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ABSTRACT 

Since 2009, the Portuguese Air Force Academy Research Centre (CIAFA) has been involved in several 

research projects (e.g., PITVANT) using UAVs. Typically, Piccolo (Collins Aerospace, 2022) autopilots have 

been used by CIAFA for research purposes. However, this autopilot is relatively expensive and resorts to closed-

source software. Therefore, CIAFA is exploring new open-source hardware and software options that allow for 

rapid prototyping and flight testing of UAVs, such as the Pixhawk (Kortunov et al., 2015). 

This work aims to implement an adequately validated and documented software architecture compliant 

with the low-cost hardware architecture previously proposed by Silva et al. (2020), by considering open-source 

software tools available in the scientific community. Once the software architecture is outlined, an autonomous 

ground target tracking mission is implemented using the proposed software tools, thus illustrating the effectiveness 

of the proposed solution.  

The software architecture proposed in this research is presented in Figure 1. The architecture comprises 

four main blocks, PX4 autopilot (including a feature for Software in the Loop Testing - SILT), Gazebo (only used 

for SILT purposes), QGroundControl (QGC) and Robot Operating System (ROS). The PX4 block corresponds to 

the autopilot’s software that enables the conversion of the thrust, pitch and bank reference-values provided by the 

guidance algorithms at the ROS environment (detailed in the sequel) to the deflection of the aircraft's flight 

surfaces and motor settings. The Gazebo simulator module provides the physical simulation environment, and the 

QGC corresponds to the software running at the Ground Station. Finally, the ROS environment contains a set of 

modular nodes, namely Guidance and Control, Video Acquisition, Target Detector, Target Geolocation and Target 

Estimate that allows a UAV equipped with a video camera to detect, extract target’s features and compute a set of 

control references to autonomously follow that target. 

In the Guidance and Control node, the outer loop controller uses the PX4 Offboard mode to compute roll, 

pitch, yaw and thrust commands, which are then used by the PX4 autopilot's inner loop controller. The trajectory 

control for the UAV is separated into lateral and longitudinal control of the UAV. The lateral control was 

implemented based on Oliveira & Encarnação (2013) Moving Path Following (MPF) method, and the longitudinal 

control was based on Proportional Integral (PI) controllers.  

The Video Acquisition node imports the camera video from the simulator and provides it to the Target 

Detector node, which uses a neural network, YOLOv3 (Redmon & Farhadi, 2018), to detect the vehicle. The 

Target Geolocation block implements a Geolocation algorithm from Barber et al. (2006) to compute the position 

of a ground target through its location and motion streamed in the video sequence. Next, a Kalman Filter is used 

in the Target Estimate node to estimate and predict the other parameters required by the MPF.  

Figure 1. Proposed system software architecture. 
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In this work, a modular and incremental validation method was adopted, until the entire closed-loop 

system was successfully validated. Figure 2 shows the trajectory of a UAV following a ground vehicle in a 

simulated environment, using a video camera to detect and autonomously track a ground vehicle. This simulation 

demonstrates the effectiveness of the proposed architecture, considering both the selected software tools and the 

implemented control system.  
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Figure 2. 2-Dimensional view of the UAV, target estimated position and target's true position. 


