and conditions are depicted in our final, simplified SDG, but
they are not given in terms of certain rows existing or not existing in the tables
of the database. To present the outcome, we have to map from the product of
elements of S back into tables. Let v• be a particular output node, for which
we are interested in the computation of the value it outputs, as well as in the
condition that must be satisfied for the output to take place. We perform the
following steps for obtaining the description of the outputs from v•.

– First, we remove all output nodes except v• from the SDG, and remove all
dead nodes from it. After that, we will transform the directed acyclic SDG

Input parameters.deadline 7

2

Input parameters.shipname 9

Exists: parameters 10

Input port.latitude 13
0 port_id

3

Input port.longitude 14
0 port_id

4

Input ship.latitude 22
0 ship_id

1

1 ship_id <- 0 port_id
1 ship_id

Input ship.longitude 24
0 ship_id

2

1 ship_id <- 0 port_id
1 ship_id

Input ship.name 25
0 ship_id

Input ship.speed 27
0 ship_id

2

1 ship_id <- 0 port_id
1 ship_id

distance 1204
0 port_id
1 ship_id

1

Out[stepA] 1415
0 ship_id
1 port_id

Out[stepA] 1419
0 ship_id
1 port_id

Out[stepA] 1423
0 ship_id
1 port_id

Input port.name 1490
0 port_id

1 port_id <- 0 ship_id
1 port_id

TakeDim port_id 1492
0 port_id

1 port_id <- 0 ship_id
1 port_id

/ 1494
0 port_id
1 ship_id

1 port_id
0 ship_id <- 0 ship_id

1 port_id

1
1 port_id
0 ship_id <- 0 ship_id

1 port_id

and 1500
0 ship_id
1 port_id

C C C

Exists: port 1572
0 port_id

1 port_id <- 0 ship_id
1 port_id

Exists: ship 1578
0 ship_id

=? 1620
0 ship_id

<=? 1638
0 ship_id
1 port_id

Fig. 6. Final SDG

into a tree T , by duplicating nodes with several outgoing arcs. The root of T
is v•. The leaves of T are the input nodes, referring to a particular attribute
in a particular table.

– Let PC be the set of all dimension components (i.e. the elements of S) of all
nodes in T , formally

PC =
⋃

v∈V (T)

(
{(v, i,Xi) | dim(v) =

n∏
i=1

Xi}∪{(v,−i,Xi) |
−→
dim(v) =

n∏
i=1

Xi}
)
.

Let C be the set PC factored by an equivalence relation generated by the
δ(·)-mappings of all vertices and the δ(·)-mappings of all arcs in T . The set
C is the inventory of all different dimension components that occur in T .

– Each input node refers to a table, and its dimension refers to some elements
of C. The inputs nodes with the same table and the same elements of C
correspond to the same row of the table. We replace the input nodes, and
forget the dimensions and their maps of the internal nodes and arcs. For
input nodes with partially overlapping sets of elements of C, we introduce
the equality checks of the respective components of the table rows, which
must be satisfied for the node v• to output anything.

The result, when v• is the node with ID 1415 in Fig. 6, is depicted in Fig. 7.

shipport

parameters

latitude

distance

1

longitude

2

name

=

speed

÷

2

latitude

3

longitude

4

deadline

≤

2

shipname

1

1

Filter

1

AND

2

Fig. 7. Representation of the computations

5 Related work

One of the most prominent examples of methods to quantify the potential disclo-
sure of information is that of differential privacy, which has been widely studied
in the context of program analysis, using e.g. types [5] or theorem proving [2].
These techniques allow one to reason about the theoretical bounds of the amount
information revealed by a program on its output relative to its input. In a sim-
ilar vein, techniques have been proposed to analyze sensitivity and differential
privacy for database queries expressed in SQL [6], and other SQL-like languages
(e.g. PINQ) [7]. Here, the reasoning on sensitivity is formulated in terms of
individual database queries and the effects on the output of those queries with
respect to variations on the input tables. In recent work [4, 10], we have extended
the results on differential privacy to reason about not only one single computa-
tion step, but to to assess the overall differential privacy of a data processing
workflows, which require the aggregation of the sensitivity of the steps in a work-
flow that can be observed by one stakeholder. The goal of works on differential
privacy is the to derive theoretical bounds of the amount of information that
a stakeholder can infer from the outputs of programs or steps on a workflow.
Conversely, in this work we look not at quantifying the disclosure of information
but rather providing an insight on what is disclosed and on the conditions that
must hold for that disclosure to happen.

Also close to our setting is the work on information leak detection on business
process models reported in [1]. Such method takes as input workflows on which
tasks have been classified in levels of confidentiality, which can be either high
or low. By using a reachability analysis, the method is capable of identifying

structures on the workflow (e.g. sequencing of tasks, mutual exclusion, etc) where
information may be leaked to stakeholders, when changes between domains of
confidentiality are not properly guarded. In contrast, our method considers the
underlying computation (e.g. SQL code) and identifies what information as well
as the conditions that will be revealed after having executing a SQL workflow.

6 Conclusions and Future Work

The paper presented an analysis technique to determine what information from
each input table is disclosed by each output table of a SQL Workflow, and
under what conditions this disclosure occurs. The proposed technique has been
implemented on top of the Pleak open-source business process privacy analysis
toolset. The source code of the toolset is available at https://github.com/pleak-
tools while a demonstrator is available at http://pleak.io/.

The current technique operates over unprotected workflows, meaning work-
flows that do not make use of any Privacy-Enhancing Technologies (PETs) such
as multi-party computation, encryption, or differential privacy. In future work,
we plan to extend the technique to take as input workflows where some of the
tasks have PETs attached to them. This extension would allow analysts to per-
form “what-if” privacy analysis. Concretely, an analyst would be able to see
how the addition, removal, or modification of a PET in a workflow affects the
information that is disclosed to different parties.

Another extension is the ability to compare a disclosure report against a pri-
vacy policy. This capability would allow an analyst to determine what additional
PETs could be added to a given process in order to fulfill a privacy policy.

Acknowledgments. This work is funded by the U.S. Air Force Research Lab
via DARPA’s Brandeis Program.

References

1. Rafael Accorsi, Andreas Lehmann, and Niels Lohmann. Information leak detec-
tion in business process models: Theory, application, and tool support. Inf. Syst.,
47:244–257, 2015.

2. Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Prob-
abilistic relational reasoning for differential privacy. ACM Trans. Program. Lang.
Syst., 35(3):9, 2013.

3. Michael Colesky, Jaap-Henk Hoepman, and Christiaan Hillen. A critical analysis
of privacy design strategies. In IEEE Security and Privacy Workshops (SP), pages
33–40. IEEE Computer Society, 2016.

4. Marlon Dumas, Luciano Garćıa-Bañuelos, and Peeter Laud. Differential privacy
analysis of data processing workflows. In Proc. of GraMSec 2016, volume 9987 of
LNCS, pages 62–79. Springer, 2016.

5. Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. Linear dependent types for differential privacy. In Proc. of POPL 2013,
pages 357–370. ACM, 2013.

6. Noah Johnson, Joseph P. Near, and Dawn Song. Towards practical differential
privacy for sql queries. Proc. VLDB Endow., 11(5):526–539, January 2018.

7. Frank McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Proc. of SIGMOD 2009, pages 19–30. ACM, 2009.

8. OMG. Business Process Model and Notation (BPMN), Version 2.0. Technical
report, Object Management Group, January 2011.

9. Sinnakkrishnan Perumal and Ambuj Mahanti. A graph-search based algorithm for
verifying workflow graphs. In Proc. of DEXA’05, pages 992–996. IEEE Computer
Society, 2005.

10. Martin Pettai and Peeter Laud. Combining differential privacy and mutual in-
formation for analyzing leakages in workflows. In Proc. of ETAPS 2017, volume
10204 of LNCS, pages 298–319. Springer, 2017.

11. Ilja Tšahhirov and Peeter Laud. Application of Dependency Graphs to Security
Protocol Analysis. In Proc. of TGC 2007, volume 4912 of LNCS, pages 294–311.
Springer, 2008.

A Translating SQL workflows to internal representation

The translation of a query Q to a summary dependency graph (SDG) proceeds
by first translating the database schema, then performing the syntax-directed
translation of the actual query Q, followed by the addition of output nodes.
We call the intermediate graphs Partial Summary Dependency Graphs (PDSG),
where the partiality indicates the lack of output nodes.

Let G be a PSDG and consider a relation schema r with attributes a1, . . . , an.
A representation of r in G is a mapping R : {∃, a1, . . . , an} → V (G), such that
dim(R(∃)) = dim(R(a1)) = · · · = dim(R(an)), the output type of each R(ai)
matches with the type of ai, and the output type of R(∃) is boolean. We write
dim(R) for dim(R(∃)). A representation of a database schema dbs in G is a
mapping from the contained relations into their representations in G.

Translating a database schema. The translation of a database schema dbs re-
turns a PSDG Gdbs , as well as a representation Rdbs of dbs in it. These are the
following:

– Let t : r be a table declaration in dbs, where r is the relation schema
r(a1 : D1, . . . , an : Dn; indexr), with certain attributes belonging to the in-
dex. W.l.o.g. let a1, . . . , ah be the index attributes. The graph G will contain
nodes vt∃ and vti for 1 ≤ i ≤ n. The input dimension and the dimension of

all nodes is I =
∏h
i=1Di. All nodes are input nodes. During the execution,

the instance (x1, . . . , xh) of the node vti is supposed to carry the value of the
attribute ai in the row of the table t that corresponds to the index value
(a1 = x1, . . . , ah = xh). The instance (x1, . . . , xh) of the node vt∃ carries the
value true iff the table t has a row with index value (a1 = x1, . . . , ah = xh).

– The representation Rdbs maps each table t to the mapping {∃ 7→ vt∃}∪{ai 7→
vti | 1 ≤ i ≤ |t|}.

Translating the query. The translation G of a query Q against a database with
schema dbs takes as input a PSDG G◦ and a representation Rdbs of dbs in it.
It returns a new PSDG G• (which is obtained from G◦ by adding zero or more
nodes to it) and a representation of attr(Q) in G•, where attr(Q) is the schema
of the output relation of Q.

The translation G may call the translation E for expressions e. It takes as
input a PSDG G◦ and a representation R of a relation schema in G◦. This
relation schema must contain all attributes used by e. The translation E returns
a new PSDG G• and a node ve ∈ V (G•). The translation E works as follows.

– EJaK(G◦, R) returns G◦ and R(a).
– EJ⊗(e1, . . . , ek)K(G◦, R) calls EJe1K, . . . , EJekK one after another. Let the out-

put of EJeiK be Gi and vi. Then the inputs to EJeiK are Gi−1 (with G0 ≡ G◦)
and R. After obtaining Gk, add a new node v to the graph. Its label is ⊗, and
its dimension and input dimension are both dim(R). Also add arcs α1, . . . , αk
to the graph, going from nodes v1, . . . , vk to the node v. For all i, the map-
ping δ(αi) is equal to the identity map on dim(R). Return the modified graph
Gk and the vertex v.

The translation G works as follows.

– GJtK(G◦, Rdbs) returns G◦ and Rdbs(t).
– GJQ1 × · · · ×QkK(G◦, Rdbs) calls GJQ1K, . . . ,GJQkK one after another. Let

the output of GJQiK be Gi and RQi . Then the inputs to GJQiK are Gi−1
(with G0 ≡ G◦) and Rdbs . After obtaining Gk and RQ1 , . . . , R

Q
k , we add the

following nodes and arcs to Gk:

• Let I =
∏k
i=1 dim(RQi).

• Add a node v∃. The label of this node is “&” (boolean conjunction). Its
dimension and input dimension are both I.

• For each i ∈ {1, . . . , k} add an arc α∃,i from the node RQi (∃) to v∃. The
mapping δ(α∃,i) is the canonical projection from I to its i-th component

dim(RQi).
• For each i ∈ {1, . . . , k} and each attribute aj ∈ attr(Qi) add a node vi,j .

The label of this node is “ID” (the identity mapping). Its dimension and
input dimension are both I.

• Also, add an arc αi,j from RQi (aj) to vi,j . The mapping δ(αi,j) is the

canonical projection from I to its i-th component dim(RQi).

Let the output PSDG G• be the modified graph Gk. The output represen-
tation R maps ∃ to v∃ and the attribute aj in attr(Qi) to vi,j .

– GJ[Q]a→a′K(G◦, Rdbs) runs (G•, R) = GJQK(G◦, Rdbs). It returns G• and
R[a′ 7→ R(a)].

– GJσ(Q; e)K(G◦, Rdbs) runs (G′, R) = GJQK(G◦, Rdbs) and (G′′, v?) = EJeK(G′, R).
It adds a node v∃ to G′′. The label of this node is “&” and both its dimension
and input dimension are dim(R). The node v∃ has two inputs, from R(∃) and
from v?. The δ(·)-mappings of both respective arcs are the identity mappings
over dim(R). Let G• be the modified graph G′′. The translation returns G•
and R[∃ 7→ v∃].

– GJπa1,...,ak(Q)K(G◦, Rdbs) runs (G•, R) = GJQK(G◦, Rdbs). It returns G• and
R restricted to {∃, a1, . . . , ak}.

– GJcola←e(Q)K(G◦, Rdbs) runs (G′, R) = GJQK(G◦, Rdbs) and (G•, ve) = EJeK(G′, R).
It returns G• and R[a 7→ ve].

– GJlet t = Q1 in Q2K(G◦, Rdbs) runs (G′, R0) = GJQ1K(G◦, Rdbs), followed by
(G•, R) = GJQ2K(G′, Rdbs [t 7→ R0]). It returns G• and R.

– GJQ1 ∪Q2K(G◦, Rdbs) runs

(G′, R′) = GJQ1K(G◦, Rdbs)

(G′′, R′′) = GJQ2K(G′, Rdbs) .

For each attribute a ∈ attr(Q1) = attr(Q2) it will then add a node va to G′′,
with the operation “ID” and its dimension and input dimension both being
equal to dim(R′) + dim(R′′). The mapping δ(va) is the identity mapping.
The node va has a single incoming arc αa, which has two sources — R′(a)

and R′′(a). The mapping δ(αa) is the identity mapping from
−→
dim(va) to

dim(R′(a)) + dim(R′′(a)).

We also add a node v∃ to the graph G′′ with the same dimension, input
dimension and δ(·)-mapping as described in the previous paragraph. The
operation in this node is again “ID” (boolean disjunction), and it again
has a single incoming arc α∃ with two sources: R′(∃) and R′′(∃), with the
mapping δ(()α∃) again being the identity map.
Let the output PDSG G• be the graph G′′ with the added nodes and arcs.
The output representation R maps ∃ to v∃ and each attribute a to va.

– GJQ1 ∩Q2K(G◦, Rdbs) runs

(G′, R′) = GJσ(Q1 × [Q2]a:attr(Q2)→a′ ;
∧

a∈attr(Q1)

a = a′)K(G◦, Rdbs)

first, while also keeping the representation R1 that was produced while
GJQ1K(G◦, Rdbs) was run as a subroutine. Here the write-up [Q2]a:attr(Q2)→a′

denotes that we have renamed all attributes a of Q2 into their primed ver-
sions.
We add to G′ a node v∃ with the operation “

∨
” (boolean disjunction).

We let dim(v∃) = dim(R1) and
−→
dim(v∃) = dim(R′). Recall that dim(R′) is

equal to the Cartesian product of dim(R1) and the dimension of the nodes
resulting from the translation of the query Q2. The mapping δ(v∃) is the
natural projection to the first component of this product.

As dim(v∃) 6=
−→
dim(v∃), this node may have a single incoming arc. This arc

comes from the node R′(∃), its δ(·)-mapping is the identity mapping.
We return the graph G′ with the extra node and arc. As the output repre-
sentation, we return R1[∃ 7→ v∃].

– GJQ1 ne Q2K(G◦, Rdbs) runs

(G′, R2) = GJQ1 ×Q2K(G◦, Rdbs)

(G′′, ve) = EJeK(G′, R2) .

We also keep the representation R1 that was produced when GJQ1K(G◦, Rdbs)
was run as a subroutine. After that, we add the following nodes and arcs to
G′′.
• Node v1, operation “&”, with dimension and input dimension equal to
dim(R2). Its inputs are ve and R2(∃).

• Node v2, operation “
∨

”. Its dimension is equal to dim(R1) and its input
dimension to dim(R2). The mapping δ(v2) is the natural projection from
the second to the first. The input to v2 is the node v1.

• Node v3, operation “NOT”. Its dimension and input dimension are equal
to dim(R1). Its input is the node v2.

• Node v4, operation “&”. Its inputs are v3 and R1(∃).
For all arcs described above, their δ(·)-mapping is the identity mapping. The
translation returns the PSDG G′′ together with added nodes and arcs. As
the output representation, it returns R1[∃ 7→ v4].

– GJgroupa1,...,ak(a′1
⊗

1),...,(a
′
l,
⊗

l)
(Q)K(G◦, Rdbs) first runs (G′, R′) = GJQK(G◦, Rdbs).

It will determine the types D1, . . . , Dk of the attributes a1, . . . , ak of Q.
These types must be elements of S. The following nodes and arcs are then
added to G′:

• Nodes vTD
1 , . . . , vTD

k . These are input nodes of the SDG. The dimension
of vTD

i is Di. In the infinite dependency graph, a node v corresponding
to the value x ∈ Di and the node vTD

i , is expected to carry the value x.
Let I = D1 × · · · ×Dk.

• Nodes v=1 , . . . , v
=
k . The operation of these nodes is “=” (equality check).

The dimension and input dimension of these nodes is dim(R′)× I. The
node v=i has two inputs: vTD

i and R′(ai). The δ(·)-mappings for the arcs
connecting these nodes are the natural projections.

• Node v=. The operation of this node is “&”. Its dimension and input
dimension are both dim(R′)× I. Its inputs are the nodes v=1 , . . . , v

=
k .

• Node v∃. The operation of this node is “
∨

”. Its dimension is I and
its input dimension is dim(R′) × I. The mapping δ(w∃) is the natural
projection. Node v∃ receives its input from v=.

• Nodes vf1 , . . . , v
f
l . The operation of these nodes is “Output”; this oper-

ation takes two arguments and returns the first one only if the second
one is true. Their dimension and input dimension are dim(R′)× I. The

inputs of the node vfj are v= (for the first, “conditioning” argument) and

R′(a′j) (for the second, “value” argument). The δ(·)-mapping for the arc
connecting to the first input is the identity mapping, while for the arc
connecting to the second input is the natural projection from dim(R′)×I
to dim(R′).

• Nodes v⊗1 , . . . , v
⊗
l . The operation of the node v⊗j is “

⊗
j”. The dimension

of v⊗j is I, while its input dimension is dim(R′)×I. The mapping δ(v⊗j)

is the natural projection. The input to the node v⊗j is the node vfj .
We see that the expansions of the nodes v⊗j in the infinite dependency graph
perform the actual aggregations of the values of the dataset resulting from
the query Q. We have implicitly assumed that the NULL-values among the
inputs of the operations

⊗
j do not change their output value.

The translation returns the graph G′ together with the added nodes and
arcs. The output representation R is the following:
• R(∃) = w∃;
• R(ai) = vTD

i for the attributes a1, . . . , ak;
• R(a′j) = v⊗j for the attributes a′1, . . . , a

′
l.

Adding output nodes. Let the query Q be translated by calling GJQK on the
translation of the database schema. The result of GJQK is a PSDG G and a
representation R of attr(Q) in G. We add the following nodes and arcs to G:

– For each ai ∈ attr(Q), add nodes vi and vOi . For both of them, their dimen-
sion and input dimension are equal to dim(R). Node vi is an internal node,
while vOi is an output node. There is an arc from vi to vOi ; its δ(·)-mapping is
the identity mapping on dim(R). There are two arcs into vi, first from R(∃)
and second from R(ai). Their δ(·)-mappings are also the identity mappings
on dim(R). The operation of vi is named “Output”. The semantics of an
“Output” operation is to return the second argument, if the first argument
is true, and to return NULL otherwise.

