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Abstract—Intelligent recognition of arrhythmias using ECG
signals is crucial in the diagnosis and prevention of heart diseases.
However, traditional methods for detecting arrhythmias rely
on manual analysis by specialized physicians, which can be
subjective and time-consuming. In this paper, we propose a novel
end-to-end 1DCNN-Transformer hybrid deep learning model for
the automatic recognition of arrhythmia types. Our proposed
model employs a Transformer-based architecture to aggregate
local contextual spatial features from a 1DCNN and incorpo-
rates temporal information in the high-level abstract features
of the convolutional network output using positional encoding.
The proposed deep learning model comprises a Transformer-
Encoder and Transformer-Decoder that utilizes a multi-headed
self-attentive mechanism to couple spatiotemporal features from
different time segments and filter useful feature information.
Each module converts input feature information into a higher-
level abstract output, enabling the model to learn a complex
abstract transformation function directly from the original ECG
signal. Finally, the projected output is mapped onto the ar-
rhythmia label space. Experimental results on the MIT-BIH
Arrhythmia Database demonstrate that our proposed 1DCNN-
Transformer network achieves excellent performance, with an
overall average recognition accuracy of 99.46%, across five
categories of arrhythmia signals: normal beat (N), right bundle
branch block beat (R), left bundle branch block normal beat
(L), premature ventricular contraction (V), and atrial premature
beat (A).

Index Terms—Arrhythmia, Classification, Transformer,
Encoder-Decoder.

ACCORDING the World Health Organization (WHO),
arrhythmias are a significant group of cardiovascular

diseases and account for more than 31% of deaths world-
wide, with their incidence increasing. As arrhythmias may
be asymptomatic and exhibit features such as painlessness
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and insignificant myocardial ischemia, they can lead to stroke
or sudden death, making long-term monitoring necessary for
selected patients [1]. Electrocardiogram (ECG) is a widely
used and cost-effective non-invasive technique for recording
changes in the electrical activity of the human heart, which
has become a key tool for physicians in the diagnosis of
cardiac arrhythmias. However, manual visual analysis of ir-
regular ECGs by trained professional cardiologists is time-
consuming, subjective, and expensive, and does not meet the
clinical requirements for real-time diagnosis of arrhythmias.
Therefore, the development of automated intelligent systems
that can assist in the accurate and efficient detection and
diagnosis of arrhythmias is essential.

It is widely recognized that the current traditional ma-
chine learning-based methods for arrhythmia classification are
typically divided into four fundamental steps: preprocessing,
feature extraction, feature selection, and classification [2].Dur-
ing the preprocessing stage, several techniques have been
utilized by researchers such as wavelet transform, Fourier
decomposition, high-pass filtering methods, Kalman filtering,
empirical modal decomposition, and others [3]- [7] to remove
various artifacts, including myoelectric noise, power line in-
terference, baseline drift, and other types of noise from raw
ECG signals. Once the ECG signals have been pre-processed,
they are then segmented to extract heartbeats of a specific
length. To achieve high-accuracy classification, it is crucial to
obtain high-quality features from these segmented heartbeats.
Several types of features can be extracted from the segmented
heartbeats, including morphological features such as p-wave,
QRS wave, and T-wave duration and amplitude [8] [9], time-
frequency features [10] [11], and nonlinear features, such as
fuzzy entropy [12]. These features can be obtained using
various transformations, such as discrete wavelet transform
[13], complex wavelet transform [14], variable modal de-
composition [15], empirical modal decomposition [16], and
others. P. Sharma [17] employed the Linear Adaptive Sine-



Cosine Algorithm (LA-SCA) to optimize feature extraction
from ECG signals, which were then input into both deep neural
networks (DNN) and support vector machines (SVM) for ECG
signal identification. In another study, Dias et al. [18] extracted
various features from each beat, based on RR interval, mor-
phological values, and higher-order statistics. The combination
of these features was then fed into a linear discriminant
classifier to identify arrhythmia classification. S. Celin [19]
initially applied low-pass and high-pass filters to eliminate
high-frequency and redundant noise from the extracted data.
They then used statistical parameter features and applied
several classifiers, including SVM, Adaboost, ANN, and Naive
Bayes, to identify the extracted features.Traditionally, machine
learning approaches involve extracting local features from a
fixed time window, which may lead to the loss of temporal
information. In recent years, deep learning methods have been
increasingly used for arrhythmia classification. For instance,
depthwise separable CNN [20], Deep LSTM [21], and CNN-
LSTM [22] architectures, which are based on convolutional
networks (CNN) and recurrent neural networks (RNN), have
shown promising results in this field. These methods can
capture both spatial and temporal features from raw ECG
signals, which can significantly improve the accuracy of
arrhythmia classification.Recent studies [23]- [25] have sug-
gested that deep learning models for ECG signals can benefit
from incorporating attention mechanisms. These mechanisms
can dynamically capture the differences between individual
frames in the signal and assign different weights based on their
importance. By doing so, attention-based models can improve
recognition results and optimize the accuracy of arrhythmia
classification. Therefore, the use of attention-based models is
an active area of research in ECG signal processing, with
promising results reported in recent studies.

Recently, the transformer architecture [29] has shown great
success in processing time series data by relying entirely on
the multi-headed self-attention mechanism [26]- [28]. This
method enables the transformer to capture global dependencies
directly from the input sequence without using convolution or
recursion operations. As a result, transformer models can learn
long-term dependencies more efficiently and have shorter path
lengths than traditional CNN and RNN models. This makes
transformers particularly suitable for ECG signal processing,
where long-term dependencies between signal frames are
critical for accurate arrhythmia classification. In this paper,
we propose an end-to-end 1DCNN-Transformer (1DCNN-
TRS) model for arrhythmia classification. Our model combines
the advantages of both 1D convolutional neural networks
(1DCNN) and transformers, allowing for effective feature
extraction while retaining temporal information. The main
contributions of our work are as follows.

1) To investigate long-term dependencies and inter-segment
interactions commonly present in ECG signals, we pro-
posed a model that combined 1DCNN, Transformer
Encoder, Transformer Decoder, and MLP to automati-
cally predict arrhythmia categories. The 1DCNN extracts

spatial features within local contextual information while
the Transformer models the long-term dependence us-
ing attention mechanisms. Furthermore, the Transformer
Decoder captures inter-segment interactions present in
the ECG signal. These components were successfully
combined to create an effective model for predicting
arrhythmia categories with high accuracy.

2) We propose a deep network consisting of an 8-layer
encoder and a 1-layer decoder driven by ECG tempo-
ral and spatial feature data and present the 1DCNN-
TRS framework. A multi-headed self-attentive machine
is used to couple the spatiotemporal features between
different segments of the ECG signal and filter the
input feature vector i.e. by assigning greater weight
to the more important features for ECG abnormality
identification.

I. PROPOSED METHOD

In this section, we introduce the proposed 1DCNN-TRS
framework, which employs a multi-headed attention mecha-
nism to address long-term dependencies. The model is an end-
to-end structure, as depicted in Fig. 1. Specifically, the original
heartbeat signal is first fed into the 1DCNN module, which ex-
tracts local contextual space features.To incorporate positional
information, we utilize positional encoding before feeding the
input into the multilayer Transformer-Encoder. The encoding
block then extracts spatiotemporal features of the ECG signal
sequence. Subsequently, the multilayer decoder generates the
next predicted element by utilizing the context information
provided by the encoding block and the previously predicted
element. Lastly, we employ an inference sub-network with a
fully connected layer to predict the human ECG state using
the high-level abstract feature representation learned by the
encoder. All components in the 1DCNN-TRS framework are
jointly trained as a whole, optimizing the model to learn the
best possible features and dependencies for predicting ECG
arrhythmias accurately.

A. Transformer overview

Transformer networks has proven to be highly effective for a
variety of tasks beyond natural language processing, including
ECG signal analysis. In the Transformer framework, each
encoder computes attention using queries, keys, and values
from the output of the previous encoder layer, incorporating
residual networks and layer normalization to improve model
stability. The decoder utilizes both the contextual information
provided by the encoder and the predicted previous element
to generate a prediction for the next element in the output
sequence. This approach facilitates effective learning of depen-
dencies between input features and enables accurate prediction
of ECG abnormalities. In the cross-attention layer, the query
is derived from the output of the previous decoder layer, while
the keys and values are obtained from the output of the entire
encoder block. In computing the decoder multi-head mask
self-attention, all three (query, keys, and values) are derived
from the output of the preceding decoder layer. This approach
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Fig. 1: 1DCNN-TRS framework for arrhythmia recognition

allows the model to attend to relevant information in both
the input and decoded sequence, facilitating highly accurate
predictions of ECG abnormalities. Unlike traditional encoder-
decoder structures, the Transformer network relies solely on
multi-headed self-attention rather than convolutional and re-
cursive layers, allowing for greater flexibility and improved
accuracy in the sequence-to-sequence learning tasks.

B. 1D-CNN and Positional Encoding

Since ECG signals are one-dimensional temporal sequences,
a one-dimensional temporal convolutional network is used to
encode the temporal information of the input feature sequence
and generate a feature sequence X̂ ∈ Rn×d, as in Eq.
(1), where k represents the convolutional kernel size. Since
the Transformer-encoder does not have recursive operations
and the Transformer network does not know the position
information of each element in the sequence, positional en-
coding is added to incorporate positional information of each
sequence component in A. This can be done using either
relative or absolute position encoding techniques, as described
in [29]. Position encoding (PE) is used to introduce time-
dependent information to the convolutional sequence X̂ . This
is accomplishedusing sin and cos delta functions of different
frequencies, which are added to the input features of each
element in the sequence. The position embedding matrix
P ∈ Rn×d for a convolutional sequence is defined as follows:
Position encoding (PE) of the convolutional sequence X̂
using sin and cos delta functions of different frequencies is
used to introduce time-dependent information. The position
embedding matrix of a convolutional sequence is defined as
the matrix P ∈ Rn×d:

X̂ = Con v1d(X, k) (1)

Pi,2j = sin

(
i

100002j/d

)
Pi,2j+1 = cos

(
i

100002j+1/d

) (2)

where i ∈ [1, . . . , n], j ∈
[
0, . . . d

2

)
, the final transformer

model input feature sequence Y = X̂+P ∈ Rn×dis obtained.

C. Multiple Self-Attention Mechanism

As an attention mechanism, self-attention reveals mean-
ingful contextual information by identifying long and short-
distance dependencies in a sequence, ultimately achieving
efficient allocation of information processing resources. Multi-
headed self-attention is utilized to establish multiple complex
contextual connections among sequence elements, resulting in
a more comprehensive global representation. This is achieved
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Fig. 2: Multi-Head Self-Attention.

through partitioning the attention into multiple subhead spaces,
allowing for the learning of multiple sets of distinct linear
projections. These self-attention heads perform dot product op-
erations in parallel, enabling the network to capture a diverse
range of relationships and features between sequence elements.
Fig.2 illustrates the process of the multi-head self-attention
mechanism. Let denote a sequence of N elements, where the
feature dimension of each element is D. Each self-attentive
head learns three sets of defined weight matrices by: WQ

i ∈
Rd mod del×dq , WK

i ∈ Rdmodel××dk , WV
i ∈ Rdmadd d×dv . In

each subhead space, the self-attention operation is performed
by the following steps.

First, in the nthhead self-attention layer, the input se-
quence is projected Qi,Ki, Vi through the three sets of linear
transformations of the above-mentioned weight matrices, and
thenSi = Qi.Ki calculates the attention weight sum : of each



element in the sequence. This attention score determines the
importance of other features when the features are encoded
and learned at the position sequence. In addition, to improve
the stability of the gradient iterations, the attention score Si: is

scaled to:
∧
Si= Si/

√
dk. Then, by means of a softmax function,

Ŝi is converted into a probability between 0 and 1:Pi =
softmax(Si) . Finally, the output of the embedded weighted
attention value is calculated: The single-headed scaled dot
product attention process can be expressed as shown in the
following equation. Compared with the recursive operations in
traditional recurrent neural networks, the attention mechanism
can be computed in parallel, and each step of computation no
longer depends on the result of the previous step. Therefore,
the attention mechanism has fewer parameters and higher
computational efficiency.

headi = Att(Qi,Ki, Vi) = softmax(Qi.Ki/
√
di).Vi (3)

Accordingly, the multi-head attention mechanism can be de-
fined as the following equation, h is the number of heads,
andWO ∈ Rdv×dmodel .

Multihead(Q,K, V ) = Concat(head1, ..., headh)W
O (4)

D. Residual Connection and Layer Normalization

In each sublayer of the Transformer, there is a residual con-
nection and a normalization layer to avoid gradient vanishing
caused by the deep network. The output can be expressed as
follows:

outputRes = LayerNorm(input + Sublayer(input)) (5)

II. EXPERIMENTS AND RESULT

In this section, we present our experiments on the pub-
licly available MIT-BIH Arrhythmia Database [30], which is
widely used in the field of human cardiac arrhythmia recog-
nition.To evaluate the performance of our proposed 1DCNN-
TRS model, we compare it with commonly used end-to-end
time series recognition models, including 1D-CNN, LSTM,
CNN-LSTM, Attention-LSTM, and 1DCNN-TE. Additionally,
we compare our model with feature engineering-based SVM
classifiers to determine if our proposed approach, based on
single-lead ECG signals, outperforms the general model in
terms of recognition accuracy.

A. Data preprocessing and heartbeat interception

The experimental dataset was obtained from the BIH Ar-
rhythmia Laboratory [30] and comprises 48 records from 47
individuals collected between 1975 and 1979. Each record
was sampled at a frequency of 360Hz for approximately
30 minutes, resulting in over 10,900 heartbeats being col-
lected.Furthermore, the majority of heartbeats were analyzed
and labeled by two expert cardiologists with a high degree
of precision, enabling accurate and reliable analysis for our
study.

The normal ECG signal is composed of P, Q, R, S, and
T waves [31]. Physicians diagnose cardiovascular disease by
analyzing changes in individual ECG waveforms [31], such

as altering QRS wave amplitude height and duration, ST-
segment height, p-wave, and T-wave when abnormal. However,
a raw ECG contains an overwhelming amount of information,
making it difficult to detect the precise location of the largest
and sharpest beating QRS wave and dividing the raw ECG
into multiple consecutive regular heartbeats.The Pan-Tompkins
algorithm [32] has been widely used for r-peak detection, and
a similar algorithm is employed in this study to identify QRS
waves. A total of 250 sample points were extracted before and
after the R peak of the original ECG signal, thus resulting in
each record having a length of 250. The dataset consisted of
five categories of ECG signals: N (Normal beat), V (Premature
Ventricular Contraction), R (Right Bundle Branch Block beat),
L (Left Bundle Branch Block beat), and A (Atrial Premature
Beat). There were 3471, 6993, 6212, 4779, and 2545 records
for each category respectively, resulting in a total of 24000
heartbeats in the dataset. The dataset was randomly divided
into a training set and a test set, with the ratio of the two
being set to 7:3.

B. Evaluation metrics

We chose popular metrics for evaluating arrhythmia classi-
fication performance, such as F1-score, Precision (PR), Recall
(RE), and Accuracy (ACC).

ACC =
TP + TN

TP + TN + FP + FN
(6)

PR =
TP

TP + FP
(7)

RE =
TP

TP + FN
(8)

F1 =
2× PR×RE

PR+RE
(9)

Where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative for the specific class
being evaluated.

C. Experimental Setup

Our proposed approach has been implemented in the Py-
Torch environment. For the 1-D CNN utilized in the input em-
bedding subnetwork, we stacked 2 layers with a convolutional
kernel size of 3 to increase the ECG feature dimension to 20.
We also applied a dropout of 0.1 to prevent overfitting. Addi-
tionally, we constructed a transformer model with eight layers
of transformer-encoder and one layer of transformer-decoder.
Finally, the loss function is constructed using CrossEntropy-
Loss and the proposed model is trained using the Adam
optimizer with a learning rate of 1e-4. The batch size was
set to 200, and the number of epochs was set to 150. We
trained and evaluated the model on a NVIDIA GeForce RTX
3080 GPU with 16 GB of RAM. In our study, we compared
the proposed 1DCNN-Transformer with five different deep
learning methods, particularly the Transformer Encoder model.
Based on the experimental results, the 1DCNN-Transformer-
based method outperformed all other methods and improved
the classification of ECG anomalies.



0 20 40 60 80 100 120 140

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy
(%
)

Epochs

1DCNN

LSTM

CNN-LSTM

Attention-LSTM

1DCNN-TE

1DCNN-TRS

(a) train acc

0 20 40 60 80 100 120 140

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy
(%
)

Epochs

1DCNN

LSTM

CNN-LSTM

Attention-LSTM

1DCNN-TE

1DCNN-TRS

(b) test acc
m

0 20 40 60 80 100 120 140

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

L
o
ss
(%
)

Epochs

1DCNN

LSTM

CNN-LSTM

Attention-LSTM

1DCNN-TE

1DCNN-TRS

(c) train loss

0 20 40 60 80 100 120 140

0.9

1.0

1.1

1.2

1.3

1.4

1.5

L
o
ss
(%
)

Epochs

1DCNN

LSTM

CNN-LSTM

Attention-LSTM

1DCNN-TE

1DCNN-TRS

(d) test loss

Fig. 3: training and test accuracy cures of 1DCNN, LSTM,
CNN- LSTM, Attention-LSTM,1DCNN-TE,1DCNN-TRS.

Deep learning models, when trained with sufficient ECG
datasets, have the ability to learn all previously identified
manual features as well as unknown but important features.
This enables them to improve the recognition rates of ECG
without the use of fixed coding features.

1) convolution neural network. This intelligent and auto-
matic recognition of ECG species by CNNs is now
widely used in the field [33].

2) long short-memory networks. The Long Short-Term
Memory (LSTM) network [34] is designed to excel in
processing continuous time-series data. In addition to
constructing a deep bidirectional LSTM network, we
also developed a 1DCNN-LSTM model that promotes
cross-learning between 1DCNN and bidirectional LSTM
networks. Moreover, we created an Attention-LSTM
network that assigns varying degrees of importance to
the output of the bidirectional LSTM network using a
self-attention mechanism.

3) Transformer Encoder. In addition to the models men-
tioned above,we also compared the performance of our
proposed algorithm with that of the 1DCNN-TE model,
which lacks the Transformer Decoder structure.

D. Experimental results

We conducted comparison experiments and obtained the
loss and accuracy curves for the six deep learning classifiers,
which are presented in Fig. 3. The 1DCNN-TRS and 1DCNN-
TE models achieved overall average classification accuracies
of 99.46% and 98.26%, respectively. Our proposed 1DCNN-
TRS method achieved 95% accuracy for recognizing abnormal
ECGs in the test set after only seven iterations. The curve of

1DCNN LSTM 1DCNN-LSTM

1DCNN-TE 1DCNN-TRS
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T
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Fig. 4: The overall confusion matrixes of ECG beats classifi-
cation for six classifiers.

this method converges rapidly and smoothly, outperforming
the 1DCNN-TE, LSTM, and 1DCNN models as well as other
models. Fig. 4 illustrates the confusion matrix, which presents
a detailed distribution of the recognition results for multiple
categories from the testing phase using the six classifiers. To
assess the generalization ability of the model, we evaluated the
performance of different types of diseases using the Receiver
Operating Characteristics (ROC) of subjects with different
classifiers [35]. Fig. 5 displays the ROC curves of N, V, R,
L, and A for multiple classifiers, and we also calculated the
area under the ROC curve (AUC). Notably, the macro-average
AUC of 1DCNN-TRS is 99.93 %.
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Fig. 5: Receiver operating characteristic curves of six models.

To better understand the performance of the 1DCNN-TRS
model, we used the unsupervised visualization technique t-
distributed stochastic neighbor embedding (t-SNE) [36] to map
the high-dimensional vectors learned by the second Dense
layer of the LSTM, 1DCNN-TE, and 1DCNN-TRS models to
a two-dimensional space. This allowed us to visualize abstract
features on the MIT-BIH dataset, as displayed in Figure 6. The
outcomes demonstrate that the 1DCNN-TRS model clusters
more closely and can differentiate between class A and class V
more accurately. This is attributed to the smaller gaps between
the same classes and the greater separation of different classes.
Based on these results, we can deduce that the abstract features



TABLE I: Comparison between the proposed methodology and different state-of-the-art methods that use multiclass

Reference Type of ECG beats Feature Classifiers Acc(%)
Zengetal.,2022 [1] 5(N,V,L,R,P) TQWT CNN-LSTM 97.20
Liuetal.,2022 [37] 5(N,V,L,R,A) Raw data LSTM, Autoencoder 98.57

Mengetall.,2022 [38] 3(N,S,V) Raw data transformer Encoder 99.32
Xiaetal.,2023 [39] 4(N,S,V,F) Raw data TCGAN 94.69

Muratetal.,2020 [40] 5(N,V,L,R,A) Raw data Deep BiLSTM 99.00
Huangetal.,2019 [41] 5(N,V,L,R,A) TFP 2D-CNN 99.00

Ohetal.,2018 [42] 5(N,V,L,R,A Raw data CNN+LSTM 98.10
Yildirimal.,2018 [43] 4(N,L,R,P) DWT DBLSTM-WS 99.39

Lial.2016 [44] 5(N,V,L,R,A) KICA+DWT SVM optimized by GA 98.8
Our study 5(N,V,L,R,A) Raw data 1DCNN-TRS 99.46
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transmitted by our proposed method can offer a meaningful
separation for the multiclassification task.

III. DISCUSSION

Various methods have been utilized for multi-category ar-
rhythmias classification, such as CNN-LSTM [1], LSTM Au-
toencoder [37], Lightweight Deformation Encoder (LDE) [35],
Deep LSTM [36], 2DCNN [37], CNN+LSTM [38], DBLSTM-
WS [39], and SVM optimized by GA model [40]. These
techniques are based on either raw data or selected features,
and their accuracy rates range from 97.20%to 99.39%, as
presented in Table 1. This study introduces a new method,
11DCNN-TRS, which achieves higher classification accuracy
than previous techniques. Our approach utilizes a complete
Encoder-Decoder structure along with a multi-head attention
mechanism to seamlessly integrate temporal and spatial fea-
tures in ECG beats. These outcomes emphasize the potential
of our proposed End-to-End mode for automated ECG beats
classification and demonstrate its superiority over existing
approaches in the field.

Using our comparative evaluation approach, we have
demonstrated the efficacy of our proposed 1DCNN-TRS
methodology in precisely identifying different kinds of heart-
beats. Our approach utilizes 1DCNN to extract local features

from ECG signals and employs positional encoding to capture
temporal information from the abstract high-level features pro-
vided by the encoding blocks of 1DCNN. Our deep neural net-
work architecture consists of an 8-layer encoder and a 1-layer
decoder that leverage both temporal and spatial features of
ECG data to facilitate the learning of complex transformation
functions for accurate classification.In our transformer layers,
we utilize multi-head self-attention mechanism to couple tem-
poral and spatial features across various ECG segments. The
mechanism filter out irrelevant noise information and assign
more weight to important features for arrhythmia recogni-
tion.By means of successive transformations, each module
progressively abstracts input information to higher levels of
representation, eventually allowing the network to precisely
predict the corresponding class label from raw ECG data. As a
result, our proposed approach represents a significant progress
in the field of ECG-based arrhythmias classification.

IV. CONCLUSION

Obtaining an early diagnosis of arrhythmia types is critical
in reducing the incidence of cardiovascular events. In this
study, we introduce a new end-to-end 1DCNN-TRS deep
learning model that uses a Transformer Encoder and Trans-
former Decoder composition to classify multiclass arrhythmias
while simultaneously learning spatiotemporal features from
various time segments of ECG signals. We trained and evalu-
ated our model on the MIT-BIH arrhythmia dataset, achieving
an impressive overall average recognition accuracy of 99.46%
for the five different categories of N, V, L, R, and V raw
ECG. To further assess the performance of our proposed
model, we compared it with various other machine learning
methods such as 1DCNN, LSTM, 1DCNN-LSTM, LSTM-
Attention, and 1dCNN-TE. Moreover, we compared our model
with advanced methods that have been proposed in recent
years, and our experimental results indicate that our model
outperforms these methods in terms of recognition accuracy.
In future work, we intend to expand our proposed method to
cover multimodal physiological signals such as ECG signals,
EEG signals, inertial motion signals, and EMG signals. Our
ultimate objective is to offer clinicians a comprehensive tool to
facilitate the evaluation of human body states and the diagnosis
of related diseases.
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