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Abstract. The restoration or enhancement of rainy images at nighttime is of
great significance to outdoor computer vision applications such as self-driving
and traffic surveillance. While image deraining has drawn increasingly research
attention currently and the majority of deraining methods are able to achieve sat-
isfying performance for daytime image rain removal, there are few related stud-
ies for nighttime image deraining, as the conditions of nighttime rainy scenes
are more complicated and challenging. To address the nighttime image deraining
issues, we designed an improved model based on the Syn2Real network, called
NIRR. In order to obtain good rain removal and visual effect under the nighttime
rainy scene, we propose a new refined loss function for the supervised learning
phase, which combines the perceptual loss and SSIM loss. The qualitative and
quantitative experimental results show that our proposed method outperforms the
state-of-the-arts whether it is on the synthetic nighttime rainy image or on the
real-world nighttime rainy image.

Keywords: Nighttime image deraining · Semi-supervised network · Gaussian
Processes.

1 Introduction

Rainy images acquired at outdoor environments during daytime and nighttime, often
suffer from a series of visibility degradations, e.g. obstructing and blurring background
scenes, altering the object content and changing contrast and color of images, etc. Due
to detail loss and signal distortion, these undesirable degradations cause visual unplea-
sure and seriously influence the accuracy of many outdoor computer vision applications,
such as video surveillance [1, 11, 22], autonomous navigation [15], object detection and
tracking [3, 18, 26]. Hence, it is important to develop effective methods that can restore
or enhance rainy images.

In recent years, the issue of single image deraining has drawn increasingly research
attention. Many algorithms have been developed, including the model-driven and the
data-driven methods [28]. Although some satisfying performances have been achieved
when dealing with daytime rainy images, but they are not suitable for night rainy scenes,
as the characteristics of daytime and nighttime rainy scene are very different, the con-
ditions of nighttime scenes are more complicated. For example, on the one hand, the
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nighttime image itself suffers from visibility degradation due to low ambient lighting,
and the presence of rain will further seriously affect its visual quality, lead to low con-
trast, and limited color information. On the other hand, nighttime scenes usually have
active light sources, such as street lights, car lights, and building lights. These active
light sources can cause uneven lighting distribution, leading to the failure of many rain
removal methods. Therefore, nighttime rainy image restoration or enhancement is more
challenging.

As is known to all, the restoration or enhancement of rainy images at nighttime is
of great significance to the applications such as self-driving and traffic surveillance.
However, to the best of our knowledge, there is few related studies, excepting litera-
ture [20], in which Shi et al. developed a rainy image model to describe rainy scenes
at night with low illumination and proposed a joint deep neural network-based method
for single nighttime rainy image enhancement. This method achieves promising results
on synthetic rainy images, but it has problems such as over-enhancement, lack of fideli-
ty and rain residual on real-world nighttime rainy images. In the other words, it lacks
the generalization capabilities to real-world image deraining. This is because, firstly,
it is a fully-supervised network and it can only use fully labeled data to train, obtain-
ing labeled real-world training data is quite challenging. Secondly, only modeling the
light rainy condition might not be enough, the synthetic nighttime rainy images should
contain multiple variants of nighttime rainy conditions, such as variations in scale, den-
sity and orientation of the rain streaks, to model the complex conditions of real-world
nighttime rain.

Recently, Yasarla et al. [29] proposed a Gaussian Process-based semi-supervised
learning framework (Syn2Real network) which enabled the network in learning to de-
rain using synthetic dataset while generalizing better using unlabeled real-world im-
ages. Inspired by the success of the Syn2Real network in removing rain from images
during the daytime, we improve the Syn2Real network, called NIRR, to solve the afore-
mentioned problem of rain removal at nighttime. Similar to the Syn2Real network, our
network uses semi-supervised learning, which can use unlabeled real-world rainy im-
ages for training to improve the generalization ability of real-world image deraining
task. In our NIRR, we designed a new loss function composed of perceptual loss and
SSIM loss for the supervised learning stage, aiming to obtain good rain removal and
visual effect under nighttime rainy scenes. We have also established a new synthetic
nighttime rain dataset, which contains light and heavy nighttime rain conditions, and
7 rain streak directions to simulate the complex conditions of real-world rain. Experi-
mental results show that our method is able to effectively remove rain from nighttime
rainy images.

To summarize, this paper makes the following contributions:

• An improved network based on Syn2Real network and a new synthetic nighttime
rain dataset are established to address the nighttime rain removal issues.
• We adopt perceptual loss to improve the visual quality of deraining image, rather

than concentrating only on the characterization of rain streaks. By simply adding
SSIM loss, our method can effectively improve the overall similarity in deraining
results, and it is also readily trained.
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• Extensive experiments on synthetic and real rainy images demonstrate the superi-
ority of our method in both qualitative and quantitative measures.

The rest of the paper is organized as follows. Related work is presented in Section 2.
Section 3 details the proposed approach. We present the experiments and results in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

In this section, we divide the single image rain removal methods into two categories:
model-driven(non-deep learning) and data-driven(deep learning) ones, and discuss the
existing methods of the two class in detail in the following subsections.

2.1 Model-driven Methods

Before 2017, the conventional methods are model-driven approaches, which decompose
the rainy image into the rain-free background scene and the rain streaks layer, and
different prior terms are designed to describe and separate the rain streak from the
background layer. The major developments in the model-based approach are driven by
the following ideas: sparse coding, and priors based Gaussian mixture models.

Sparse Coding Kang et al. [8] firstly proposed a single image deraining method that
decomposed an input image into the low/high- frequency component using dictionary
learning and sparse coding. Luo et al. [13] presented a discriminative sparse coding
(DSC) over a learned dictionary for separating rain streaks from the background image
based on image patches. Zhu et al. [31] constructed a joint optimization process to re-
move rain-streak details from the estimated background, as well as to remove non-streak
details from the estimated rain streak layer using layer-specific priors. Deng et al. [4]
formulated a directional group sparse model (DGSM) to model rain streak directions
and sparsity, and effectively removed blurred rain streaks.

Gaussian Mixture Models Li et al. [10] utilized the Gaussian mixture models (G-
MM) as a prior to decompose the input image into the rain streaks and the rain-free
background layer. The traditional model-based method can achieve success in certain
scenarios, however, it tends to be degenerated when applicating complicated and diverse
practical rain types. Therefore, it is critical to explore more powerful coding manner for
fitting general rains in real-world.

2.2 Data-driven Methods

Since 2017, the data-driven single-image rain removal method has developed rapidly
and made great progress. Its development process can be summarized as: deep convo-
lutional networks, generative adversarial networks and semi/unsupervised methods.
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Deep Convolutional Networks Yang et al. [27] firstly used deep learning ideas to im-
age deraining, they constructed a joint rain detection and removal network to detect rain
locations by predicting the binary rain mask, and took a recurrent framework to remove
rain streaks and clear up rain accumulation progressively. Fu et al. [5] proposed a deep
detail network (DetailNet), which took only the high frequency details as input, and
predicted the residue of the rain and clean images. Using the latest smoothed dilation
technique and a gated subnetwork, Chen et al. [2] proposed a new end-to-end gated
context aggregation network, which was initially designed for dehazing, and applied
for deraining task and achieved great performance.

Generative Adversarial Networks Qian et al. [16] injected visual attention into both
the generative and discriminative networks for learning to attend raindrop regions and
percept their surroundings. Zhang et al. [30] directly used the multi-scale condition-
al generative adversarial network (CGAN) to solve single image de-raining task and
obtain good results. Li et al. [9] built a two-stage single-image deraining network that
combined the physics-driven network and adversarial learning refinement network.

Semi/Unsupervised Learning Methods Wei et al. [25] firstly proposed a semi-supervised
learning method toward single image rain removal, which formulated the residual as
a specific parametrized rain streak distribution between an input rainy image and its
expected network output. Yasarla et al. [29] proposed a Gaussian Process-based semi-
supervised learning framework which enabled the network in learning to derain using
synthetic dataset while generalizing better using unlabeled real-world images.

In this paper, we use semi-supervised learning method to solve the problem of night-
time image rain removal because of the excellent ability to learn from synthetic and real
world data.

3 Proposed Approach

Inspired by the success of Syn2Real network [29] on daytime deraining, we first adopt
Syn2Real network to address the nighttime rain removal issues. In order to obtain good
visual effect and quantitative scores under nighttime rainy scene, we modify the loss
function for the supervised learning phase and this is the major improvement. This
section presents the details of our proposed approach.

3.1 Framework

As shown in Fig. 1, our approach consists of a CNN based on the UNet structure [19],
where each block is constructed using a Res2Block [6]. The same as Syn2Real net-
work [29], the Gaussian Process (GP) is a critical step in the framework to involve
iteratively training on the labeled and unlabeled data. A Gaussian Process f (v) can be
denoted as follows

f (v) ∼ GP(m(v),K(v, v′) + σ2
ϵ I), (1)

where m(v) and K(v, v′) are the mean function and covariance function of f (v), I is the
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Fig. 1: The architecture of our NIRR.

identity matrix and σ2
ϵ is the variance of the additive noise. In Eq. 1, v, v′ ∈ V denote the

possible inputs that index the GP. So, any collection of function values is then jointly
Gaussian as follows

f (V) = [ f (v1), ..., f (vn)]T ∼ N(µ,K(V,V ′) + σ2
ϵ I). (2)

In our paper, a Gaussian posterior distribution in closed form is computed by condition-
ing on the observed data to make predictions at unlabeled points. The detailed review
on GP can be found in [17, 29].

Fig. 1 shows that our NIRR is divided into two phases: labeled training phase and
unlabeled training phase. The goal of our NIRR is to learn the network parameters by
minimizing the supervised loss function (Lsup) in the labeled training phase and the
unsupervised loss function (Lunsup) in the unlabeled training phase.

During the labeled training phase, the intermediate feature vectors zi
l’s for all the

labeled training images zi
l’s are stored in a matrix Fzl, which is also used to generate

the pseudo-GT for the unlabeled data in the unlabeled training phase. In the unlabeled
training phase, GP formulation is used to generate pseudo-GT, which is used in Lunsup.

3.2 Loss function

In our paper, the overall loss function used for training the network is defined as follows
Ltotal = Lsup + λunsupLunsup, (3)

where λunsup is a predefined weight that controls the contribution from Lsup and Lunsup.
And the value of λunsup is 0.0015.
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From Fig. 1, Lunsup is a function of zu,pred, zu,pseudo,
∑k

u, f and
∑k

u,n, as defined below

Lunsup = ∥zk
u,pred − zk

u,pseudo∥2 + logΣk
u,n + log(1 − Σk

u, f ), (4)

where zk
u,pred is the latent vector obtained by forwarding an unlabeled input image xk

u

through the encoder, zk
u,pseudo is the pseudo-GT latent space vector, Σk

u,n and Σk
u, f are

the variances obtained by using Fzl. For their expressions and specific meanings, see
in [29]. The unsupervised loss function Lunsup in our paper is the same as in [29], and
we mainly modify the supervised loss function Lsup.

Nighttime rainy images usually have characteristics of low contrast, uneven light-
ing distribution, limited color information and visual unpleasure, making the task of
rain removal more challenging. The SSIM loss [24] is measured based on local im-
age characteristics (such as local contrast, luminance and details), which are also the
characteristics of rain streaks. Therefore, in our nighttime rain removal network, using
SSIM loss as a part of the loss function is beneficial to the training of the supervised
learning part and produces better rain removal effect. Johnson et al. [7] have shown that
training with a perceptual loss measured on the early layers of VGG-16 [21] can make
the model to preserve better reconstruct fine details like color, texture and shape, lead-
ing to pleasing visual result. So, in order to make our network perform well in the task
of nighttime rain removal, we combine the above two loss functions into a new refined
loss function Lsup, defined as follows

Lsup = Lp + Lssim, (5)
where Lp is the perceptual loss and Lssim is the SSIM loss. Lp is the feature loss from the
layer relu1 2 and relu2 2 of the VGG-16 [21]. In order to obtain more edge details from
deraining image, L1 norm is adopted in the perceptual loss Lp to minimize the distance
between adjacent feature layers. Different from the negative SSIM loss in other papers,
our SSIM loss Lssim only needs to calculate the similarity between the deraining image
Bdr and the corresponding ground-truth clean image B. It is defined as follows

Lssim = 1 − SSIM(Bdr, B), (6)
where SSIM(·) is regarded as the similarity function.

4 Experiments and Results

In this section, we present the experiments and results, including the dataset used for
training and testing, evaluation metrics, and evaluation results on synthetic and real-
world data.

4.1 Datasets and Metrics

Datasets The data-driven rain removal method requires a large number of training
samples to obtain good performance, and the existing published datasets are used for
training and testing of the daytime rain removal network. Therefore, we make a new
dataset to adapt to the nighttime rainy scenes. First, we select 1200 nighttime images
from ExDark [12], which has 7363 exclusively low-light images with 12 object class-
es captured in different time of day (e.g. twilight, nighttime), different location (e.g.
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(a) Ground Truth (b) 60◦ (c) 70◦ (d) 80◦

(e) 90◦ (f) 100◦ (g) 110◦ (h) 120◦

Fig. 2: Samples of synthesized images. In the sub-picture (b)-(h), the upper picture of each image
group is a synthesized light rain scene, and the lower picture is a synthesized heavy rain scene,
and the orientations of the rain streaks are 60◦, 70◦, 80◦, 90◦, 100◦, 110◦, 120◦ respectively.

Fig. 3: Samples of real-world nighttime rainy images.

indoor, outdoor), and different type of light sources (e.g. the sun, man-made lights).
Then, we add rain to these images using Photoshop. Each image is synthesized into
14 nighttime rainy images with two intensities (e.g. light and heavy) and 7 different
orientations (e.g. 60◦, 70◦, 80◦, 90◦, 100◦, 110◦ and 120◦) respectively. So the synthe-
sized dataset called NiRain contains a total of 16800 nighttime rainy images. In this
synthesized dataset, we sample 9800 images as a train set, 700 images as a test set and
700 images as a validation set. Samples of synthesized images under these 14 condi-
tions are shown in Fig 2. In addition, we have downloaded 120 real-world nighttime
rainy images from the internet as a train set to better the generalization capability of our
network. Fig 3 shows the samples of real-world images.
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Table 1: Average PSNR and SSIM comparison (PSNR/SSIM) on the validation set. First and
second best results are highlighted in color. The results of some images in the validation set are
shown in Fig. 4.

Name
DSC [13] GMM [10] GCANet [2] SIRR [25] Syn2Real [29] NIRR

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Light rain 32.0388 0.90590 35.7851 0.94773 38.9273 0.97244 36.6823 0.95881 37.2401 0.96792 38.4586 0.97768
Heavy rain 30.3937 0.81014 30.6587 0.82775 36.8971 0.95286 35.4616 0.93770 37.5588 0.96648 37.9454 0.97199

Evaluation Metrics In our experiments, two widely used metrics, namely, PSNR (Peak
Single to Noise Ratio) and SSIM (Structural Similarity) [23], are adopted as the quality
metrics. Generally speaking, the higher the values of PSNR and SSIM, the better the
rain removal effect.

4.2 Implementation Details

In order to show the performance of our method, we implement a series of experi-
ments on synthetic and real-world images, and compare our method with the state-of-
the-art methods, such as the Discriminative Sparse Coding based method (DSC) [13]
(ICCV’15), Gaussian Mixture Model (GMM) based method [10] (CVPR’16), Gated
Context Aggregation Network (GCANet) [2] (WACV’19), Semi-supervised Learning
method (SIRR) [25] (CVPR’19), Gaussian Process-based Semi-supervised Learning
framework (Syn2Real) [29] (CVPR’20).

The proposed NIRR is implemented using Pytorch [14], and is trained on a PC with
Intel Core i7 CPU 3.6 GHz, 16GB RAM and NVIDIA TITAN Xp. In our experiments,
the images are randomly cropped to the size of 128 × 128, and the batch size is 4.
Adam is used as the optimization algorithm and the models are trained for a total of
105 epochs. The learning rate starts from 0.001 and is decayed by a factor of 0.5 at
every 25 epochs.

4.3 Comparison with State-of-the-Arts

Results on synthetic images In this subsection, we compare the performance of our
method and other state-of-the-arts, such as DSC [13], GMM [10], GCANet [2], SIR-
R [25] and Syn2Real [29], on the validation set, which contains 350 synthetic rainy
images at nighttime. We should note that, except for DSC [13] and GMM [10], G-
CANet [2], SIRR [25] and Syn2Real [29] are three deep learning methods, and are
retrained with the default settings.

Quantitative results are tabulated in Table 1. As shown in Table 1, except for the
PSNR in light rain condition, our NIRR obtains the best results. In order to facilitate
the reader’s intuitive understanding, the qualitative results are shown in Fig. 4. From
Fig. 4, DSC [13] and GMM [10] retain a signification portion of rain traces after rain
removal. GCANet [2] and SIRR [25] can remove majority of the rain streaks, but they
still leave some rain residual. Syn2Real [29] can get a good deraining effect, but if you
zoom in on Fig. 4, you can see that the first image in the sixth row still has slightly rain
residual. However, our NIRR is able to preserve the details while effectively removing
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Fig. 4: Qualitative comparison and PSNR/SSIM of different methods, from the first row to the last
row, the displayed pictures are the synthetic rainy images, the derained results of DSC, GMM,
GCANet, SIRR, Syn2Real, our NIRR and the ground truth, respectively.

the rain streaks on all the testing rainy images. We also display the PSNR and SSIM
values under each derained image separately, it can also be seen that our NIRR almost
achieves the highest PSNR and SSIM. So, in a conclusion, our NIRR outperforms the
other state-of-the-arts, and obtains the best results on synthetic images.
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Fig. 5: Deraining results of real-world nighttime rainy images.

Results on real-world images In this subsection, two real-world rainy images in Fig. 5
are used to illustrate the effectiveness of different methods. It can be seen that the D-
SC [13], GMM [10] and GCANet [2] all get undesirable rain removal effects because
the traditional and supervised-learning methods are difficult to deal with the rain streak-
s with different scales and directions contained in real-world nighttime rainy images.
Among the other three semi-supervised learning methods, the SIRR [25] method has
excessive rain removal. For the real rainy image ‘Restaurant’, Syn2Real [29] achieves
the rain removal result as good as our NIRR. However, it leaves some traces after rain
removal in the image ‘Riverside’. In general, our NIRR achieves the best results and
image detail preservation for nighttime rain removal in real-world images.

5 Conclusions

In this paper, we design an improved model based on Syn2Real network to address the
problem of nighttime image rain removal. In our NIRR, a new refined loss function for
the supervised learning phase is proposed to obtain good rain removal and visual effect
under nighttime rainy scene. The refined loss function is combined with perceptual loss
and SSIM loss. Through the experiments on the synthesized dataset NiRain and real-
world nighttime rainy images, our NIRR can effectively remove the rain streaks and
preserve the details of deraining image compared to the state-of-the-arts.
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