
EasyChair Preprint
№ 8619

Lower Bounds for the Reachability Problem in
Fixed Dimensional VASSes

Wojciech Czerwiński and Łukasz Orlikowski

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 8, 2022

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes

WOJCIECH CZERWIŃSKI, University of Warsaw, Poland

ŁUKASZ ORLIKOWSKI, University of Warsaw, Poland

We study the complexity of the reachability problem for Vector Addition Systems with States (VASSes) in fixed dimensions. We provide

four lower bounds improving the currently known state-of-the-art: 1) NP-hardness for unary flat 4-VASSes (VASSes in dimension 4), 2)

PSpace-hardness for unary 5-VASSes, 3) ExpSpace-hardness for binary 6-VASSes and 4) Tower-hardness for unary 8-VASSes.

Additional Key Words and Phrases: vector addition systems, reachability problem, lower bounds, Petri nets

ACM Reference Format:

Wojciech Czerwiński and Łukasz Orlikowski. 2022. Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes. 1, 1

(August 2022), 21 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Vector Addition Systems (VASes) together with essentially equivalent Petri nets and Vector Addition Systems with

States (VASSes) are fundamental models of computation with many application in practice and theory. The central

algorithmic problem concerning VASSes is the reachability problem asking whether in a given VASS there exists a

run from one given configuration to another. The long research history of this problem dates back to seventies when

Lipton has proven ExpSpace-hardness of the reachability problem [18]. Decidability of the problem was shown a few

years later by Mayr in [19], where he presented a very involved algorithm. After a few decades of research recently the

complexity of the problem was settled to be Ackermann-complete. The upper bound was shown by Leroux and Schmitz

in [16] three years ago. Last year Ackermann-hardness was independently proven by Leroux [14] and by Czerwiński

and Orlikowski [6].

Despite settling the computational complexity of the reachability problem in VASSes a lot of questions about VASSes

remain to be solved. Even the reachability problem is not fully understood and the most clear evidence for that is

the existence of big complexity gaps for the problem in small fixed dimensions. The prominent example here is the

dimension three with complexity gap between PSpace-hardness (inherited from dimension two [2]) and super-Tower

(concretely speaking F7, namely the 7-th level of the Grzegorczyk hierarchy [16]). The reachability problem was

already extensively studied for fixed dimensions. For dimension one (i.e. for 1-VASSes) for binary encoding of numbers

occurring in transitions it was shown to be NP-complete in [12]. For unary encoded 1-VASSes it is easy to see that the

reachability problem is NL-complete. For 2-VASSes the problem is known to be PSpace-complete in the case of binary

encoding [2] and moreover NL-complete in the case of unary encoding [10], both results are described as well in the

joint full version [1]. However, beyond dimension two the situation is much less clear.

In [5] several cases of the reachability problem for fixed dimensional VASSes were considered. In particular a subclass

of flat VASSes was investigated, namely VASSes without nested loops in the state structure. This class was introduced

in [17] and has a bunch of nice properties. In particular the reachability relation is semilinear and the reachability

problem can be easily shown to be in NP, even in the case of binary encoding. In [5] it was shown that the reachability

Authors’ addresses: Wojciech Czerwiński, wczerwin@mimuw.edu.pl, University ofWarsaw, Poland; Łukasz Orlikowski, lo418363@students.mimuw.edu.pl,

University of Warsaw, Poland.

2022. Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Wojciech Czerwiński and Łukasz Orlikowski

problem is NP-hard already for a fixed dimension and unary encoding, namely for unary 7-VASSes, but the status of the

problem for lower dimensions remained unsettled.

The first ExpSpace-hardness result for fixed dimension follows from [4], where it was shown that the problem is

h-ExpSpace-hard for unary (h + 13)-VASSes, thus ExpSpace-hard for unary 14-VASSes. Recent Ackermann-hardness

results delivered also Tower-hardness (and in particular ExpSpace-hardness) results in fixed dimensions. Notice that

Tower-hardness for binary d-VASSes implies Tower-hardness for unary d-VASSes as the Tower complexity class is closed

under exponential blowup of running time. Thus we may not emphasise encoding when talking about Tower-hardness.

The dimension in which the problem is Tower-hard was step by step decreased from 21 in the initial version of [14]

(see also the arxiv version [15]) and 18 in [6] through dimension 17 in third version of [15], 11 in the recent Lasota’s

work [13] to a currently best value of 10 in last version of [15]. We further decrease the dimension and show that the

reachability problem is already Tower-hard for 8-VASSes.

Our contribution. We believe it is important to pursue the search for exact complexities for fixed dimensional VASSes.

First of all low dimensional VASSes are very natural computation models and currently known techniques used to

provide hardness results are very likely not to work in some small dimensions. Secondly, it is easier to invent a

sophisticated technique working in a simpler setting. Therefore it is quite possible that the search for exact complexity

bounds for the reachability problem in low dimensions will result in finding new techniques useful in much broader

generality. Thirdly, despite very high pessimistic complexity of the reachability problem it still can be solved in practise

in some cases [3, 9]. Therefore it is not only a theoretical, but may also be of practical interest to understand for which

VASS subclasses the reachability problem have relatively low complexity and avoiding which obstacles may lead to

efficient algorithms. One obvious way to pursue this idea is to understand better low dimensional VASSes.

Our main results are the four lower bound theorems, which improve the previously mentioned lower bounds.

Additionally we introduce a novel technique of proving lower bounds inspired by the multiplication triples technique

introduced in [4] and used also in [6, 13]. We call it the quadratic pairs technique and use it to decrease the dimension

of VASSes in certain hardness results. Concretely speaking we apply this approach to prove Theorems 1.2 and 1.3.

Beside that our main conceptual contribution is to compose already known techniques in a subtle way in order to

get lower bounds, which are 1) substantially stronger than currently known, and 2) shown by some not very involved

constructions. We would like to emphasise that our constructions are rather simple, but we see it as an advantage rather

than a disadvantage.

As a first contribution we provide a simple construction which decreases the dimension in which the reachability

problem is NP-hard for unary, flat VASSes, namely we decrease the dimension from 7 in [5] to a dimension 4.

Theorem 1.1. The reachability problem for unary, flat 4-VASSes is NP-hard.

We need only one dimension more to show PSpace-hardness for unary (not necessarily flat though) VASSes.

Theorem 1.2. The reachability problem for unary 5-VASSes is PSpace-hard.

Next we lower the dimension for which ExpSpace-hardness is known from 10 [15] to 6.

Theorem 1.3. The reachability problem for binary 6-VASSes is ExpSpace-hard.

Notice that Theorem 1.3 clearly shows also PSpace-hardness for unary 6-VASSes (as the unary representation is at

most exponentially bigger than the binary one), but for PSpace-hardness we can eliminate one dimension in the proof

of Theorem 1.2.

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 3

We also show that only two dimensions more than needed for ExpSpace-hardness is enough to get Tower-hardness.

Theorem 1.4. The reachability problem for unary 8-VASSes is Tower-hard.

In order to prove our results we crucially exploit two known techniques designed to force counters of VASSes to

be equal to zero at some particular configurations along the run, namely simulate zero-tests on some counters. The

first technique is based on triples of the form (B,C,BC) and was introduced in [4] in order to simulate C/2 zero-tests

for counters bounded by value B. This idea was later improved in [13] and in [6] to handle many counters by just one

triple. Based on this technique we design our novel quadratic pair technique. The second technique was introduced

in [6] and uses a single controlling-counter in order to perform a linear number of zero-tests. It turns out that none of

these two tools dominate the other one, they are useful in different situations.

Organisation of the paper. In Section 2 we introduce preliminary notions and recall necessary facts about the above

mentioned two techniques of zero-testing. In Section 2 we also introduce the quadratic pair technique and prove related

facts about counter automata. Then in Section 3 we briefly describe ideas beyond our proofs, in some cases it might

be even sufficient to read this section in order to understand in-depth our arguments. In Sections 4, 5, 6 and 7 we

prove in detail Theorems 1.1, 1.2, 1.3 and 1.4, respectively. Finally in Section 8 we comment about the limitations of our

techniques and mention possible future research directions.

2 PRELIMINARIES

Basic notions. For a,b ∈ N we write [a,b] to denote the set {a,a + 1, . . . ,b − 1,b}. For a vector v ∈ Nd and i ∈ [1,d]

we write v[i] to denote the i-th coordinate of vector v . By 0
d
we denote vector v ∈ Nd with all coordinates equal to

zero.

Vector Addition Systems with States. A d-dimensional Vector Addition System with States (d-VASS) consists of a finite

set of states Q and a finite set of transitions T ⊆ Q × Zd ×Q . A configuration of a d-VASS is a pair (q,v) ∈ Q × Nd , we

often write it as q(v) instead of (q,v). For a configuration c = q(v) and i ∈ [1,d], we denote by c[i] the value v[i]. The

set of all the configurations is denoted by Conf = Q × Nd . A transition (p,u,q) can be fired in a configuration r (v) if

p = r and u + v ∈ Nd . We write then p(v)
(p,u ,q)
−→ q(u + v). The effect of a transition (p,u,q) is the vector u, we write

eff((p,u,q)) = u. A sequence ρ = (c1, t1, c
′
1
), (c2, t2, c

′
2
), . . . , (cn, tn, c

′
n) ∈ Conf ×T × Conf is a run of a VASS V = (Q,T)

if, for all i ∈ [1,n], we have ci
ti
−→ c ′i and, for all i ∈ [1,n − 1], we have c ′i = ci+1. We naturally extend the notion

of effect to runs by defining eff(ρ) = eff(t1) + . . . + eff(tn). Such a run ρ is said to be from the configuration c1 to the

configuration c ′n . We write then c1

ρ
−→ c ′n , slightly overloading the notation, or simply c1 −→ c ′n if there is some ρ

such that c1

ρ
−→ c ′n . By Reach(src,V) = {c | src −→ c} we denote the set of all the configurations reachable from the

configuration src and we call it the reachability set. We also write simply Reach(src) if the VASS V is clear from the

context.

The following problem is the main focus of this paper, for different values of d ∈ N.

Reachability problem for d-VASSes

Input: A d-VASS V and two of its configurations src, trg

Question: Does src −→ trg in V ?

The size of VASS V , denoted size(V), is the total number of bits needed to represent states and transitions of V .

A state-cycle in a VASS V is a cycle in the graph (Q, E) with vertices being states of V and edges being defined as

Manuscript submitted to ACM

4 Wojciech Czerwiński and Łukasz Orlikowski

(p,q) ∈ E if there is some transition (p,u,q) ∈ T . We say that a VASS V is flat if for each state q ∈ Q there is at most

one state-cycle in V which contains q. In other words a VASS is flat if there are no nested cycles in its state structure. If

numbers in transitions of a VASS are encoded in unary then we call it a unary VASS. Similarly a binary VASS is a VASS

with transitions encoded in binary.

Counter programs. A very useful formalism to describe some VASSes are counter programs. A counter program is

a sequence of instructions of the form either x += a or loop P, where P is another counter program. Such a counter

program with d counters can be transformed in a natural way to a corresponding d-VASS. Thus in the rest of the paper

in many places we use terms VASS and counter programs almost interchangeably. A precise definition can be found

in [6], we recall here examples provided in [6].

Example 2.1. The following counter program

1: x += 1

2: loop

3: x −= 1 y += 1

4: loop

5: x += 2 y −= 1

6: loop

7: x −= 1 y += 1

8: loop

9: x += 2 y −= 1

represents the 2-VASS presented below, state names are chosen arbitrarily.

s p1 q1 p2 q2

(−1, 1) (2,−1) (−1, 1) (2,−1)

(1, 0) (0, 0) (0, 0) (0, 0)

We often use macro for i := 1 to n do, by which we represent just the counter program in which the body of the for-loop

is repeated n times. Notice that in such a for-loop we can use the index i in the body of the loop.

Example 2.2. The following counter program uses the macro for. For n = 2 it is equivalent to the above example.

1: x += 1

2: for i := 1 to n do

3: loop

4: x −= 1 y += 1

5: loop

6: x += 2 y −= 1

The counter program represents the following 2-VASS.

s p1 q1 pn qn. . .

(−1, 1) (2,−1) (−1, 1) (2,−1)

(1, 0) (0, 0) (0, 0)

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 5

Sometimes we add to counter programs an instruction P1 or P2, where P1 and P2 are counter programs. It is easy to

see that such an instruction can be as well easily simulated by a nondeterministic choice in VASSes.

Bounded counter automata. A counter automaton is a VASS with special zero-test transitions, which can be fired

only if a particular counter has value exactly zero. It is folklore that the reachability problem for counter automata

is undecidable in general. However restricted versions of the problem are natural problems complete for natural

complexity classes. We say that a run of a counter automaton is B-bounded if the sum of all the counters on that run has

values smaller than B. Notice that here we use a slightly unusual notion of boundedness: we demand the sum of all the

counters to be bounded by B, not every single counter by itself. This is however only a small technical change. A run is

accepting if it starts in the distinguished initial state with all the counters equal to zero and finishes in the distinguished

accepting state also with all the counters equal to zero. Consider the following problem:

The f -bounded reachability problem for d-counter automata

Input: A d-counter automaton A, number n ∈ N given in unary

Question: Does A have an f (n)-bounded accepting run?

The following theorem is folklore. The proof can be found in [11] (Theorem 3.1) while in [20] (Section 4.1) it is argued

that small modifications in the definition of the Tower function do not change the class.

Theorem 2.3. The f -bounded reachability problem for three-counter automata is Tower-complete for f (n) = Tower(n)

defined as Tower(1) = 2, Tower(n + 1) = 2
Tower(n) for any n > 1.

Theorem 2.3 will be used in the Tower-hardness proof in Section 7. Actually in the case of f = Tower even the

problem for two-counter automaton is Tower-complete, but this simplification is not needed in our construction.

For the PSpace-hardness and ExpSpace-hardness proofs in Sections 5 and 6, respectively we need a more subtle

problem. We call a counter automata to be B-bounded if all its accepting runs are B-bounded. Let us consider the

following promise problem:

The reachability problem for f -bounded d-counter automata

Input: An f (n)-bounded d-counter automaton A, number n ∈ N given in unary

Question: Does A have an accepting run?

Notice that the assumption of f -boundedness makes the reachability problem for f -bounded counter automata easier

than the problem of f -bounded reachability for not necessarily bounded counter automata. Indeed, if one can check

f -bounded reachability for any counter automata then in particular for f -bounded counter automata, for which it

is equivalent to the reachability problem. Thus the following theorem is harder to prove in our setting of a promise

problem than in the more classical scenario.

Theorem 2.4. The reachability problem for f -bounded d-counter automata is

(1) PSpace-hard for f (n) = 2
n and d = 2

(2) ExpSpace-hard for f (n) = 2
2
n
and d = 3.

The proof of Theorem 2.4 is omitted here, it can be found in the arxiv version of the paper [8].

In the next two paragraphs we present two different techniques, which can be used to simulate zero-tests in bounded

counter automata by a VASS without zero-tests.

Manuscript submitted to ACM

6 Wojciech Czerwiński and Łukasz Orlikowski

Controlling-counter technique. Here we describe the technique of controlling-counter presented in [6]. The essence

of this technique is to add a new counter, called controlling-counter, which is modified in an appropriate way in the

existing transitions and demanded to have value zero in both source and target configurations of the run. This enforces

that some other counters need to have zero values in particular configurations along the run. If a counter is forced to be

zero at some moment of the run we say that a zero-test is performed on that counter at this moment or it is zero-tested.

Assume that configurations c1, . . . , cn are some of the configurations on run ρ from configuration src to configuration

trg and let

c0

ρ1

−→ c1

ρ2

−→ . . .
ρn
−→ cn

ρn+1

−→ cn+1.

Let counter x have value zero at both source c0 and target cn+1 of the run ρ and let values of counter x in configurations

c1, . . . , cn be x1, . . . , xn respectively, namely ci [x] = xi for all i ∈ [1,n]. Let x ′i be the effect of run ρi on counter x ,

namely x ′
1
= x1 and x ′i = xi − xi−1 for i ∈ [2,n]. Clearly in order to assure x1 = x2 = . . . = xn = 0 it is enough to assure

x1 + . . . + xn = 0. Notice that for each i ∈ [1,n] we have xi = x ′
1
+ x ′

2
+ . . . + x ′i . Therefore

x1 + . . . + xn = nx
′
1
+ (n − 1)x ′

2
+ . . . + 2x ′n−1

+ x ′n .

Thus if there is a controlling-counter y with the property that c0[y] = 0 and for each i ∈ [1,n] we have eff(ρi)[y] =

(n + 1 − i) · eff(ρi)[x] then we have that

cn+1[y] = nx
′
1
+ (n − 1)x ′

2
+ . . . + 2x ′n−1

+ x ′n = x1 + . . . + xn .

Therefore trg[y] = 0 implies that ci [x] = 0 for all i ∈ [1,n].

This idea can be extended to one counter controlling many counters. Here we recall Lemma 10 from [6] (see also

arxiv version [7]) stating this generalised version, which will be used in our proofs.

Lemma 2.5. Let src
ρ

−→ trg be a run of a (d + 1)-VASS V and let src = c0, c1, . . . , cn−1, cn = trg be some of the

configurations on ρ. Let ρ j for j ∈ [1,n] be the parts of the run ρ starting in c j−1 and finishing in c j , namely

c0

ρ1

−→ c1

ρ2

−→ . . .
ρn−1

−→ cn−1

ρn
−→ cn .

Let S1, . . . , Sd ⊆ [0,n] be the sets of indices of c j , in which we want to zero-test counters numbered 1, . . . ,d , respectively

and let Nj ,i = |{k ≥ j | k ∈ Si }| for i ∈ [1,d], j ∈ [0,n] be the number of zero-tests, which we want to perform on the i-th

counter starting from configuration c j (in other words after the run ρ j for j > 0). Then if:

(1) src[d + 1] =
∑d
i=1

N0,i · src[i];

(2) for each j ∈ [1,n] we have eff(ρ j ,d + 1) =
∑d
i=1

Nj ,i · eff(ρ j , i); and

(3) trg[d + 1] = 0

then for each i ∈ [1,d] and for each j ∈ Si we have c j [i] = 0.

Multiplication triples technique. The technique of multiplication triples was introduced in [4]. If values of counter

x along run ρ are upper-bounded by B then we say that x is B-bounded on ρ. The essence of this idea is that a VASS

starting with some three counters b, c and d having values B, C and BC , respectively, can perform C/2 zero-tests on a

B-bounded counter.

Let us introduce a macro flush(x,y, z), which stands for a counter program:

1: loop

2: x −= 1 y += 1 z −= 1

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 7

In other words flush(x,y, z) transfers value of counter x to counter y (but maybe not the whole value) while keeping

value x + y constant and decreases counter z by the transferred value.

Now it is easy to see how a zero-test on a B-bounded counter x can be performed. Assume as above that values of

counters (b, c,d) are (B,C,BC) and initial value of x is 0. Then initially x + b = B and as x is B-bounded we can keep

this invariant along the run by decreasing b when x is increased and increasing b when x is decreased. Then zero-test

on x is performed as follows:

1: flush(b, x,d)

2: flush(x,b,d)

3: c −= 2

In order to see that the above counter program indeed zero-tests x notice that maximal decrease of d during this

program is 2B and it is so only if x = 0, b = B at the beginning of the program and both flushes were fully realised (so in

particular x = 0 also at the end of the program). Counter c is decreased by 2 in that program, therefore it can be fired at

most C/2 times, as the initial value of c equals C . Thus in order to reach d = 0 at the end of the program each firing of

zero-test must result in decreasing d by exactly 2B. This in turn implies that zero-test can be indeed fired only if x = 0.

An extension of this technique to many counters zero-tested by the use of just one triple (b, c,d) was introduced

in [6] and elegantly described by Lasota in [13]. We recall the argument here in order to be self-contained. Assume now

that we havem counters x1, . . . , xm which all have value zero at the beginning of the counter program and their sum

x1 + . . . + xm is bounded by B along the run. Then triple (B,C,BC) allows for C/2 zero-tests on any of x1, . . . , xm . We

show how to perform zero-test on counter x1, zero-testing other counters is very similar, we comment about it in a

moment. Notice that in lines 1-5 we are flushing values from counters with bigger indices to counters with smaller

Algorithm 1

1: flush(x2, x1,d)
2: flush(x3, x2,d)
3: . . .

4: flush(xm, xm−1,d)
5: flush(b, xm,d)
6: flush(xm,b,d)
7: flush(xm−1, xm,d)
8: . . .

9: flush(x2, x3,d)
10: flush(x1, x2,d)
11: c −= 2

indices and in lines 6-10 we do the same process backwards.

The main idea is similar as above: we argue that d can be decreased maximally by 2B by the zero-test program and if

it is decreased exactly by 2B then x1 = 0 at the moment of zero-test and values of all the counters xi and b are the same

before and after the zero-test. Clearly the rest of the argument works as before, so it suffices to show the above property.

Let us denote for a moment counter b by xm+1, let ai be the value of xi at the beginning of the program and a′i be

the value of xi after flush in line 5. Clearly a1 + . . . + am + am+1 = a′
1
+ . . . + a′m + a

′
m+1
= B. Notice that the total

decrease of d in lines 1-5 is bounded by a2 + . . . +am+1 and total decrease of d in lines 6-10 is bounded by a′
1
+ . . . +a′m .

Therefore total decrease is bounded by: a2 + . . . + am+1 + a
′
1
+ . . . + a′m = B − a1 + B − a′m+1

= 2B − (a1 + a
′
m+1

). Thus

clearly total decrease of z is at most 2B and it equals 2B if: 1) a1 = a′m+1
= 0; and 2) all the flushes are fully realised.

Manuscript submitted to ACM

8 Wojciech Czerwiński and Łukasz Orlikowski

One can easily see that if all the flushes are fully realised and a1 = 0 then final values of xi are the same as the original

ones, so the zero-test indeed works as required. In order to zero-test counter different than x1, say xi , we perform the

same procedure, but we apply flushes in different order so that xi takes the place of counter x1.

Recall now that an accepting run of a bounded counter automaton is from the distinguished initial state with all

counters having zero values to the distinguished final state with all counters having zero values. Thus we can summarise

the reasoning described above in the following lemma.

Lemma 2.6. For each d-counter automaton A which on its B-bounded accepting run fires at most C zero-tests one can

construct a unary (d + 3)-VASS V with two distinguished states qI ,qF such that: A has an accepting run if and only if

there is a run from qI (B, 2C, 2BC, 0
d) to qF (B, 0d+2) in V .

Quadratic pairs technique. We emphasise here that in order to apply this technique we need to work with B-bounded

counter automata, rather than with B-bounded runs of not necessarily bounded counter automata, in contrast to the

multiplication triple technique. This is because in the multiplication triple technique the counters are checked to be

bounded, while in the quadratic pairs technique the counters are not checked to be bounded, we need to know in

advance that they are B-bounded. The essence of this idea is that a VASS starting with some two counters b and c

having values 2B and 4B2
, respectively, can perform B zero-tests on a B-bounded counter.

We first illustrate this technique for one counter x which is B/2-bounded and then show how to easily generalise it

to more counters. Assume that values of (b, c) are (B,B2) and the initial value of x is 0. Then initially x +b = B, thus we

have that (x + b)2 = B2 = c . The idea of the technique is that we keep the invariant (x + b)2 = c along the run as long

as all the performed zero-tests are correct. If at some moment an incorrect zero-test is fired then (x + b)2 < c and this

inequality holds till the end of the run implying in particular that 0 < c . Thus checking c = 0 at the end of the run

shows that all the performed zero-tests were correct.

The zero-test on x is performed as follows:

1: flush(b, x, c)

2: flush(x,b, c)

3: b −= 1 c += 1

If initially c = B2
and x + b = B then after lines 1-2 still x + b = B and c ≥ B2 − 2B where the equality holds if and only

if both flushes were fully realised. Thus after line 3 we have x +b = B − 1 and c ≤ B2 − 2B + 1 = (B − 1)2 = (x +b)2 and

the equality holds iff both flushes were fully realised, so in particular the zero-test was correct.

Thus after ℓ ≤ B/2 zero-tests performed on x we have b + x = B − ℓ ≥ B − B/2 = B/2. As we know that x is

B/2-bounded then applying at most B/2 zero-tests on x is possible (as x ≤ B − B/2 = B/2). We know after ℓ ≤ B/2

zero-tests that they were correct if (x + b)2 = c . But after ℓ zero-tests x + b = B − ℓ, so it is not immediately clear how

to check whether the equality (x + b)2 = c holds. We check it by performing auxiliary zero-tests at the end of the

run. Namely as the last step we allow for arbitrary decrease of counter x and arbitrarily many zero-tests on x with

the aim of reaching x + b = 0. Then checking whether (x + b)2 = c boils down to checking whether c = 0. After each

such an auxiliary zero-test the following invariant is kept: all the zero-tests are correct only if (x + b)2 = c , otherwise

(x + b)2 < c; and additionally if all the zero-tests are correct then it is possible to have (x + b)2 = c . Thus in order to

check whether all the zero-tests were correct it is enough to check at the very end whether c = 0, similarly as in the

multiplication triple technique.

One can easily observe that extending this technique to many counters x1, . . . , xm which are B/2-bounded (recall

that this means that its sum is bounded by B/2) is straightforward. The only modification is the implementation of

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 9

zero-tests which decrease the counter c exactly by two times of the current value of b + x1 + . . . + xℓ . This is realised

exactly as in the multiplication triple technique, namely as presented in Algorithm 1. The above reasoning can be

summarised in the following lemma.

Lemma 2.7. For each B-bounded d-counter automaton A which on any its accepting run fires at most B zero-tests one

can construct in polynomial time a unary (d + 2)-VASS VA with two distinguished states qI ,qF such that the following are

equivalent:

(1) A has an accepting run

(2) there is a run from qI (2B, 4B
2, 0d) to qF (0d+2) in VA .

Using Lemma 2.7 and Theorem 2.4 one can pretty easily get some hardness results for VASS reachability problems,

namely Corollaries 2.9 and 2.10. As an intermediate tool for these results we formulate the following lemma.

Lemma 2.8. For each B-bounded d-counter automaton A with s states one can construct in polynomial time a unary

(d + 2)-VASS VA with two distinguished states qI ,qF such that the following are equivalent:

(1) A has an accepting run

(2) there is a run from qI (B̄, B̄
2, 0d) to qF (0d+2) in VA where B̄ = 2sd · Bd−1.

Proof. First observe that if there is an accepting run of the counter automaton A then there is also an accepting

run with no repeating configuration. Notice that the number of zero-tests in a run with no repeating configuration is

bounded by the total number of B-bounded configurations in A with at least one counter equal to zero. The number of

such configurations with zero counter value can be bounded by s · d · Bd−1
. Indeed, there are at most s choices of the

state of the configuration, at most d choices of the counter, which equals to zero and at most Bd−1
choices for values of

the other counters (some configurations are counted many times, but this only strengthens the bound). Thus if there

is an accepting run then there is an accepting run with at most sdBd−1 = B̄/2 zero-tests performed for B̄ defined in

the lemma statement. Notice now that if A is B-bounded then it is also B̄-bounded as B ≤ B̄. Then using Lemma 2.7

applied to B̄-bounded d-counter automaton A finishes the proof. □

The following corollaries are immediate consequences of Theorem 2.4 and Lemma 2.8.

Corollary 2.9. Given n, s ∈ N represented in unary and a unary 4-VASS V with distinguished states qI ,qF it is

PSpace-hard to decide whether there is a run from qI (4s · 2
n, 16s2 · 4

n, 0, 0) to qF (04).

Corollary 2.10. Given n, s ∈ N represented in unary and a unary 5-VASS V with distinguished states qI ,qF it is

ExpSpace-hard to decide whether there is a run from qI (6s · 4
2
n
, 36s2 · 16

2
n
, 03) to qF (05).

3 OVERVIEW

Here we provide short sketches of the proofs of Theorems 1.1, 1.2, 1.3 and 1.4. In the following sections we prove these

theorems in detail. Let us emphasise which techniques are used in which proofs. Let us denote the controlling-counter

technique by (CC), the multiplication triple technique by (MT) and the quadratic pairs technique by (QP). Then to prove

Theorem 1.1 we use (CC), to prove Theorem 1.2 we use (CC) and (QP), to prove Theorem 1.3 we use (MT) and (QP) and

to prove Theorem 1.4 we use (CC) and (MT).

Manuscript submitted to ACM

10 Wojciech Czerwiński and Łukasz Orlikowski

Proof of Theorem 1.1: NP-hardness in unary, flat 4-VASSes. This is the easiest proof out of the four presented ones.

We reduce from the Subset Sum problem asking whether there is a subset of the set {s1, . . . , sn } ⊆ N which sums up

to a given number s ∈ N. The main challenge is that numbers si and s in Subset Sum are encoded in binary, while

transitions in our 4-VASS are encoded in unary. We use VASSes very similar to the one from Example 2.2 in order to

be able to obtain exponential counter values out of unary encoded numbers in VASS transitions. If we add the third

counter, which is a controlling-counter, we are able to construct a flat, unary 3-VASS, which produces a number si on a

distinguished counter. Then we reduce the Subset Sum problem as follows: we have a distinguished counter called the

summing counter, to which we first add value s using a 3-VASS (then altogether we have four counters). Then for each

i ∈ [1,n] we construct a 3-VASS, which produces number si and then nondeterministically: either subtracts si from the

summing counter or does not touch the summing counter. After processing all the 3-VASSes for s1, . . . , sn we check the

summing counter to be zero: it is easy to observe that there exists a run reaching zero if and only if the instance of

Subset Sum is positive.

Proof of Theorem 1.2: PSpace-hardness in unary 5-VASSes. By Corollary 2.9 to show PSpace-hardness it is enough

to design for given s,n ∈ N a 5-VASS, or in other words a five counter program of size polynomial in s and n which

constructs on its first four counters (x1, x2, x3, x4) values (4s · 2
n, 16s2 · 4

n, 0, 0) under the condition that x5 = 0.

Indeed, then checking whether it reaches valuation 0
5
at its end is PSpace-hard by Corollary 2.9. We construct the pair

(4s · 2
n, 16s2 · 4

n) on (x1, x2) in the following way. We start with (x1, x2) = (4s, 16s2) and then exactly n times multiply

x1 by 2 and x2 by 4. The multiplications are realised as flushing x1 or x2 to x3 and then flushing it back from x3 to x1 or

x2 simultaneously multiplying it by 2 or 4, respectively. We assume that multiplications are exact by forcing appropriate

counters x1, x2 and x3 to be exactly zero after the flushes. This is realised by the use of the controlling-counter technique,

the counter x5 controls x1, x2 and x3 thus if x5 = 0 at the end of the run then all the multiplications were indeed exact.

Thus indeed after this phase the five counters have values (4s · 2
n, 16s2 · 4

n, 0, 0, x5) under the condition that x5 = 0.

Proof of Theorem 1.3: ExpSpace-hardness in binary 6-VASSes. The idea is similar to the proof of Theorem 1.2. By

Corollary 2.10 to show ExpSpace-hardness it is enough to design for given s,n ∈ N a 6-VASS, or in other words a

six counter program of size polynomial in s and n which constructs on its first five counters (x1, x2, x3, x4, x5) values

(6s · 4
2
n
, 36s2 · 16

2
n
, 0, 0, 0) under the condition that x6 = 0. Indeed, then checking whether it reaches valuation 0

6
at its

end is ExpSpace-hard by Corollary 2.10. We construct the pair (6s · 4
2
n
, 36s2 · 16

2
n
) on (x1, x2) in the following way. We

start from setting (x1, x2) = (6s, 36s2) and then 2
n
times we perform the following: 1) flush x1 to x3, 2) flush back x3 to

x1 while multiplying by 4, 3) flush x2 to x3, 4) flush back x3 to x2 while multiplying by 16. After each flush we perform

a zero-test to assure that the flush was full. Additionally after these multiplications we perform a zero-test on x4. This

time we cannot use the controlling-counter technique easily, as the number of zero-tests is equal to 4 · 2
n + 1, which is

super-linear. In order to simulate 4 · 2
n + 1 zero-tests (even on big counters) we use the multiplication triples technique.

We produce triple (B, 8 · 2
n + 2,B · (8 · 2

n + 2)) on counters (x4, x5, x6) for some big guessed value B ∈ N and use it

to implement 4 · 2
n + 1 zero-tests on B-bounded counters. Using this triple and checking that at the end of the run

counter x6 has value zero guarantees that indeed all the flushes were full. So after this phase we indeed have values

(6s · 4
2
n
, 36s2 · 16

2
n
, 0, 0, 0) on the first five counters.

Proof of Theorem 1.4: Tower-hardness in binary 8-VASSes. We reduce from the Tower(n)-bounded reachability

problem for three-counter automata. This construction uses both the multiplication triples technique and the controlling-

counter technique in an interplay. The aim is, similarly as in the proof of Theorem 1.3, to construct a triple of the form

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 11

(Tower(n),C,C ·Tower(n)) for appropriately bigC . We first show that there exists a 7-VASS, which is a 2
k
-amplifier (more

precisely speaking an f -amplifier for f (k) = 2
k
). The notion of an amplifier was defined in [6], we recall it in Section 7.

Roughly speaking a 2
k
-amplifier from a triple (B,C,BC) produces a triple (2B ,C ′,C ′ · 2

B) for some guessed value

C ′ ∈ N. In short words the construction of the amplifier works as follows: we start from a triple (1,C ′,C ′) for guessedC ′

and then using the triple (B,C,BC) multiply exactly B/8 times the first and the third coordinate of the triple (1,C ′,C ′)

by exactly 2
8 = 256. After these multiplications we therefore get a triple (28·B/8,C ′,C ′ · 2

8·B/8) = (2B ,C ′,C ′ · 2
B) as

needed. Using the trick from the previous paragraph we are able to achieve it by the use of just one additional counter

and therefore the 2
k
-amplifier has only seven counters. We use then the eighth counter as a controlling-counter: we

compose the 2
k
-amplifier exactly n times and assure by the controlling-counter that the appropriate counters in the

places of composition have value exactly zero, which guarantees that composition works correctly. As the number of

compositions is linear this can be achieved by a single controlling-counter and thus the whole construction uses only

eight counters.

4 NP-HARDNESS FOR 4-VASSES

We reduce from the following problem:

Subset Sum problem

Input Number s0 ∈ N, set of numbers

S = {s1, . . . , sn } ⊆ N, all encoded in binary

Question Is there a subset of S summing up exactly to s0?

For an instance of Subset Sum we design a four-counter program P and show that there is a run of P starting in 0
4

and finishing in 0
4
iff the instance is positive. Our counter program has four counters: x and y, which will be used to

generate numbers si , the summing counter z and the controlling counter c . The counter program P consists of counter

program P0 and for each i ∈ [1,n] counter programs Pi and P
′
i in the following way:

1: P0

2: for i := 1 to n do

3: Pi or P ′i

The counter program P0 will be constructed such that in every run reaching 0
4
its effect on counter z is exactly s0. On

the other hand in such runs the effect of counter programs Pi on z for i ∈ [1,n] will be exactly −si , while P
′
i will have

no effect on z.

Let us assume that 2
k
is the smallest power of 2 strictly bigger than all the numbers s0, s1, . . . , sn , namely all si can

be encoded in k bits. For each i ∈ [0,n] let si = ⟨bik−1
· · ·bi

0
⟩2 be the bit representation of si . We show now how the

counter program P0 is constructed. For simplicity we first do not include the controlling counter c in the program.

1: x += b0

k−1

2: for j := k − 2 downto 0 do

3: loop

4: x −= 1 y += 1

5: loop

6: x += 2 y −= 1

7: x += b0

j

Manuscript submitted to ACM

12 Wojciech Czerwiński and Łukasz Orlikowski

8: loop

9: x −= 1 z += 1

One can easily see that if loops in lines 3-4, 5-6 and 8-9 are fired maximal possible number of times then the final values

of (x,y, z) are (0, 0, s0). Therefore to guarantee that z = s0 after the program P0 it is enough to assure that x = 0 each

time line 4 is left, y = 0 each time line 6 is left and x = 0 when line 9 is left. In order to achieve that we use the counter

c . However its behaviour depends as well on programs Pi and P
′
i , so we first present them, also without the controlling

counter. We first show the counter program Pi also without the counter c .

1: x += bik−1

2: for j := k − 2 downto 0 do

3: loop

4: x −= 1 y += 1

5: loop

6: x += 2 y −= 1

7: x += bij

8: loop

9: x −= 1 z −= 1

The only difference between Pi for i ≥ 1 and P0 is that in Pi in the loop in lines 8-9 the counter z is decreased, while in

P0 it was increased. One can easily observe that if Pi for i ≥ 1 starts with valuation (x,y, z) = (0, 0,N) and all the loops

are iterated a maximal number of times then it finishes with valuation (x,y, z) = (0, 0,N − si). Counter program P ′i
(also with counter c ignored) is the same as Pi with the only difference that in line 9 counter z is not decreased, but kept

unchanged. Intuitively the run in VASS choses to use Pi if the number si have to be taken into the sum and P ′i if the

number si is not taken into the sum. We can see now that counter programs P0, Pi and P
′
i have the promised properties

under the condition that counters x and y are zero in the appropriate places. In order to assure it we add the controlling

counter c . One can observe that P0, Pi and P
′
i differ only on the operation done to z in line 9: in P0 it is increase by 1, in

P ′i it is increased by 0 and in Pi it is increased by −1. Therefore we write one parametrised program to represent all the

three counter programs. The presented counter program P̄(i, sign) satisifies P0 = P̄(0, 1), Pi = P̄(i,−1) and P ′i = P̄(i, 0).

1: x += bik−1
c += bik−1

· k(n − i + 1)

2: for j := k − 2 downto 0 do

3: loop

4: x −= 1 y += 1 c −= n + 1 − i

5: loop

6: x += 2 y −= 1 c += (k + 1)(n − i) + (j + 1)

7: x += bij c += bij · (k(n − i) + (j + 1))

8: loop

9: x −= 1 z += sign c −= k(n − i) + 1

The only parts in P̄(i, sign), which are nontrivial to understand are the effects of transitions on the controlling counter c .

Let us recall from Lemma 2.5 that if counter c controls counter x then any increment of x += a should be matched by

c += Na, where N is the number of zero-tests which are planned to be performed on x in the remaining part of the run.

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 13

It is clear that there exist appropriate changes of c , which fulfil Lemma 2.5 and they are not too big, so for an intuitive

understanding of the program one does not need the next paragraph. However in order to prove that we above counter

program indeed satisfies the needed conditions we need to meticulously inspect all the cases, which we do below.

In order to count the needed changes on c we need to count how many times zero-tests are performed on the

controlled counters x and y. In each program P̄ the counter y is zero-tested k − 1 times in the line 6, while counter x is

zero-tested k − 1 times in the line 4 and once in line 9, so altogether k times. Therefore in line 1 in program P̄(i, sign)

counter x is waiting for all the tests in programs P̄ with first parameter being i, i + 1, . . . ,n, altogether n− i + 1 programs

P̄ . Thus the number of zero-tests waiting for x is exactly k(n − i + 1) and each increment x += bik−1
should be matched

by increment c += bik−1
·k(n−i+1). Similarly in line 9 in program P̄(i, sign) counter x is waiting for k(n−i) zero-tests in

programs P̄ with first parameter being i + 1, . . . ,n plus one last zero-test after the loop in lines 8-9 in program P̄(i, sign).

Thus x −= 1 has to be matched with c −= k(n − i) + 1. A similar calculation shows that in line 7 increment x += bij
has to be matched with c += bij · (k(n − i)+ (j + 1)). A bit more involved calculation is needed in case of lines 4 and 6, as

there both counters x and y are modified, so modification of c has to reflect both changes. In line 4 counter x is waiting

for k(n − i) zero-tests in next programs, one zero-test in line 9 and j + 1 zero-tests in line 4 in the further iterations of

the for loops, so altogether for k(n − i)+ (j + 2) zero-tests. In the same line counter y is waiting for (k − 1)(n − i)+ (j + 1)

zero-tests, thus the total change on c is the −k(n − i) − (j + 2) + (k − 1)(n − i) + (j + 1) = −(n − i) − 1. Similarly one can

count that in line 6 counter x awaits for k(n − i) + (j + 1) zero-tests, while counter y awaits for (k − 1)(n − i) + (j + 1)

zero-tests. Therefore c should be incremented by 2(k(n − i) + (j + 1)) − (k − 1)(n − i) − (j + 1) = (k + 1)(n − i) + (j + 1).

One can easily observe that all the changes performed on c are of polynomial size, therefore the reduction from

Sumset Sum is indeed performed in polynomial time. Finally, one can easily see that the constructed counter program

contains no nested loop constructions, so it is indeed flat, as required in the statement of the Theorem 1.1. This finishes

the proof of the Theorem 1.1.

5 PSPACE-HARDNESS FOR 5-VASSES

Due to Corollary 2.9 in order to prove Theorem 1.2 it is enough to show the following lemma.

Lemma 5.1. For each s,n ∈ N one can construct in polynomial time a unary 5-VASS of size polynomial in s and

n with distinguished states qI ,qF such that for each run from qI (0
5) to qF (x1, x2, x3, x4, 0) we have (x1, x2, x3, x4) =

(4s · 2
n, 16s2 · 4

n, 0, 0).

Indeed, let V1 be the 5-VASS from Lemma 5.1 with distinguished states q1

I ,q
1

F . Our aim is to reduce the problem from

Corollary 2.9 to the reachability problem in unary 5-VASSes. Let V2 be a 4-VASS from Corollary 2.9 with distinguished

states q2

I ,q
2

F for which we want to check whether there is a run from q2

I (4s · 2
n, 16s2 · 4

n, 0, 0) to q2

F (0
4). Let V ′

2
be V2

extended with the fifth coordinate in such a way that all the transitions have zero on this fifth coordinate. We construct

now a unary 5-VASSV with distinguished states q1

I ,q
2

F which is a disjoint union ofV1 andV ′
2
with additional transition

from q1

F to q2

I labelled by 0
5
. It is then immediate to see that the following are equivalent:

• there is a run from q2

I (4s · 2
n, 16s2 · 4

n, 0, 0) to q2

F (0
4) in V2

• there is a run from q1

I (0
5) to q2

F (0
5) in V ,

which finishes the proof of Theorem 1.2. Thus the rest of this section focuses on the proof of Lemma 5.1.

Proof of Lemma 5.1. In the proof we prefer to use the terminology of counter programs instead of VASSes, but

recall that counter programs are just syntactic sugar to present VASSes in a human-readable way. In our construction

Manuscript submitted to ACM

14 Wojciech Czerwiński and Łukasz Orlikowski

we actually do not use the counter x4. Our aim is to construct on (x1, x2) values (4s · 2
n, 16s2 · 4

n). We start with setting

(x1, x2) to (4s, 16s2). Then we need to multiply n times x1 by 2 and x2 by 4. We realise it by flushing x1 to x3 and then

flushing it back from x3 to x1 while simultaneously multiplying by 2, and similarly with x2 but multiplying it by 4. In

order to assure that all the multiplications are exact we perform a zero-test after each flush, then we are sure that all the

flushes are full. Before explaining how we realise zero-tests we can already present how our counter program works.

Let us define the following macromultiply(x,y, c) for two counters x and y and number c ∈ N.

1: loop x −= 1 y += 1

2: zero-test(x)

3: loop x += c y −= 1

4: zero-test(y)

Using the macromultiply(x,y, c) we can briefly describe our counter program as follows.

1: x1 += 4s x2 += 16s2

2: for i := 1 to n do

3: multiply(x1, x3, 2)

4: multiply(x2, x3, 4)

It is easy to see that after the above counter program indeed (x1, x2, x3) are equal to (4s · 2
n, 16s2 · 4

n, 0) as supposed.

Thus it remains to explain how do we realise zero-tests. We use the controlling-counter technique described in Section 2

and used also in Section 4 (and in Section 7 later). The counter x5 is the controlling-counter in our counter program

and it controls counters x1, x2 and x3. Recall that in this technique each operation on one of the controlled counters

xi += a is matched by an operation of the controlling-counter x5 += Na, where N is the number of zero-tests which

will be performed on the counter xi in the rest of the run after this operation. By Lemma 2.5 we know that if the value

of the controlling-counter x5 is equal to zero at the end of the run then all the zero-tests on controlled counters were

correct as well. Recall also that a bit counterintuitively a zero-test on controlled counter is not reflected in the counter

program by any code, the only effect of a zero-test on some counter xi is that less zero-tests will be performed on xi in

the future, thus changes of xi are reflected now in the controlling-counter in a slightly different way (N decreases by

one). Thus the above presented counter program after implementing the zero-tests looks as follows.

1: x1 += 4s x2 += 16s2

2: for i := 1 to n do

3: loop x1 −= 1 x3 += 1 x5 += n + 1 − i

4: loop x1 += 2 x3 −= 1 x5 −= 2

5: loop x2 −= 1 x3 += 1 x5 += n − i

6: loop x2 += 4 x3 −= 1 x5 += 2n − 2i − 1

Let us check carefully that the operations on the controlling-counter x5 are correct. In line 3 the counter x1 awaits for

n + 1 − i zero-tests (and is increased by −1) while the counter x3 awaits for 2(n + 1 − i) zero-tests (and is increased

by 1), so the counter x5 should be increased by (n + 1 − i) · (−1) + 2(n + 1 − i) · 1 = n + 1 − i . In line 4 the counter x1

awaits for n − i zero-tests and the counter x3 awaits for 2(n + 1 − i) zero-tests, so the counter x5 should be increased by

(n − i) · 2 + 2(n + 1 − i) · (−1) = −2. In line 5 the counter x2 awaits for n + 1 − i zero-tests and the counter x3 awaits for

2(n + 1 − i) − 1 zero-tests, so the counter x5 should be increased by (n + 1 − i) · (−1) + (2(n + 1 − i) − 1) · 1 = n − i . In

line 6 the counter x1 awaits for n − i zero-tests and the counter x3 awaits for 2(n + 1 − i) − 1 zero-tests, so the counter

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 15

x5 should be increased by (n − i) · 4 + (2(n + 1 − i) − 1) · (−1) = 2n − 2i − 1. So the above counter program satisfies the

conditions of Lemma 2.5. Thus by Lemma 2.5 indeed if x5 = 0 at the end of the counter program then (x1, x2, x3, x4)

have values (4s · 2
n, 16s2 · 4

n, 0, 0) which finishes the proof. □

6 EXPSPACE-HARDNESS FOR 6-VASSES

Similarly as in Section 5 using Corollary 2.10 and the following Lemma 6.1 one can easily derive Theorem 1.3. As the

argument is totally analogous to the argument in the beginning of Section 5 and easy to see we do not repeat it here.

Lemma 6.1. For each s,n ∈ N one can construct in polynomial time a binary 6-VASS with distinguished states qI ,qF
such that for each run from qI (0

6) to qF (x1, x2, x3, x4, x5, 0) we have (x1, x2, x3, x4, x5) = (6s · 4
2
n
, 36s2 · 16

2
n
, 0, 0, 0).

The rest of this section focuses on the proof of Lemma 6.1.

Proof of Lemma 6.1. The main idea is quite similar to the proof of Lemma 5.1, namely to set at the beginning x1 = 6s ,

x2 = 36s2
and then 2

n
times multiply the counters x1 and x2 by values 4 and 16, respectively. The multiplications are

realised by the use of the counter x3, namely we use the macromultiply from the proof of Lemma 5.1 with the counter

x3 as the second argument. After these multiplications we also zero-test counter x4 once, the purpose of it will be

explained later. The main difference between the proofs of Lemmas 5.1 and 6.1 is the way we implement zero-tests. In

the proof of Lemma 5.1 we used the controlling-counter technique, but here it is not sufficient and we are forced to

use the multiplication triples techniques which is more powerful, but uses more counters. We are ready to present the

demanded counter program, it roughly speaking looks as follows.

1: x1 += 6s x2 += 36s2

2: for i := 1 to 2
n
do

3: multiply(x1, x3, 4)

4: multiply(x2, x3, 16)

5: zero-test(x4)

Here however we cannot expand the macro for as it would result in a counter program of exponential size. We need

therefore to show how to implement zero-tests and how to iterate exactly 2
n
themultiply instructions. Notice that we

need to perform exactly 4 · 2
n
zero-tests inside the multiply instructions and then one zero-test on counter x4. If our

counters are B-bounded for some B then thanks to Lemma 2.6 in order to simulate these 4 · 2n + 1 zero-tests it is enough

to have a triple (B, 8 · 2
n + 2, (8 · 2

n + 2) · B). The best bound B such that all x1 + x2 + x3 + x4 ≤ B through the whole

run is B = 6s · 4
2
n
+ 36s2 · 16

2
n
. At first glance it looks a bit like a problem, as it seems that we need one more time to

produce triples with doubly-exponential entries. We perform here however a twist in thinking about triples (B,C,BC),

which was one of the main conceptual contributions of [13]. Namely, the triple (B,C,BC) with small B and bigC can be

both used to implementC/2 zero-tests on B-bounded counters and to implement B/2 zero-tests onC-bounded counters.

In other words: we do not need to compute our big bound B, we just need to guess it nondeterministically. If the guess

is too small then the corresponding run will not be accepting, but it is important that there exists an appropriate guess

for B.

Thus our counter program first prepares a triple (B,C,BC) on the counters x4, x5 and x6.

1: x5 += 8 · 2
n + 2

2: loop

3: x4 += 1 x6 += 8 · 2
n + 2

Manuscript submitted to ACM

16 Wojciech Czerwiński and Łukasz Orlikowski

Notice that n is given in unary, as in the reachability problem for bounded three-counter automata n is given in unary.

Thus the above fragment of counter program is of polynomial size, as 8 · 2n + 2 can be represented in polynomially many

bits, recall that our 6-VASS is binary. It is actually the only place where we use the fact that we deal with binary VASSes,

but it is an important one. After this program fragment, the valuation of (x4, x5, x6) equals (B, 8 · 2
n + 2, (8 · 2

n + 2) · B)

for some B ∈ N. Then the zero-tests zero-test(xi) for i ∈ {1, 2, 3} use this triple to perform at most B zero-tests on

those counters.

The last part, which remains to be shown is how to afford that the for-loop is fired exactly 2
n
times. Recall now

that our triple (B, 8 · 2
n + 2, (8 · 2

n + 2) · B) guarantees that in order to reach at the end of the program some value

(B′, 0, 0) we need to fire exactly 4 · 2
n + 1 zero-tests, which means that the loop needs to be repeated exactly 2

n
times.

Finally observe that after firing these zero-tests we obtain counter values of (x4, x5, x6) of the form (B′, 0, 0), where

B′ + 6s · 4
2
n
+ 36s2 · 16

2
n
= B. However we actually need x4 to be exactly zero at this point. In order to assure it we

apply a last zero-test on counter x4. This zero-test does not differ from zero-tests on counters x1, x2 and x3 at all, notice

that during the run we actually keep the invariant x1 + x2 + x3 + x4 = B, so all the counters xi for i ∈ [1, 4] behave

symmetrically with respect to zero-testing. Notice now that the only guess for B which allows for x4 = 0 at this point is

B = 6s · 4
2
n
+ 36s2 · 16

2
n
, in all the other cases the run of our counter program will not reach x6 = 0. Summarising, the

counter program has the following code.

1: x5 += 8 · 2
n + 2

2: loop

3: x4 += 1 x6 += 8 · 2
n + 2

4: x1 += 6s x2 += 36s2

5: loop

6: multiply(x1, x3, 4)

7: multiply(x2, x3, 16)

8: zero-test(x4)

Thus checking whether x6 = 0 at the end of the program indeed assures that the other values are equal x1 = 6s · 4
2
n
,

x2 = 36s2 · 16
2
n
and x3 = x4 = x5 = 0. □

7 TOWER-HARDNESS FOR 8-VASSES

Similarly as in Section 6 due to Lemma 2.6 it is enough to prove the following lemma.

Lemma 7.1. For each n ∈ N one can construct in polynomial time a unary 8-VASS with distinguished states qI ,qF
such that for each run from qI (0

8) to qF (x1, x2, x3, x4, x5, x6, x7, 0) we have x1 = Tower(n), x3 = x2 · Tower(n) and

x4 = x5 = x6 = x7 = 0.

The proof that Lemma 7.1 implies Theorem 1.4 is even simpler than the corresponding one for ExpSpace-hardness

for 6-VASSes as we do not need to prove any bound on the number of needed zero-tests; it follows immediately from

Theorem 2.3 and Lemma 2.6.

Before showing Lemma 7.1 we recall first the notion of amplifier and prove a suitable lemma. Here we define an

amplifier in a restrictive setting, especially adjusted to our application. In particular instead of talking about f -amplifier

for f (k) = 2
k
we just talk about amplifiers, as we only apply here the notion of amplifiers to this particular function f .

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 17

A 7-VASS V together with its two distinguished states qin and qout is an amplifier if the following holds:

• if qin(B,C,BC, 0
4) −→ qout(0

4,B′,C ′,D ′) in V then

B′ = 2
n
and D ′ = B′ ·C ′

; and

• for each C ′ ∈ N there exists C ∈ N such that

qin(B,C,BC, 0
4) −→ qout(0

4, 2B ,C ′, 2B ·C ′) in V .

We first show the following lemma.

Lemma 7.2. There exists an amplifier.

Proof. We denote counters of the constructed 7-VASS as xi , for i ∈ [1, 7]. The main idea of the amplifier is that we

initialise (x5, x6, x7) as (1,C
′,C ′) for some guessedC ′ ∈ N and then multiply B/8 times both x5 and x7 by 2

8 = 256. The

multiplication uses counter x4, similarly as in the proof of Lemma 6.1. Namely we use the macromultiply(x,y, c) for

two counters x and y and a number c ∈ N defined as follows.

1: loop x −= 1 y += 1

2: zero-test(x)

3: loop x += c y −= 1

4: zero-test(y)

The zero-tests for xi , where i ∈ [4, 7] will use the triple (B,C,BC) on counters (x1, x2, x3) in order to be implemented.

The code of the amplifier is the following.

1: x5 += 1

2: loop x6 += 1 x7 += 1

3: loop

4: multiply(x5, x4, 256)

5: multiply(x7, x4, 256)

6: loop x2 −= 1

In each iteration of the loop we fire exactly four zero-tests, twice on counter x4, once on counter x5 and once on counter

x7. Our aim is to have exactly B/8 iterations of the loop. By Lemma 2.6 using the triple (B,C,BC) guarantees that we

can perform exactly B/2 zero-tests on C-bounded counters. Notice that here, similarly as in Section 6 we use triples

(B,C,BC) in an unusual way: to apply small number (B/2) of zero-tests on big (C-bounded) counters. As we demand

that after finishing the main loop (in lines 3-5) x1 = x3 = 0 we know that exactly B/2 zero-tests were performed, this

implies that exactly B/8 iterations of the main loop were performed, as in each one there are four zero-tests. Thus each

run of our program, which reaches a configuration (04,B′,C ′,D ′) fulfils that B′ = 256
B/8 = 2

B
and D ′ = B′ ·C ′

, which

means that the program satisfies the first condition of being an amplifier. To show that the second condition of being an

amplifier also holds observe that for each C ′
it suffices to have C ≥ C ′(1 + 2

B) and such a C ∈ N surely always exists,

which finishes the proof of Lemma 7.2. □

We are now ready to prove Lemma 7.1.

Proof of Lemma 7.1. In the proof for each n ∈ N we construct an eight counter program Pn representing the VASS

demanded in the statement of Lemma 7.1. Very roughly speaking Pn just uses n times the amplifier from Lemma 7.2.

Manuscript submitted to ACM

18 Wojciech Czerwiński and Łukasz Orlikowski

Let ampli denote the code of amplifier from Lemma 7.2 with additional counter x8 with updates depending in the

parameter i (to be specified later). The code of the counter program Pn is roughly speaking the following.

1: x1 += 1

2: loop

3: x2 += 1 x3 += 1

4: for i := 1 to n do

5: ampli

6: zero-test(x1, x2, x3, x4)

7: loop x5 −= 1 x1 += 1

8: loop x6 −= 1 x2 += 1

9: loop x7 −= 1 x3 += 1

10: zero-test(x5, x6, x7)

Recall here that the for-operator is a macro here, so in fact the program Pn has the lines 5-10 repeated n times with

different values of i in ampli . Notice also that the eighth counter x8 seemingly does not occur in the program. It is

used for implementing the zero-tests, we explain its role in a moment. Observe however first that if the zero-test

procedures correctly zero-test the listed counters then the program Pn performs what it is supposed to perform. After

lines 1-3 values of the seven first counters are (1,C0,C0, 0
4) for some arbitrarily guessed C0 ∈ N. It is easy to show by

induction on i that after i iterations of the for-loop the counters have values (Tower(i),Ci ,Ci · Tower(i), 0
4) for some

arbitrarily guessed Ci ∈ N. Indeed, if after the i − 1 iterations values were (Tower(i − 1),Ci−1,Ci−1 · Tower(i − 1)) then

after the amplifier in line 5 of the i-th iteration and zero-testing counters xi for i ∈ [1, 4] by definition of the amplifier

counter values are (04,Tower(i),Ci ,Ci · Tower(i)) for some arbitrarily guessed Ci ∈ N. Lines 7-10 transfer the triple

(Tower(i),Ci ,Ci · Tower(i)) from counters (x5, x6, x7) to counters (x1, x2, x3) and thus the proof of the induction step is

finished.

It remains to show how the zero-tests are implemented. We use here the controlling-counter technique summarised

in Lemma 2.5. The controlling-counter technique is more useful here than the multiplication triples technique, because

to implement multiplication triple technique we need three additional counters, while to implement a linear number

of zero-tests we need just one additional controlling-counter. Recall that in the technique of controlling-counter we

have an additional controlling-counter (in our case x8) which starts from zero in the initial configuration. For each

other counter (in our case xi for i ∈ [1, 7]) which x8 controls each modification of this counter of the form xi += a is

matched by a modification of the controlling-counter x8 += Na, where N is the number of zero-tests which will be

applied to the counter xi after this modification. Notice that the commands zero-test in the program Pn are actually

not transformed into any real code in this technique, they only mark a point in the code where the controlling-counter

x8 slightly changes its behaviour. With such a modifications of x8 we are guarantied by Lemma 2.5 that in each run in

which the controlling-counter finishes with value zero all the controlled counters in all the zero-tested places indeed

have value zero. Thus it is enough to add the suitable modifications of the counter x8. Each of the counters xi for

i ∈ [1, 7] is zero-tested n times in Pn , counters x1, x2, x3, x4 in line 6 while counters x5, x6, x7 in line 10. Thus we need to

add in line 1 operation x8 += n and in line 3 operation x8 += 2n. In the i-th iteration of the for-loop in line 7 counter

x5 awaits for n − i + 1 zero-tests while counter x1 awaits for n − i zero-tests. This means that we need to modify counter

x8 by (−1) · (n − i + 1) + 1 · (n − i) = −1. Similarly in lines 8 and 9 we also need to add the operation x8 −= 1. Similarly

in the program ampli we need to add for each operation xi += a where i ∈ [1, 7] an operation x8 += (n − i + 1) · a as

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 19

each such counter awaits for (n − i + 1) zero-tests (i − 1 of the zero-tests where already performed in the previous i − 1

iterations of the for-loop). By Lemma 2.5 we are guarantied that the zero-test operations are correct, thus indeed at the

end of Pn we finish the counter valuation (04,Tower(i),Ci ,Ci · Tower(i), 0), which finishes the proof of Lemma 7.1. For

clarity we add the code of the counter program Pn below.

1: x1 += 1 x8 += n

2: loop

3: x2 += 1 x3 += 1 x8 += 2n

4: for i := 1 to n do

5: x5 += 1 x8 += (n − i + 1)

6: loop

7: x6 += 1 x7 += 1 x8 += (n − i + 1)

8: loop

9: multiply(x5, x4, 256)

10: multiply(x7, x4, 256)

11: loop x2 −= 1 x8 −= (n − i + 1)

12: loop x5 −= 1 x1 += 1 x8 −= 1

13: loop x6 −= 1 x2 += 1 x8 −= 1

14: loop x7 −= 1 x3 += 1 x8 −= 1

where inside themultiply operation in the i-th iteration of the for-loop also the operations xi += a for i ∈ [1, 7] are

enriched with operations x8 += (n − i + 1) · a. □

8 FUTURE RESEARCH

General remarks. An obvious future goal is to try to get tight complexity bounds for the reachability problem for

fixed dimensional VASSes, where there are still a lot of question marks. For each d ∈ [3, 7] we do not know whether it

is elementary or not, moreover for d ∈ [3, 5] for binary encoding we still cannot exclude that the problem is PSpace-

complete, exactly like for 2-VASSes [2]. In order to exclude PSpace-completeness it would be helpful to come up with

some say ExpSpace-hard or ExpTime-hard problem, which does not involve bounded counter automata but is anyway

convenient for a hardness proof; similarly as Subset Sum is convenient for NP-hardness proof for unary flat 4-VASSes.

One reason why proving hardness results in low dimensional VASSes is so hard may be because of the use of

multiplication triple technique: we need there three counters to lift our constructions one level higher. Some partial

solution to that problem is the technique of quadratic pairs proposed by us in the paper. It would be interesting to

pursue the research in that direction and try to design some other ways of efficient zero-testing.

Short paths. A common technique to prove upper complexity bounds on the reachability problem in VASSes is to

show that if there is any reachability path then there is also a short one. In this way the reachability problem was

shown to be in PSpace for binary 2-VASSes [2] (reachability path implies exponential length reachability path) and in

NL for unary 2-VASSes [10] (reachability path implies polynomial length reachability path). In particular in order to

have hope for ExpSpace-hardness for d-VASSes we need to have an example of d-VASS with the shortest path of at

least doubly-exponential length. Similarly for Tower-hardness we need an example of a VASS with the shortest path

being of tower length. Currently there is a known example of 4-VASS with shortest path being doubly-exponential [5]

Manuscript submitted to ACM

20 Wojciech Czerwiński and Łukasz Orlikowski

(Section 5) which means that we may have hope for decreasing the ExpSpace-hardness from dimension 6 to 4 if we

happen to find appropriate techniques. However there are no known examples of 3-VASSes of shortest reachability

path bigger then exponential and of 7-VASSes of shortest reachability path bigger then doubly-exponential. Therefore

without finding examples of 3-VASSes and 7-VASSes with longer shortest reachability paths we have no hope to prove

ExpSpace-hardness for 3-VASSes or Tower-hardness for 7-VASSes. This indicates that a search for hard VASS examples

may be actually the most needed and potentially fruitful one.

Two-counter automata. Another way how we can sometimes decrease VASS dimension by one is to use bounded

two-counter automata instead of bounded three-counter automata. We managed to achieve it for 2
k
-bounded automata

in Theorem 2.4 and it allowed us to prove Theorem 1.2 in dimension 5 instead of 6. However this technique does

not seem to extend immediately to higher bounds, for example to 2
2
k
-bounded automata. To our best knowledge the

following statement is open, but we conjecture it to be true.

Conjecture 8.1. The reachability problem for f -bounded two-counter automata (with unary updates) is ExpSpace-

complete for f (k) = 2
2
k
.

This conjecture would not immediately give ExpSpace-hardness for binary 5-VASSes as generating the pair (6s ·

4
2
n
, 36s2 · 16

2
n
) in the proof of Theorem 1.3 currently needs six counters, but would be some step towards it and an

interesting result in itself.

ACKNOWLEDGMENTS

We thank Sławomir Lasota for letting us to present his proof of the first item in Theorem 2.4 and we thank anonymous

reviewers for helpful remarks. First author is supported by the ERC grant INFSYS, agreement no. 950398. Second author is

supported by the Ministry of Science and Higher Education project Szkoła Orłów, project number 500-D110-06-0465160.

REFERENCES
[1] Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic, Pierre McKenzie, and Patrick Totzke. 2021. The

Reachability Problem for Two-Dimensional Vector Addition Systems with States. J. ACM 68, 5 (2021), 34:1–34:43.

[2] Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. 2015. Reachability in Two-Dimensional Vector Addition

Systems with States Is PSpace-Complete. In Proceedings of LICS 2015. 32–43.
[3] Michael Blondin, Christoph Haase, and Philip Offtermatt. 2021. Directed Reachability for Infinite-State Systems. In Proceedings of TACAS 2021

(Lecture Notes in Computer Science, Vol. 12652). 3–23.
[4] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. 2019. The reachability problem for Petri nets is not

elementary. In Proceedings of STOC 2019. ACM, 24–33.

[5] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. 2020. Reachability in Fixed Dimension Vector Addition

Systems with States. In Proceedings of CONCUR 2020. 48:1–48:21.
[6] Wojciech Czerwinski and Lukasz Orlikowski. 2021. Reachability in Vector Addition Systems is Ackermann-complete. In Proceedings of FOCS 2021.

IEEE, 1229–1240.

[7] Wojciech Czerwinski and Lukasz Orlikowski. 2021. Reachability in Vector Addition Systems is Ackermann-complete. CoRR abs/2104.13866 (2021).

[8] Wojciech Czerwinski and Lukasz Orlikowski. 2022. Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes. CoRR abs/2203.04243

(2022).

[9] Alex Dixon and Ranko Lazic. 2020. KReach: A Tool for Reachability in Petri Nets. In Proceedings of TACAS 2020 (Lecture Notes in Computer Science,
Vol. 12078). 405–412.

[10] Matthias Englert, Ranko Lazic, and Patrick Totzke. 2016. Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete.

In Proceedings of LICS 2016. 477–484.
[11] Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. 1968. Counter Machines and Counter Languages. Mathematical Systems Theory 2, 3

(1968), 265–283.

[12] Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. 2009. Reachability in Succinct and Parametric One-Counter Automata. In

Proceedings of CONCUR 2009. 369–383.

Manuscript submitted to ACM

Lower Bounds for the Reachability Problem in Fixed Dimensional VASSes 21

[13] Slawomir Lasota. 2022. Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem. In Proceedings of STACS 2022 (LIPIcs, Vol. 219).
46:1–46:15.

[14] Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is Not Primitive Recursive. In Proceedings of FOCS 2021. IEEE, 1241–1252.
[15] Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is Not Primitive Recursive. CoRR abs/2104.12695 (2021).

[16] Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension. In Proceedings of
LICS 2019. IEEE, 1–13.

[17] Jérôme Leroux and Grégoire Sutre. 2004. On Flatness for 2-Dimensional Vector Addition Systems with States. In Proceedings of CONCUR 2004
(Lecture Notes in Computer Science, Vol. 3170). 402–416.

[18] Richard J. Lipton. 1976. The Reachability Problem Requires Exponential Space. Technical Report. Yale University.
[19] Ernst W. Mayr. 1981. An Algorithm for the General Petri Net Reachability Problem. In Proceedings of STOC 1981. 238–246.
[20] Sylvain Schmitz. 2016. Complexity Hierarchies beyond Elementary. ACM Trans. Comput. Theory 8, 1 (2016), 3:1–3:36.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Preliminaries
	3 Overview
	4 NP-hardness for 4-VASSes
	5 PSpace-hardness for 5-VASSes
	6 ExpSpace-hardness for 6-VASSes
	7 Tower-hardness for 8-VASSes
	8 Future research
	Acknowledgments
	References

