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Abstract. To perform navigation or AR/VR applications on mobile de-
vices, SLAM is expected to be with low computational complexity. But
using feature descriptors restricts the minimization and lightweight of a
SLAM system. In this paper, we propose a lightweight monocular SLAM
system called 3OFRR-SLAM, which is precise, fast, and achieves real-
time performance on CPU and mobile phones. It integrates a 3D-assisting
optical flow tracker, uses a local map to provide prior information for op-
tical flow, and improves the Lucas-Kanade algorithm, which makes data
association fast and reliable. To further eliminate outliers of data asso-
ciation, we propose a novel Refined-RANSAC, improving the accuracy
of camera pose estimation without taking much extra time cost. We
evaluate our system on TUM-RGBD dataset and real-world data. The
results demonstrate that our system obtains an outstanding improve-
ment in both speed and accuracy compared with current state-of-the-art
methods ORB-SLAM2 and DSO. Moreover, we transplant our system to
an android-based smartphone and show the application for augmented
reality (AR).

Keywords: Visual Localization · Fast Tracking · SLAM.

1 Introduction

Over the past decades, simultaneous localization and mapping(SLAM) [3] has
made rapid progress. With visual SLAM technology getting mature, it has been
applied in robotics, unmanned driving and AR/VR widely [23]. Several sensor
types can be used as input of visual SLAM, such as monocular cameras [12] [6],
stereo cameras [22] and RGB-D cameras [9]. In consideration of the low cost and
easy deployment of the monocular camera, we focus on monocular visual SLAM
in this paper.

For visual SLAM, one of the key problems is data association, which has
a decisive influence on the efficiency and accuracy of the visual localization
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and reconstruction [26]. Based on the geometric features of image points, data
association methods can be divided into two types. One is to construct data
association by calculating specific descriptors of feature points. Although high
accuracy and robustness can be obtained, even fast feature descriptors such as
ORB [20] may decrease the real-time performance of SLAM systems in the case
of high frame rates and high image resolution. The other is to detect corners
and utilize sparse optical flow to construct data association. Compared with the
first one, it is faster but more likely to cause incorrect feature correspondences.
Another mainstream method of data association is the direct method, which
directly minimalizes the photometric error by solving a nonlinear optimation
instead of relying on geometric features. As it avoids the complex calculation
of descriptor matching, it obtains high efficiency. However, the optimization of
sliding windows still requires a lot of computing power, which also limits the
application of this method on the mobile terminals.

To address these problems, we propose 3OFRR-SLAM, a lightweight and
accurate monocular SLAM system, which combines a 3D-assisting optical flow
tracker that can give one-to-one correspondences for accurate and fast data asso-
ciation. And to further reject outliers of 3D-2D correspondences obtained from
the proposed tracker, we propose a novel Refined-RANSAC method to refine the
estimation of camera poses, where we also give a criteria function to choose 3D
information with high quality.

The main contributions of this paper are as follows:

– A lightweight monocular visual SLAM system integrates a 3D-assisting op-
tical flow tracker.

– A novel Refined-RANSAC method is proposed to better eliminate outliers.
Compared with standard-RANSAC, it makes camera pose estimation more
accurate without taking much extra time cost.

– We demonstrate on TUM-RGBD [?] dataset that our system outperforms
the state-of-art systems in accuracy and speed, and implement our system
on the mobile terminal for visual localization and AR applications.

The rest of this paper is organized as follows. In section 2 we discuss the re-
lated work. The framework of the proposed system is shown in Section 3. Section
4 provides the details of the tracking thread and the mapping thread is described
in Section 5. Section 6 provides qualitative and quantitative experimental results.
And the conclusions and future work are given in Section 7.

2 Related Work

At present, the mainstream visual SLAM methods can be roughly divided into
three categories: filter-based visual SLAM, keyframe-based visual SLAM, and
direct-based visual SLAM.

Filter-based visual SLAM uses a Gaussian probability model to express the
system state at each moment and continuously update it. Davison first proposed
MonoSLAM [2], a real-time SLAM system using a monocular camera in 2003.
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MonoSLAM is implemented using the Extended Kalman Filter (EKF) [25] under
a probability framework. The computational complexity of MonoSLAM is very
high, which makes it difficult to apply on a large scale. Paz et al [17] proposed
a divide-and-conquer EKF-SLAM method to reduce the amount of calculation.
Filter-based visual SLAM has more entangled data association and thus is more
easy to drift.

It is proved in [21] that the keyframe-based visual SLAM outperforms filter-
based visual SLAM. Klein et al [10] proposed and open-sourced the first keyframe-
based monocular visual SLAM system called PTAM in 2007, and transplanted
it to the iPhone 3G in 2009 [11]. A classic two-thread framework is proposed
in PTAM, which performs tracking and mapping as two independent tasks in
two parallel threads. ORB-SLAM [14] proposed by Mur-Artal et al in 2015
gets improvement from the FAST features [19] and the ORB [20] descriptors
as while as the addition of the loop detection module. They further proposed
ORBSLAM2 [15] in 2017, which is an extension from ORB-SLAM.

Visual direct SLAM directly optimizes the photometric error instead of con-
sidering the geometric information. It attains better robustness in the case of
weak texture and images blurred. DTAM [16] is a dense visual SLAM system
based on the direct method proposed in 2011. It constructs a dense depth map
of keyframes by minimizing the energy function of the global space specifica-
tion. DTAM is computationally intensive and requires GPU parallel computing.
LSD-SLAM [5] restores the depth values of some pixels in the image to get a
semi-dense model, which can run in real time on the CPU and smartphones.
DSO [4] is a sparse direct visual odometry, which combines the photometric
calibration model to improve the robustness. DSO can also run in real time on
the CPU. What’s more, SVO [7] and SVO2 [8] are a kind of semi-direct visual
odometry and use a combination of feature points and direct methods. In the
tracking thread, they extract FAST [19] corners and track them using the direct
method while using a depth filter [18] to recover the depths. Since they avoid to
calculate a large number of descriptors, they can be extremely fast.

These methods either have entangled data association or use image descrip-
tors to associate data. To make SLAM more lightweight along with better ac-
curacy, we design a visual odometry based on the optical flow, utilizing the
information of the local map and the forward poses to optimize and accelerate
the optical flow tracking. Besides, we solve the camera pose by the proposed
Refined-RANSAC, which is a promotion of Lebeda’s LO-RANSAC [?]. But in-
stead of processing the data completely based on randomness without bias, we
introduce the information of the local map to give the data points an estimated
weight in voting, which makes camera pose estimation more accurate without
taking much extra time cost.

3 SYSTEM OVERVIEW

The system overview of 3OFRR-SLAM is shown in Fig.1. Tracking and recon-
structing run in two separate threads. The tracking thread implements the pro-
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Fig. 1. The framework of 3OFRR-SLAM

posed 3D-assisting optical flow tracker to get an accurate estimation of the cam-
era pose for each frame. First we detect FAST corners on the current frame Kj

and get an initial pose prediction from the last frame Kj−1. Then we use an
improved LK optical flow tracker to reproject the local map into the current
frame Kj with the initial pose to obtain 3D-2D correspondences, and estimate
the camera pose with the proposed Refined-RANSAC. The pose will be further
optimized by a local BA(bundle adjustment). If the current frame is determined
to be a keyframe, we will add it to the keyframe sequence, in which it will be
waited to be inserted to the mapping thread.

The mapping thread incrementally reconstructs the 3D structure of the sur-
roundings. Map points will be produced by triangulation with the 2D-2D corre-
spondences found between the current keyframe and its nearst keyframe. After-
wards, a local BA is performed to refine the new reconstructed points and then
a global BA will be performed within several selected representative keyframes.

4 Tracking

4.1 3D-assisting Optical Flow Tracker

Those 3D points which may be visible will be chosen to be tracked by the
proposed 3D-assisting optical flow tracker to get 3D-2D correspondences.

Considering that the disparity between the reference keyframe and the cur-
rent frame may be relatively large, the source image patch around mij and the
target image patch around mic may be quite different and remote. If we directly
calculate the optical flow, it could hardly find the right correspondences. Firstly
we use LK optical flow to track points between the last frame and the current
frame to get an intial pose prediction of the current frame Kj. According to 3D-
2D correspondences in the current frame, the initial pose of Kj can be estimated
by solving the PnP problem. Afterwards an affine transformation is performed
to correct the source image patch. Then we set the initial search position for the
optical flow tracker by projecting the selected 3D points onto the current frame
with the predicted initial camera pose. This strategy is a one-to-one correspon-
dence way and thus makes the initial search position closer to the real value,
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which accelerates the iteration and improves the matching accuracy. That’s why
we call it the 3D-assisting optical flow tracker. It can be seen in Fig.2 that the
mismatchs of our method are much less than the ordinary LK optical flow.

Starting from the given initial positions, the 3D-assisting optical flow tracker
iteratively searches the correspondence of the source patch in the target image
by minimizing the sum of squared difference (SSD) between them. For each
iteration, the following photometric residual is minimized:

r∑
x=−r

r∑
y=−r

(I(x, y)− J(x+ x0 + dx, y + y0 + dy))
2

=

(2r+1)2∑
p=0

(
I(p)− J(p)|(x0+dx,y0+dy)

)2
,

(1)

where r is the radius of the image patch, I and J are the brightness of each
pixel in the source patch and the target patch, (x0, y0) is the position after the
last iteration and the start position of this iteration and (dx, dy) is the required
offset.

(a) The proposed 3D-assisting optical flow
tracker

(b) The ordinary LK optical flow

Fig. 2. Performances of optical flow tracker on TUM- RGBD dataset.

To mitigate the influence of lighting variation while speeding up the conver-
gence, unlike the LK optical flow method that modifies the residual representa-
tion and introduces new parameters, we adopt a direct method: normalize the
source image patch to get I

′
(p), and the image patch at the beginning of this

iteration in the target image is also normalized to get J
′
(p), then the solution

of (dx, dy) can be expressed as:
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where(I
′

x, I
′

y) are the normalized brightness of the source patch.
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To further adapt to the situation where the position of the target image patch
is greatly different from the predicted patch, we build a 4-level image pyramid
and obtain the target position from coarse to fine.

4.2 Refined-RANSAC and Camera Pose Estimation

In order to further improve the accuracy of the pose estimation, we study a novel
Refined-RANSAC to remove 2D-3D correspondence outliers.

The standard RANSAC algorithm randomly selects several data elements
from the input data set, then repeatedly solves a model that fits the chosen
samples. It considers that each data point has an equal confidence when evalu-
ating the estimated model. Therefore, the number of the data elements that the
model can fit within a given tolerance is used as the evaluation criteria of model
quality. And the model with the most inliers will be returned. This leads to the
fact that the performance of standard RANSAC method will decrease rapidly as
the outliers ratio increases. And it is very sensitive to the threshold boundaries
for dividing inliers and outliers. Meanwhile, the standard RANSAC is based on
the assumption that all-inlier samples lead to the optimal solution. However,
this assumption has been observed to be not valid in practice as pointed out
in [1] [24].

To this end, we propose the Refined-RANSAC to further reject outliers in
pose estimation. Compared to the standard RANSAC, the proposed Refined-
RANSAC includes two new processes.

1. Local Optimization: after a potential model is found by the standard
RANSAC, we run an additional local optimization step on it.

2. Weighted Voting: data points are assigned with different voting weights
in the model evaluation according to their reliability.

We use the past recurrence rate of a map point ω as an index to evaluate the
reliability of the map point. The recurrence rate ω is given by:

ω = N
′
/N, (3)

where N is the number of past frames at which the point can be observed and
N

′
is the number of the times that the map point and its corressponding 2D

point stay within inliers after local bundle adjustment. And the score EM of a
model can be calculated as follows:

EM =
∑
i=1

max(ω · |pmi − pi|, Threrror), (4)

where pi is the real position of an image point, pmi represents the reprojected
position of pi using model M , and Threrror is a given threshold to limit the
impact of a single data point.

The whole process of the proposed Refined-RANSAC is summarized in Algorithm
1 and the local optimization step is summarized in Algorithm 2, where LSq is
short for least squares solution, L is the set of inliers of 3D-2D correspondence
and M represents the estimated model of camera pose (the best found, the best
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Algorithm 1 Refined-RANSAC

Require: I, ω, θ
1: I ← input samples
2: ω ← the weights of input data
3: θ ← the inlier-outlier error threshold
4: for k = 1→ K (I) do
5: Sk ← randomly drawn minimal sample from I
6: Mk ← model estimated from sample Sk
7: Ek ←score−model(Mk, ω, θ)
8: if Ek > E∗s then
9: M∗s ←Mk; E∗s ← Ek

10: MLO, ELO ← run Local Optimization (M∗s , ω, θ)
11: if ELO > E∗ then
12: M∗ ←MLO; E∗ ← ELO
13: update K
14: end if
15: end if
16: end for
17: return M∗

from local optimization). The find inliers function evaluates the samples with
input model M, and returns the subset of inliers whose errors are smaller than
threshold θ.

As shown in Algorithm 1, firstly we execute an outer iteration with a mini-
mal solver to find a potential best model. The minimal solver is used because the
input dataset here has not been filtered and may have a relatively larger outlier
ratio. Then we run the local optimization phase. The samples input here are
only chosen from Es (the inliers to the model found by a minimal solver under
a slightly bigger in-out-threshold). As the sampling is running on so-far-inner
data, in this iteration a non-minimal solver can be performed to introduce more
information, such as the nonlinear optimization we used.

model found by local optimization

model found by outer iteration
(Equivalent to a standard RANSAC)

Subsets randomly selected from 
the inliers of outer iteration

Subset of samples drawn from
outer iteration

Fig. 3. Schematic of the Local Optimization

Substantially, the inner local optimization step aims to refine the estimated
model by solving the same ploblem again within a smaller area which is verified
to be reliable by the outer interation. Fig.3 is a schematic of the process. The
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Refined-RANSAC algorithm is very stable and is insensitive to the choice of
the inlier-outlier threshold. It offers a significantly better initial value point for
bundle adjustment. The quantitative evaluation of the performance of Refined-
RANSAC can be seen in Section 6, which can be seen in Table 1.

The pose estimation obtained after the Refined-RANSAC solver will be re-
fined further by a non-linear optimizer with 3D-2D correspondences.

Algorithm 2 Local Optimization

Require: Ms, ω, θ, ,mθ

1: Ms ← model estimated by outer iteration
2: ω ← the weights of input data
3: θ ← the inlier-outlier error threshold
4: mθ ← the threshold multiplier
5: Is ← find inliers (Ms, θ)
6: for i = 1→ iters1 do
7: Sis ← sample of size sis randomly drawn from Is
8: Mis ←model estimated from Sis by least squares solution
9: θ′ ← mθ · θ

10: I′ ← find inliers (Mis, θ
′)

11: M ′ ← model estimated by nonlinear optimization on I′
12: E ′ ← score model (M ′, ω, θ′)
13: if E ′ > E ′∗ then
14: M∗s ←M ′

15: end if
16: Mr ← the best of M

′

17: end for
18: return the best of Mr, with its inliers

4.3 Relocalization

If the tracking quality is poor for consecutive 5 frames, tracking is assumed to be
lost and the relocalization will be performed in the next frame. The relocalization
process firstly searches for the 3D-2D correspondences between the global map
and current frame through a random forest. Then the camera pose is calculated
by EPnP algorithm and the current camera pose is retrieved in the global map.

5 Mapping

The addition of new keyframes brings new information to update the map. We
detect FAST feature points on the newly added keyframe and select those further
from the observation of existing map points as new features, then search for their
correspondences on the nearest keyframes. Matching search is performed along
the epipolar line with a cross-check matching method: two feature points are
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considered to be a valid pair only if they are both the most similar feature points
of each other. Once the correspondences are obtained, the new map points can
be triangulated.

After updating the model, we perform a local bundle adjustment [13] to
optimize the newly reconstructed map. And then a global bundle adjustment
is applied. Considering the efficiency of the system in a long image sequence,
we select some representative keyframes through the covisible relationship and
optimize the map points and the poses of the selected keyframes together.

6 EXPERIMENT

We perform experiments on a public dataset and in a real world environment
to evaluate the proposed 3OFRR-SLAM system. We carry out all experiments
with an Intel Core i7-8750H CPU (12 cores@ 2.20GHz) and 32 GB RAM. Our
system is compared with two state-of-the-art methods: ORB-SLAM2 and DSO.
Additionally, we port the proposed system to two applications, including an
implementation for augmented reality and an app running on an android mobile
device.

Table 1. Localization error of each frame comparison in the TUM RGB-D dataset

Sequence
3OFRR-SLAM

ORB-SLAM2 DSO
Standard
RANSAC

Local
RANSAC

ATE
(m)

RPE
(deg/m)

ATE
(m)

RPE
(deg/m)

ATE
(m)

RPE
(deg/m)

ATE
(m)

RPE
(deg/m)

fr1/xyz 0.0131 0.4912 0.0083 0.4822 0.0102 0.5256 0.0202 0.9982
fr2/xyz 0.0312 0.7088 0.0318 0.7275 0.0251 0.0242 0.0416 0.554
fr2/rpy 0.0092 1.3305 0.0068 1.3178 CNI1 CNI 0.0152 2.9585
fr1/desk 0.0201 1.3744 0.0169 1.2780 0.0190 1.2556 0.0285 1.8569
fr2/desk 0.0362 0.6989 0.0220 0.6875 0.0116 0.2443 0.0224 0.6899
fr3/long office 0.0322 0.2366 0.0275 0.2091 0.0434 0.2334 0.0855 0.7341
fr3/sitting halfsphere 0.0551 0.9002 0.0379 0.8452 0.0142 0.4266 0.0410 0.9233
fr3/sitting xyz 0.0180 0.3170 0.0176 0.3166 0.0268 0.3646 0.0232 1.3140
fr3/walking halfsphere 0.1722 2.1220 0.0990 1.8201 0.1606 3.1870 0.1953 3.2845
fr2/desk with person 0.0090 0.3109 0.0064 0.2815 0.0072 0.2955 0.0288 1.0020
fr3/str tex near 0.0575 0.5090 0.0175 0.4732 0.0188 0.5323 0.0219 1.2091
fr3/str tex far 0.0309 0.5466 0.0184 0.5533 0.0091 0.2108 0.1056 2.6555
fr3/nostr tex

near withloop
0.0303 0.3810 0.0247 0.3099 0.0262 0.3217 0.0426 0.6713

fr3/nostr tex far 0.1022 3.2988 0.0690 2.4750 AD2 AD 0.8522 2.9666

1 CNI: cannot initialize
2 AD:ambiguity detected

6.1 Evaluation on TUM-RGBD Dataset

We evaluate our system on the public TUM-RGBD dataset, which contains
indoor sequences from RGBD sensors grouped in several categories and provides
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the ground truth of the camera pose for each frame. It is widely used to evaluate
the SLAM or odometry systems. Since 3OFRR-SLAM is based on a monocular
camera, we only use the RGB images as input.

ORB-SLAM2 and DSO are chosen to be the state-of-the-art systems of the
feature-based methods and the direct methods respectively. The experimental
results of them are obtained by running the open-source codes. To be fair, the
ORB-SLAM2 is loop closure-disabled. We run each sequence for 5 times and
pick the median result. The camera poses of all frames are recorded.

We adopt absolute trajectory error (ATE) and relative pose error (RPE) to
conduct the quantitative evaluation of the system. The ATE directly calculates
the difference between the ground-truth and the estimated camera poses,which
reflects the overall performance of system. The relative pose error describes the
pose difference of two frames during a fixed time interval. It reflects the drift of
the system. The Root-Mean-Square Error (RMSE) of ATE and RPE is shown in
TABLE 1, which is calculated by the benchmark tool [27]. It can be seen in TA-
BLE 1 that our system outperforms ORB-SLAM2 and DSO on most sequences.
That benefits from the accurate position from the proposed optical flow tracker,
and the subsequent Refined-RANSAC gives a reliable filtering of data associa-
tions. The severe jitter and rapid moving on some sequences (such as fr2/xyz)
will cause motion blur, and make most of the motion assumptions invalid, which
makes optical flow tracking and the direct method performs terrible. But it has
relatively little impact on the ORB-SLAM2, which adopts robust ORB feature
to get correspondences.

(a) fr3/sitting xyz (b) fr2/desk with person

3 2 1 0 1 2
x (m)

2

1

0

1

2

3

y 
(m

)

groundtruth
ORB-SLAM2
3OFLR-SLAM
DSO

(c) fr3/long office

Fig. 4. Estimated trajectories by 3OFRR-SLAM, ORB-SLAM2 and DSO on TUM-
RGBD dataset.

Fig.4 shows the estimated trajectories by our method, ORB-SLAM2 and
DSO on three different TUM-RGBD sequences. It can be seen clearly that our
estimated trajectories are smoother than those of ORB-SLAM2 and DSO with
fewer sudden jumps.

Running time is an important factor of the performance of the online system.
Fig.5 shows the time cost comparisons of our camera pose tracking method with
ORB-SLAM2 and DSO on the fr3/long office sequence. As the proposed method
is based on the optical flow, it preserves from the calculation and matching of
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Fig. 5. Tracking timecost of each frame on the sequence fr3/long office of TUM-RGBD
dataset

descriptors adopted in ORB-SLAM2 and the iteratively optimization of the slid-
ing keyframe window adopted in DSO. The reduced computational complexity
brings a noticeable speed increase. It can be seen that our speed can generally
reach 2-3 times of ORB-SLAM2 and DSO.

6.2 Evaluation of Refined-RANSAC

The proposed Refined-RANSAC brings obvious improvement in terms of accu-
racy compared to standard RANSAC,which can be seen in Table 1. And Fig.6
shows that the pose trajectory with Refined-RANSAC is more smooth and closer
to the groundtruth.

The experiment on TUM-RGBD dataset demonstrates that Refined-RANSAC
does not need much extra time cost in contrast to the standard RANSAC. The
reason is that more correct inliers can trigger the stopping criterion earlier and
the improvement of the initial value can accelerate the convergence of the sub-
sequent optimization. It can be seen in Fig.5 that the addition of the Refined-
RANSAC method does not affect the speed of camera pose tracking, and even
speeds up the convergence of pose optimization.
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Fig. 6. Performances of the proposed Refined-RANSAC compared with standard-
RANSAC on TUM- RGBD dataset.
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6.3 Application

1) AR with a Hand-held Camera

Fig. 7. An implementation for augmented reality: a virtual 3D model of a wine bottle
is projected on the desk in the real office scene. Although the camera moves, the bottle
remains still stable.

We present a simple AR application with a hand-held monocular camera to
exhibit the accuracy and robustness of our system. The performance can be seen
in Fig.7. We add a virtual 3D model of a wine bottle to the real scene in the
office and place it on the desk. It can be seen that the red wine bottle on the
desk remains stable as the hand-held camera rotates and moves, demonstrating
the high visual localization accuracy of our SLAM system.

2) Implementation on Mobile Device

As 3OFRR-SLAM is lightweight, we transplant it to mobile devices and test
its performance in real-world indoor scene. It can run in real time on a Huawei
P9 smartphone, using images with 30 Hz and 640 × 480 resolution. Fig.8 shows
the performance of the app.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a lightweight SLAM system that uses optical-flow to
solve data association instead of the common-used descriptor-based method or
direct method. The system is composed of an improved 3D-assisting optical flow
tracker and a novel Refined-RANSAC algorithm that combines the information
of the local map to further eliminate the outliers and improve the camera pose
estimation. Experiments show that the proposed SLAM system has superior
performances in terms of accuracy and speed than state-of-the-art methods.
And it is proved that the system we proposed can run in real time on a small
mobile terminal. In the future, we will add closure loop detection to deal with
large city environments and fuse IMU information to assist visual localization.
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Fig. 8. APP of 3OFRR-SLAM running on a mobile device in a real-world indoor scene,
with 30 Hz and 640 × 480 resolution images as input.
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