
EasyChair Preprint
№ 6252

Elastic Deep Learning using Knowledge Distillation
with Heterogeneous Computing Resources

Daxiang Dong, Ji Liu, Xi Wang, Weibao Gong, An Qin,
Xingjian Li, Dianhai Yu, Patrick Valduriez and Dejing Dou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 6, 2021



Elastic Deep Learning using Knowledge
Distillation with Heterogeneous Computing

Resources

Daxiang Dong1†, Ji Liu1†∗, Xi Wang1, Weibao Gong1, An Qin1, Xingjian Li1,
Dianhai Yu1, Patrick Valduriez2, and Dejing Dou1

1 Baidu, Beijing, China
2 Inria, University of Montpellier, CNRS, LIRMM, France

{dongdaxiang, liuji04, wangxi16, gongweibao, qinan, lixingjian, yudianhai,
doudejing}@baidu.com, Patrick.Valduriez@inria.fr

Abstract. In deep neural networks, using more layers and parameters
generally improves the accuracy of the models, which get bigger. Such
big models have high computational complexity and big memory re-
quirements, which exceed the capacity of small devices for inference.
Knowledge distillation is an efficient approach to compress a large deep
model (a teacher model) to a compact model (a student model). Existing
online knowledge distillation methods typically exploit an extra data
storage layer to store the knowledge or deploy the teacher model and the
student model at the same computing resource, thus hurting elasticity
and fault-tolerance. In this paper, we propose an elastic deep learning
framework, EDL-Dist, for large scale knowledge distillation to efficiently
train the student model while exploiting elastic computing resources. The
advantages of EDL-Dist are three-fold. First, it decouples the inference
and the training process to use heterogeneous computing resources. Sec-
ond, it can exploit dynamically available computing resources. Third,
it supports fault-tolerance during the training and inference processes
within knowledge distillation. Our experimental validation, based on
industrial-strength implementation and real datasets, shows that the
throughput of EDL-Dist is up to 181% faster than the baseline method
(online knowledge distillation).

Keywords: Knowledge distillation · Distributed computing · Deep neural net-
work.

1 Introduction

In recent years, Deep Neural Networks (DNNs) have achieved major success in
various domains, such as computer vision [15] and natural language processing
[14]. Bigger models with more layers, neurons and parameters generally improve
†Equal contribution
∗Corresponding author



2 D. Dong et al.

the accuracy of a model. For instance, BERT [3] and ERNIE [14] exploit large
numbers of parameters, e.g., from 110 million to 340 million parameters for BERT.
With a large number of parameters, deep neural networks have high computational
complexity and big memory requirements, which exceed the capacity of small
devices (mobile phones or IoT devices) on which they are deployed for inference.

Knowledge distillation [7] is an efficient approach to distill the knowledge from
a big model into a smaller model while retaining its accuracy. During knowledge
distillation, a small model (a student model) is trained with the supervision of
a large model (a teacher model). The teacher model is a cumbersome model,
which could be an ensemble of separately trained models or a single very large
model trained with a strong regularizer [7]. Compared with the teacher model,
the student model is relatively small and compact.

Different from normal training, which does not rely on a trained teacher model,
knowledge distillation requires a pre-trained teacher model. During knowledge
distillation, the teacher model is used by the inference process to generate
supervision knowledge while the student model is trained. These inference and
training processes can be sequentially performed or in parallel. The training can
be carried out offline or online. The offline approach exploits an extra data store
to cache the knowledge distilled from the teacher model, which is used to train
the student model separately [5]. This approach can decouple the inference of
a teacher model and the training of a student model. However, this approach
requires much storage and distilling the knowledge from the teacher model may
take much time when the teacher model or input data are big. The online
approach puts the teacher model and the student model into the same server
and performs the training of the student model and the inference of the teacher
model synchronously. When the teacher model is very big, the training of the
student model gets limited by the synchronization of the inference of the teacher
model, which takes much computing time. In addition, both the offline and online
approaches do not support elastic computing resources or fault-tolerance.

The training of knowledge distillation typically exploits many computing
resources, e.g., CPU cores or GPU cards. However, the availability of computing
resources may vary dynamically as there may be concurrent users with same
priority. Thus, some computing resources can be granted to a user for a long time
while some other computing resources can only be used for a short time and may
be dynamically withdrawn. During the long training of knowledge distillation
with elastic computing resources, some will become unavailable, while some others
will become available. Furthermore, these computing resources are heterogeneous,
e.g., GPU cards with diverse computing capabilities.

In this paper, we address the problem of efficient knowledge distillation with
heterogeneous computing resources. We assume a distributed environment with
two kinds of computing resources: dedicated and elastic. The dedicated computing
resources are provided by powerful servers, e.g, V100 GPU cards, for knowledge
distillation only. The elastic computing resources are smaller servers, e.g., P4
GPU cards, and can be dynamically allocated to other tasks of higher priority
or knowledge distillation. We propose an Elastic Deep Learning framework, i.e.,



Elastic Heterogeneous Knowledge Distillation 3

EDL-Dist, with a distributed, fault-tolerant architecture. EDL-Dist provides an
elastic service that manages multiple GPU cards, for inference of teacher models.
It manages the training of knowledge distillation with multiple GPU cards on
multiple servers (a server may have one GPU or more GPU cards). Furthermore,
the type of GPU cards can be different depending on the process, e.g., training
versus inference, which are decoupled in order to exploit elasticity. Our solution
to fault-tolerance is based on a fail-over mechanism [13] using check-points and
re-execution of tasks in Teacher. In addition, EDL-Dist comes with two main
algorithms for scheduling and knowledge distillation. The scheduling algorithm is
hybrid, i.e., combines static and dynamic scheduling, and associates computing
resources from different processes. The knowledge distillation algorithm, EDL-
Dist algorithm, is distributed and enables decentralized training of the student
model with the knowledge from the teacher model.

This paper is organized as follows. Section 2 introduces the related work
of knowledge distillation. Section 3 describes the EDL-Dist framework. Section
4 presents the experimental results, which show the advantage of EDL-Dist
compared with the baseline method (the online approach) and normal training.
Finally, Section 5 concludes the paper.

2 Related Work

In this section, we first introduce knowledge distillation. Then, we discuss solutions
for supporting knowledge distillation, with distributed or decentralized training,
and elastic computing resources.

Knowledge distillation is based on the popular machine learning Softmax
function and a temperature [7]. The Softmax output layer converts the logit
computed for each class (predefined category associated to the input data) into
a probability with a temperature T. The temperature indicates the impact of
the output from the teacher model, where a higher value of T corresponds to a
weaker impact of the output of the teacher model.

During the training of knowledge distillation, two neural networks are used:
teacher model and student model. The student model is trained using the combi-
nation of two loss functions. One loss function is based on a soft prediction, which
considers the soft labels from the teacher model. The other loss function is based
on a hard prediction, which considers the ground truth label from the training
data. The soft prediction corresponds to the outputs of the student model, while
the hard prediction is the original output of the student model.

Knowledge distillation can be carried out based on two methods: offline and
online. With the offline method, a teacher model is trained before distillation.
Then, the knowledge of the teacher model can be extracted and stored in a cache
[5]. This method requires large extra storage resources. With the online method
[16], the inference of the teacher model and the training of the student model
are performed in the same GPU card. Thus, when the teacher model is big, the
training of the student model gets limited by the synchronization of the inference



4 D. Dong et al.

of the teacher model, which takes much computing time. Furthermore, these two
approaches do not support elastic computing resources or fault-tolerance.

In order to accelerate the training of a deep learning network, multiple GPUs
can be exploited using data parallelism. The model is replicated in each GPU
while the data is distributed in different GPUs [1]. Ring all-reduce [4] is generally
exploited to realize the distributed training process with the data parallelism
method. However, the ring all-reduce method is only designed for the training
without consideration of knowledge distillation. Furthermore, it cannot support
elastic computing resources and do not provide fault-tolerance.

3 EDL-Dist

In this section, we present the EDL-Dist framework, its architecture, algorithms
for scheduling and knowledge distillation, and our solution for fault-tolerance.

3.1 Architecture

The architecture of EDL-Dist (see Figure 1) has three modules: Student, Teacher
and Coordinator. Student is composed of dedicated computing resources, which
are used to train a student model with a distributed or decentralized method.
Teacher consists of dynamic computing resources. In the dynamic computing
resources, the teacher models are deployed for the inference process. Coordinator
coordinates data transfer and training in Student and inference in Teacher.

We exploit a decentralized training algorithm, i.e., ring allReduce [4], to
perform parallel training in Student. Since transferring data among different
GPU cards is time consuming, the training data is partitioned and cached in the
host memory of each server for fast data access. During training in Student, only
the gradients are transferred among different servers. Within each iteration of
the training process, each computing resource in the student model takes data,
including the input training data, the hard labels and soft labels from a data
service, DistilReader, to update the student mode.

DistilReader is a service that caches the input training data and the cor-
responding soft labels, generated from Teacher, in the host memory of each
computing resource in Student. It provides an interface between a Student server
and the Coordinator server or Teacher servers. The Student server, Coordinator
server or Teacher server denotes a server that supports the corresponding module.
This service is deployed in each Student server. As shown in Figure 2, DistilReader
sends the input data to Teacher and receives the soft labels from Teacher. In
order to know which Teacher server to connect to, DistilReader retrieves the
server information from Coordinator. In addition, DistilReader regularly queries
Coordinator to know if the Teacher server is still alive. When a Teacher server
becomes unavailable, DistilReader searches for available Teacher servers from
Coordinator to replace the unavailable server.

Teacher is composed of multiple dynamic computing resources, each of which
can become unavailable at any moment because of unexpected changes in the



Elastic Heterogeneous Knowledge Distillation 5

Fig. 1: Functional architecture.
multiuser workload. When a dynamic server is alive and added as a Teacher
server, it is registered in Coordinator. Then, a teacher model instance is deployed
in the server in order to perform inference, which takes input data and generates
corresponding soft labels. When the Teacher server remains available to be
connected for knowledge distillation, it sends heartbeat messages to Coordinator
in order to maintain its status until the end of the knowledge distillation task.

Coordinator has two components: a service manager and a database, which is
an in-memory database for efficient data processing. The service manager can
query the database in order to search for available computing resources in Teacher.
The service manager answers the queries from DistilReaders in Student. The
register information from Teacher is directly stored in the database. The alive
status stored in the database has a time limit, i.e., Time to live (TTL). When
the heartbeat information is sent from a Teacher server to the database, the
corresponding alive status is prolonged, i.e., the corresponding TTL is updated.
If the Teacher server does not send heartbeat messages to the database for a long
time, when its TTL expired, its status will be considered unavailable.

3.2 Hybrid Scheduling Algorithm

In order to speed up the inference process, it is critical to schedule the workloads,
i.e., the inference to generate soft labels for input data, requested from Student
to computing resources in Teacher. A resource represents a computing unit that
can perform training, e.g., a GPU card or a CPU care. The resource scheduling
problem is NP-hard [11]. When a Student resource is scheduled to a smaller
number of Teacher resources than an appropriate number, the throughput of the
student model is restricted by the inference of its scheduled resources. Otherwise,
when a resource in Student is scheduled to a bigger number of resources in
Teacher, more and more soft labels and corresponding input data will be stored
in the host memory of Student servers to be used. The accumulated stored soft
labels and corresponding input data may occupy large amount of memory, which
may block the training process. Thus, it is important to schedule the appropriate
number of resources to each Student resource.

We propose a hybrid scheduling algorithm (see Algorithm 1), i.e., which
combines static and dynamic scheduling methods. We assume historical informa-
tion on the execution of the training and inference processes. For instance, the
throughput of the training in a Student server, e.g., one GPU card in Student, is
ts and the throughput of the inference in a Teacher server, e.g., one GPU card in
Teacher, is tt. The throughput gives the number of images or the amount of input
data that can be processed in the same resource per time unit by the student



6 D. Dong et al.

Fig. 2: DistilReader service.
model (or the teacher model) without restriction of another module. We assume
that the resources in the same module, e.g., Student or Teacher, are of the same
type while the types of GPU cards in different modules can be different. We set
the number of Teacher resources as n = tt

ts
for each Student resource, i.e., we

schedule dne Teacher resources to each Student resource. During the training of
knowledge distillation, when a Student resource searches for Teacher resources,
it is scheduled dne Teacher resources (Line 1). As the execution environment
may vary during the training of knowledge distillation, we dynamically adjust
the scheduling (Lines 3-12). We use a monitoring task in each Student resource
to monitor the number of combinations of soft labels and input data (Line 3).
The occupied volume is calculated based on the number and average size of a
combination of input data and soft labels, which can be measured with an offline
method. When the growing volume exceeds a predefined upper threshold value
(Line 4), the Student resource stops sending input data to the Teacher resource
(Line 5) in order to consume the unused soft labels until the volume decreases
to a smaller value than another lower bound threshold value (Lines 10-12). The
upper threshold and the lower threshold can be set by the user based on the size
of storage in the resource of Student. This mechanism ensures that the number
of soft labels remains reasonable in each Student resource, which does not slow
down the training or incur memory leaks in the Student resource. Otherwise,
if the resources in Student stay idle in order to wait for the soft labels from
Teacher, more Teacher resources are required by the Student resource in order
to accelerate the inference in the teacher model (Lines 7-9). When there are
available Teacher resources, they are scheduled to the Student resource.

3.3 EDL-Dist Algorithm

We now present our EDL-Dist Algorithm 2 for the parallel training in each
Student resource during the training of knowledge distillation. The input data
and the hard label y are retrieved from the host memory (Line 3), which can
be done by DistilReader. Then, the soft labels are prepared by the DistReader
service from Teacher in Line 4. Based on the hard label and the soft labels,
the student model θ is updated in Line 5. The loss function in each server is
a weighted function based on the loss function of the hard labels and the soft



Elastic Heterogeneous Knowledge Distillation 7

Algorithm 1 Hybrid Scheduling Algorithm
Require: number of Teacher resources n
Require: lower threshold of the volume of soft labels lt
Require: upper threshold of the volume of soft labels ut
1: schedule n Teacher resources to the Student resource
2: while knowledge distillation is not terminated do
3: volume = get_volume(unused soft labels)
4: if volume > ut then
5: stop sending input data to Teacher servers
6: end if
7: if volume == 0 then
8: schedule an additional available Teacher resources to the Student resource
9: end if
10: if volume < lt then
11: continue sending input data to Teacher resources
12: end if
13: end while

labels. λ is the learning rate, which can be set corresponding to the student
model. Then, an average student model is calculated in Line 7.

3.4 Fault-tolerance

We consider the fault-tolerance in Student and Teacher, assuming that Coordi-
nator is always available. If the Coordinator server is not stable, fault-tolerance
can be simply achieved by having multiple instances of the in-memory database
deployed in multiple servers using existing frameworks, e.g., Zookeeper [8]. If a
Teacher resource is not available, its status will become unavailable when its TTL
expires in the database. The Teacher resource can become unavailable in three
cases. The first case is before the resource is scheduled to a Student resource.
In this case, EDL-Dist simply ignores this Teacher resource. The second case is
when the Teacher resource is scheduled to a Student resource that does not send
input data to it or does not wait for soft labels from it. In this case, the Student
resource will search for another available Teacher resource that is not scheduled to
any Student resource. The third case is when the Teacher resource is scheduled to
a Student resource that sends input data to it and is waiting for soft labels from
it. In this case, as presented in Section 3.1, the Student resource will search for
another available Teacher resource. Once a Teacher resource is re-scheduled to it,
the Student resource sends the input data to the Teacher resource again. When a
new Teacher resource is available in Teacher, it is scheduled to a Student resource
that is searching for Teacher resources. If there is no such Student resource, the
Teacher resource will wait for such a Student resource.

To address fault-tolerance in Student, we exploit a fail-over mechanism [13]
that uses check-points during the training of knowledge distillation. A checkpoint
is a copy of the student model. Before the training process, a server is selected as a
master node and saves the checkpoint at every certain iterations. The checkpoint



8 D. Dong et al.

Algorithm 2 EDL-Dist Algorithm
Require: hard loss function φ(hard label, hard prediction)
Require: soft loss function ψ(soft labels, soft predictions)
Require: hard prediction function F (θ, input)
Require: soft prediction function F ′(θ, input)
Require: learning rate η
Require: weight for hard loss function α
Require: weight for soft loss function β
Require: number of Student resources N
1: while not converged do
2: for θi in resource i do
3: y, input = get_training_sample()
4: soft_labels = get_soft_labels(input)
5: θi = θi − η5θi {αφ(y, F (θi, input)) + βψ(soft_labels, F ′(θi, input)}
6: end for
7: θ =

∑N
j=1 θj

N

8: end while

is saved in a distributed file system, which is accessible to all the Student servers.
Each Student server updates the student model in each iteration. Then, when a
Student server becomes unavailable or a new Student server is added to Student,
the training in all the Student servers stops. Afterward, each Student server loads
the student model from the checkpoint and continues the training process. Thus,
the consistency of the student model is ensured while addressing fault-tolerance.

4 Experimental Validation

In this section, we present our experimental validation of EDL-Dist in comparison
with online knowledge distillation (Online) (baseline) and normal training (N-
training). We present the experimental setup and then give the results.

4.1 Experimental Setup

EDL-Dist is implemented based on the PaddlePaddle framework [12] and publicly
available at Github1. Student is based on Paddle FleetX2, which implements the
ring allReduce algorithm using NCCL3 for decentralized training. We use Redis4
as the in-memory database in Coordinator [10].

We carry out three experiments to show the advantages of EDL-Dist compared
with Online and N-training. Online deploys the teacher and student models in
the same GPU server. N-training represents the training with GPU cards without

1https://github.com/elasticdeeplearning/edl
2Paddle Fleet: https://github.com/PaddlePaddle/FleetX
3NCCL: https://developer.nvidia.com/nccl
4Redis: https://redis.io/

https://github.com/elasticdeeplearning/edl
https://github.com/PaddlePaddle/FleetX
https://developer.nvidia.com/nccl
https://redis.io/


Elastic Heterogeneous Knowledge Distillation 9
Table 1: Throughput for different approaches.
CPUcores N-training Online EDL-Dist Advantage

1 14.16 5.92 14.34 142.23%
2 28.44 11.51 28.07 143.87%
4 55.17 21.76 54.92 152.39%
8 101.59 37.87 102.40 170.40%
16 168.42 59.94 168.42 180.98%

Table 2: Throughput for different approaches.
CPUcores N-training Online EDL-Dist Advantage

8 57.14 46.04 35.68 -22.50%
12 57.14 46.04 52.46 13.94%
16 55.17 46.04 57.65 25.22%

knowledge distillation. In all experiments, we use real datasets, i.e., ImageNet
data set [2]. In the first experiment, we combine CPUs and GPU cards, in order
to show that EDL-Dist can efficiently exploit heterogeneous computing resources.

In the next two experiments, we use ResNet101 [6] as the teacher model,
ResNet50 [6] as the student model, and set the batch size as 32 in each Student
GPU card. The second experiment (Section 4.3) figures out the fine-tuned number
of Teacher GPU cards (NVIDIA Tesla P4 GPU card) for each Student GPU
card (NVIDIA Tesla V100 GPU card). The single-precision performance, which
represents the speed to perform calculation, of P4 is 5.5 Teraflops while that of
V100 is 14 Teraflops. The third experiment (Section 4.4) is performed with 8
v100 GPU cards in Student and various numbers of P4 GPU cards in Teacher for
EDL-Dist. We compare the throughput and the training time to that of Online
and N-training.

4.2 Comparison with Heterogeneous Resources

To validate that our solution is efficient with heterogeneous computing resources,
we experiment with the combination of CPU and GPU cards for knowledge
distillation. We take MobileNetV3_small [9] as the student model and Resnet50
[6] as the teacher model. We use Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
CPU cores and a P4 GPU card. We set the batch size as 64 in Student.

First, we take the P4 GPU card in Teacher and different numbers of CPU
cores in Student. The results are shown in Table 1. The throughput of our
proposed approach, i.e., EDL-Dist, is similar to that of N-training and significantly
outperforms Online (up to 181%). Then, we take the P4 GPU card as the Student
GPU card and different numbers of CPU cores as the Student resources. As
shown in Table 2, the throughput of EDL-Dist is smaller than that of N-training
and Online when Teacher resources are not enough (8). The throughput of EDL-
Dist is similar to that of N-training and significantly outperforms Online (up to
25.22%) when the Teacher resources are enough (12 and 16).

4.3 Fine-tuning of EDL-Dist

The throughput of EDL-Dist increases with the number of Teacher GPU cards.
With enough Teacher GPU cards, the throughput of EDL-Dist can be similar



10 D. Dong et al.

(a) Throughput (b) Training time
Fig. 3: Fine-tuning with various numbers of P40 Teacher GPU cards.

to that of N-training. As we add more Teacher GPU cards, the throughput of
EDL-Dist becomes a little bit lower as it takes some time to manage unused
intermediate soft labels from Teacher. In order to validate this property of EDL-
Dist, we also experiment using a v100 GPU card in Student and various numbers
of P4 GPU cards as Teacher resources. The throughput of EDL-Dist is shown
in Figure 3a when using different numbers of P4 GPU cards. The training time
is shown in Figure 3b. Figures 3a and 3b indicate that the fine-tuned number
of Teacher resources (P4 GPU card) is 5 when we use a single v100 GPU card
as the Student resource. When the number of Teacher GPU cards is smaller
than 5, the throughput increases linearly as number of P4 GPU cards increases,
which shows the good scalability of EDL-Dist. When the number of Teacher
GPU cards is greater than 5, the throughput slightly decreases as it takes time
to manage unused soft labels in the Student server. Furthermore, we find that
the throughput of Online is much smaller (up to 93.0%) than that of EDL-Dist
and the training time of the Online is much longer (up to 92.9%) than that of
EDL-Dist when the number of Teacher GPU cards is smaller than 8.

4.4 Comparison with multiple Student GPU Cards

In this experiment, we take 8 V100 GPU cards and 40 - 56 P4 GPU cards for
different approaches. We compare the throughput between EDL-Dist, Online and
N-training. We take 8 NVIDIA Tesla v100 GPU cards as dedicated Student GPU
cards while using 48 P4 NVIDIA Tesla GPU cards as Teacher GPU cards as we
find 48 is the appropriate number of Teacher GPU cards as shown in Table 3.

Table 3 shows that the accuracy (1 and 5) of EDL-Dist is similar to that
of N-training and Online. Accuracy 1 represents the accuracy of the predicted
class with the highest probability. Accuracy 5 represents the accuracy of the
top 5 ranked classes based on the probability. The accuracy of EDL-Dist can be
slightly higher than that of N-training (Accuracy 5). While the student model is
trained with the training data and the soft labels with knowledge distillation, the
trained student model from knowledge distillation can get more generalization



Elastic Heterogeneous Knowledge Distillation 11
Table 3: Experimental Results (accuracy). Accuracy 1 is the accuracy of the
predicted class with the highest probability. Accuracy 5 is the accuracy of the
top 5 ranked classes based on the probability.

N-training Online EDL-Dist (40) EDL-Dist (48) EDL-Dist (56)
Accuracy 1 77.1 79.0 79.0 79.0 79.0
Accuracy 5 93.5 94.3 94.5 94.5 94.5

(a) Throughput (b) Training time
Fig. 4: Experimental results with 8 Student v100 GPU cards and 40(EDL-Dist-
40)/48(EDL-Dist-48)/56(EDL-Dist-56) P40 GPU cards.
information from the teacher model [7]. Thus, we can efficiently train a student
model with higher accuracy (compared with N-training) using EDL-Dist.

In Figure 4a, the throughput of EDL-Dist is much higher (23.5% faster)
than that of Online. This shows that EDL-Dist significantly speeds up training
compared with the Online while not requiring extra storage resources. The
throughput of EDL-Dist is slightly lower than that of N-learning because of
some overhead when there are multiple Student GPU cards. The training time of
N-training, Online and EDL-Dist is shown in Figure 4b. The training time of
EDL-Dist (48) is almost the same as that of EDL-Dist (56), which indicates that
the bottleneck of the number of Teacher GPU cards is 48. With 48 Teacher cards,
the training time of EDL-Dist is 19.4% shorter than that of Online. Compared
with N-training, the training time of EDL-Dist is slightly longer (12.8%). As it
takes time to transfer the data from Student servers to multiple Teacher servers,
the training time of EDL-Dist is slightly longer than that of N-training.

5 Conclusion

In this paper, we proposed EDL-Dist, an elastic deep learning framework for
large scale knowledge distillation. EDL-Dist has a distributed, fault-tolerant
architecture that leverages heterogeneous computing resources. We did a thorough
validation of our solution by implementing an industrial-strenght prototype
of EDL-Dist (available at github) and experimenting with real datasets. The
experimental results show that EDL-Dist can be 181% faster than online training
while its accuracy is a little higher than that of normal training.



12 D. Dong et al.

References

1. Anil, R., Pereyra, G., Passos, A., Ormándi, R., Dahl, G. E., and Hinton,
G. E. Large scale distributed neural network training through online distillation.
In Int. Conf. on Learning Representations (ICLR) (2018).

2. Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. Imagenet: A
large-scale hierarchical image database. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR) (2009), pp. 248–255.

3. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: pre-training
of deep bidirectional transformers for language understanding. In Conf. of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, (NAACL-HLT) (2019), pp. 4171–4186.

4. Gibiansky, A. Bringing hpc techniques to deep learning. https://andrew.
gibiansky.com/blog/machine-learning/baidu-allreduce/, 2017. Accessed:
2020-08-12.

5. Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge distillation: A survey.
CoRR abs/2006.05525 (2020).

6. He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016), pp. 770–778.

7. Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop (2015).

8. Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. Zookeeper: Wait-free
coordination for internet-scale systems. In USENIX annual technical conference
(2010), p. 11.

9. Koonce, B. MobileNetV3. Apress, 2021, pp. 125–144.
10. Liu, J., Pineda-Morales, L., Pacitti, E., Costan, A., Valduriez, P., An-

toniu, G., and Mattoso, M. Efficient scheduling of scientific workflows using
hot metadata in a multisite cloud. IEEE Trans. Knowl. Data Eng. 31, 10 (2019),
1940–1953.

11. Liu, L., Yu, H., Sun, G., Luo, L., Jin, Q., and Luo, S. Job scheduling for
distributed machine learning in optical wan. Future Generation Computer Systems
112 (2020), 549 – 560.

12. Ma, Y., adn Tian Wu, D. Y., and Wang, H. Paddlepaddle: An open-source
deep learning platform from industrial practice. Frontiers of Data and Computing
1, 1 (2019), 105.

13. Özsu, M. T., and Valduriez, P. Principles of distributed database systems, 4 ed.
Springer, 2020.

14. Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu, H., and Wang, H.
ERNIE 2.0: A continual pre-training framework for language understanding. In
AAAI Conf. on Artificial Intelligence (2020), pp. 8968–8975.

15. Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., and Lee, H. Learning
to generate long-term future via hierarchical prediction. In Int. Conf. on Machine
Learning (ICML) (2017), vol. 70, pp. 3560–3569.

16. Zmora, N., Jacob, G., Zlotnik, L., Elharar, B., and Novik, G. Neu-
ral network distiller: A python package for DNN compression research. CoRR
abs/1910.12232 (2019).

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

	Elastic Deep Learning using Knowledge Distillation with Heterogeneous Computing Resources

