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Abstract. Computer vision tasks as semantic Instance segmentation
play a key role in the most recent technological applications such as au-
tonomous driving, robotics and augmented/virtual reality. With the aid
of arti�cial intelligence, object classi�cation and instance segmentation
became more approachable tasks in comparison to the former classical
methods. Over the past decade di�erent Deep Learning (DL) architec-
tures such as R-CNN family and RPN were introduced to address such
tasks on 2D data representations. Recently after the availability of sen-
sors that can capture 3D information. New DL architectures with a back-
bone of the RPN and R-CNN were developed to work on the di�erent
3D data representations and address their challenges. Yet the challenges
are mostly set by the nature of the 3D data obtained by di�erent kinds
of sensors such as LiDAR and stereo cameras. Which were mostly de-
ployed in the Autonomous Driving �eld for acquiring 3D information.
Respectively point clouds and RGB-D are the 3D data representations
produced by these kinds of sensors. This paper contains a survey on the
state-of-art DL approaches that directly process 3D data representations
and preform object and instance segmentation tasks. The DL architec-
tures discussed in this work are designed to process point cloud data
directly. As Autonomous Driving rely mostly on LiDAR scanners for 3D
data representation.

1 Introduction

Humans perform the vision analysis of the surrounding environment quite e�ort-
lessly with the aid of one vision sensor the eye. Multiple kinds of vision sensors
i.e: stereo camera, radar and LiDAR are now used in the autonomous systems.
Each of which runs on di�erent technology. Which changes the nature of the
data acquired by the sensor.

This work is motivated by the trend and the goal to develop autonomous tools
that can conduct knowledge extraction with no to least human intervention
possible. Instance segmentation, object classi�cation and localization are the
key factors to achieve this goal. Lately the performance of the developed DL
architectures and getting more accurate and robust. Shedding the lights on these
methods and assessing them will pave the way to understand, apply and improve
such methods.
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Object classi�cation and instance segmentation play a key role in autonomous
application. As the ability of extraction of useful information from the surround-
ing environment is crucial in the decision process of autonomous driving. Over
the last decade many recent milestones where achieved in the �eld of computer
vision tasks with the aid of DL architectures. Most of which started as a 2D fea-
ture extraction algorithms [4,3,6,11]. Which can successfully apply object classi-
�cation and instance segmentation tasks on 2D images. The extension of existing
2D DL architectures to be able to perform on 3D data is not often a straightfor-
ward task. The di�erent representations of 3D data as point clouds or RGB-D
imposes the challenges in the development process of 3D DL architectures.

In this work, an overview of the recent DL architectures on 3D data is
presented. Looking closely into their architectures paradigms and their main
elements. PoinNet [9] and its family proposed by Qi et al. is a pioneer in this
�eld. Due to the ability to work directly on the raw point clouds. A detailed
description of the PointNet[9] architecture is shown as well as the VoxelNet [12].
Both reported performances in object classi�cation and semantic segmentation
are reviewed according to the KITTI [7]. VoxelNet architecture is discussed in
detail with the key di�erences in the approach taken by both architectures to
handle the raw nature of the point clouds. The di�erent nature of the 3D data
representation is overviewed. In addition to the most used sensor technologies
in the autonomous driving to acquire the 3D data. A comparison between the
sensors and their ability will be also shown.
This work was to conduct a comparison of the state of art deep learning ap-
proaches that are developed for the multi dimensional data that are used mostly
in the autonomous driving application, de�ning and classi�cation of the multi di-
mensional data is crucial to develop and understand the models and their design
paradigm. The contribution of this paper is summarized as follows:

First An overview on di�erent sensor technologies used in the autonomous driv-
ing �eld.

Second we ought to have a grasp on the di�erent classi�cations of 3D data
according to their nature and structure.

Third Secondly discussing the state of art approaches that can handle these kind
of data while understanding the design paradigm of each of them.

Forth showing the reported accuracy results by both approaches in the KITTI
benchmark [7].

2 Vision Sensors in Autonomous Driving

Vision is vital in the decision process in the autonomous driving systems. Most
of the driving related decisions whether breaking, throttling or steering. Rely
on the acquired vision information of the 3D space around the vehicle. Vision
Sensors used in Autonomous driving required to capture the information of the
shapes, colors and distances. A lot of information can be derived from such form
these main features i.e. Ego-localization/mapping, speeds of moving objects,
relative distances objects and the vehicle as well as the textures. Unfortunately
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not all the information can be provided by one vision sensor. Sensors like stereo
cameras, LiDAR and Radars are mostly mounted on the vehicles to acquire
the surrounding vision information. A comparison between the abilities of the
cameras and LiDAR is shown in following table. Since Radar and LiDAR share
most of the features. One of the biggest advantages of the Radar on LiDAR is
the robustness to bad weather conditions i.e. snow and rain.

Features LiDAR Stereo Camera

Distance Measurement 2 m - 200 m ∝ Resolution

Ambient Light Susceptibility
sensitive, High night-vision-
performance

sensitive

Weather Conditions Susceptibility sensitive sensitive
Cost high low

The depth image values in stereo vision is calculated by the triangulation
method. Which is shown in the following equation.

d = f ∗ b/x (1)

where

d calculated depth value

f focal length

b base distance (distance between the cameras)

x pixel size in mm

As shown in the above equation the size of the pixel is inversely proportional to
the calculated distance. With high resolution the number of pixels that describes
space is high. Which results in small pixel sizes.

3 Data

Representation of the same type of information varies depending the technology
of the sensor that captures these raw 3D data. The ideal 3D data should grasp
all di�erent kinds of information of the 3D objects in the scene e.g. structure,
colour and texture of each object as well as the distribution across the 3D space.
Since the ideal does not exist, a trade-o� between the emphasis of these features
is expected. There are two major classi�cations that all the representation abide
to: Euclidean-structured and non-Euclidean data. In this work not all types and
variation of the two classes of data are going to be extensively presented. Since
the focus is on the types of sensors that are reliable enough to be used in the
Automotive �eld e.g.: LiDAR sensors and Stereo cameras.[2]
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3.1 Euclidean

As the name states, this kind of data are governed by a common system of coor-
dinates in a grid-like structure. Typically, Euclidean spaces are de�ned by RN

(n: number of dimensions)-often in XY Z coordinates. The main types falling
under this class are: RGB-D, Volumetric, Multi-view data, descriptors, and pro-
jections. In this work we will only focus on the RGB-D data.[2]

RGB-D As the price of stereo cameras dropped and due to the their adequate
representation of the 3D information by this technology. It has been widely ap-
plied in various technological �elds. The depiction of 3D information is performed
in a 2.5D [1] representation manner. This technique of the 3D information repre-
sentation provides two images for every frame, the �rst is the conventional RGB
2D representation, the second is the relevant depth (D) map of the captured RGB
frame (hence the 0.5 D). The availability of the data in this form also plays an
important role in the wide usage in various Deep Learning architectures.[2]

Since this data are parametrized, the upgrade of existing deep learning archi-
tectures from 2D to 3D space is possible. Nevertheless the transformation of the
RGB-D to another space representation like the 3D Point cloud is also possible
since the RGB-D is considered to be higher level of 3D information depiction
that of the Point cloud data.[8]

3.2 Non-Euclidean

Non-Euclidean Data di�er from their counterparts that they are not govern by a
global coordinate system. Upgrading the existing 2D deep learning paradigms to
be able to comprehend this kind of data is not easy as the Euclidean data, since
they are not presented through vectors. The main types of this class of data are
point clouds, 3D meshes and graphs. We will discuss point clouds exclusively in
this work.[1]

Point Clouds 3D Point clouds are represented as a sparse matrix containing
clustered clouds which represent the objects in the space. Each cluster on its own
can be realized with a common parametrized coordinate space which is immune
to rotation and translation. One can see it as a set of small Euclidean coordinate
systems.[1]

There are multiple challenges facing the researchers in designing a deep learn-
ing paradigm that can deal with point clouds. The raw features of the point
clouds enforce the approaches to be able to deal with the irregular structure
of the point clouds. Some of these challenges are; the sparse and the uneven
distribution of the information across clusters. Nevertheless, these clusters have
di�erent densities and distribution across the space. In addition, the information
is stored as sets in lists thus changing the order of the data points in the sets
does not alter the representation of the scene. Recent works [10,9,8,12] overcome
the need of altering the format of the point clouds. Thus, being able to directly
apply deep learning architectures on raw point clouds.
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Fig. 1: Figure 1.Point Cloud Challenges [2]

4 Deep Learning Architectures

The deep learning paradigms here to discuss have the ability to work directly on
the raw point clouds irregular structure. Both of the following architectures are
applied for object classi�cation, instance segmentation and object localization.

4.1 PointNet

Qi et al. proposed a model architecture that deals with the nature of the point
clouds directly. PointNet addresses every challenge stated by the nature of the
point clouds in a di�erent manner. The idea is to transform the raw input feature
to a more global feature representation which is immune to the data perturba-
tions and permutations. Needless to say this transformation function has to be
symmetric and this is achieved by deploying an MLP (Multi-Layer Perceptron)
network followed by single variable function and as a symmetric function max
pooling function is used. In order to apply a successful classi�cation paradigm
both local and global features and required. This is done by a Segmentation Net-
work which concatenates the both the aggregated global features and the point
feature (as shown in �gure 1) to produce a new feature which is appreciative to
both the global and the local information. [reference]. For improving robustness
to permutation, an a�ne transformation is applied on the input features and
the feature vector after the �rst MLP network [10,5] as shown in Figure 2.

Pointnet by design does not apprehend the metric structure and its di�erent
scales. Thus resulting a limitation to its ability to recognise �ne-grained patterns.
A hierarchical scaling paradigm was necessary to capture and generalize over
the metric scaling structure. Which was introduce by Qi et al and is followingly
reviewed. [5,9]

PointNets ++ was introduced to achieve two goals �rst is to partition the
point set with respect to di�erent scales, secondly is to globalize and abstract
the learned weights across the each feature learner model. PointNet is applied in
this design as a feature learner bene�ting from its robustness to the unordered
structure as well as the permutations and perturbations of the data.

Although PointNet and PointNet++ were pioneers in the object classi�ca-
tion and semantic segmentation. The object detection and localization in the 3D
space was an issue needed to be addressed in their following work.
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Fig. 2: PointNet Architecture. The classi�cation network takes n points as input,
applies input and feature transformations, and then aggregates point features by
max pooling. The output is classi�cation scores for k classes. The segmentation
network is an extension to the classi�cation net. It concatenates global and local
features and outputs per point scores. �mlp� stands for multi-layer perceptron,
numbers in bracket are layer sizes. Batchnorm is used for all layers with ReLU.
Dropout layers are used for the last mlp in classi�cation net.[10]

Frustum PointNet was introduced to address the localization process of each
of the classi�ed objects in the scene. The 3D bounding box in this proposal is a
frustum, which is generated with the aid of the RGB-D frame of the respective
scene. Taken into consideration that the RGB-D data are higher level 3D data
forms and can be converted to point clouds with the aid of the camera projection
matrix. Aware of the perspective scales of the objects with respect to the sensors.
With the aid of the previously mentioned givens; the Frustums are generated by
lifting the 2D bounding boxes on the 2D images. These 2D regions of interest
are proposed by a classical 2D region proposal network FPN [8]; see Figure 3.

4.2 VoxelNet

VoxelNet [12] proposed another approach for handling the sparsity in the Li-
DAR point clouds as well as the highly variable point density distribution. This
is a generic 3D detection framework can object classi�cation and localizing the
reespective 3D bounding boxes on point clouds in an end to end fashion. Vox-
elNet splits the point cloud into equivalent 3D voxels, then encodes each of the
voxel via stacked voxel feature extraction (VFE) layers. The convolutional layers
afterwards aggregate the features of each voxel. Finally these volumetric repre-
sentations are fed into a region proposal network [4,3] that produces the detection
results. VoxelNet architecture consists of three main blocks as shown in Figure 4.
Firstly, the Feature learning network (VFE) which is discussed followingly and
considered as the key innovation in this architecture.

The point clouds are subdivided into equally sized 3D voxels[12]. This will
result into varying densities of points between the voxels due to the sparsity of
the point clouds [2]. This is handled by a sampling technique which draws equal
number of samples (T) [12] from the non-empty voxels. This produces voxels
with a uniform number of points[2]. In addition to, that the number of samples
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Fig. 3: Frustum PointNets for 3D object detection. We �rst leverage a 2D CNN
object detector to propose 2D regions and classify their content. 2D regions are
then lifted to 3D and thus become frustum proposals. Given a point cloud in
a frustum (n × c with n points and c channels of XY Z, intensity etc. for each
point), the object instance is segmented by binary classi�cation of each point.
Based on the segmented object point cloud (m × c), a light-weight regression
PointNet (T-Net) tries to align points by translation such that their centroid is
close to amodal box center. At last the box estimation net estimates the amodal
3D bounding box for the object.[8]

Fig. 4: VoxelNet architecture. The feature learning network takes a raw point
cloud as input, partitions the space into voxels, and transforms points within
each voxel to a vector representation characterizing the shape information. The
space is represented as a sparse 4D tensor. The convolutional middle layers
processes the 4D tensor to aggregate spatial context. Finally, a RPN generates
the 3D detection.
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has to be less than the number of points contained by each voxel [12]. So by
portioning and grouping of the raw point clouds the non-uniform and sparsity
nature of the point clouds is handled. Nevertheless, the mentioned sampling
technique addresses the varying densities of the distribution of the point clouds
in the 3D space.

A point-wise-global representation for each voxel is acquired by calculating
the local mean between the points of each voxel. The point-wise-local information
is then obtained by calculating the relative distance of each local point to the the
respective centroids [12]. Both information are fed into a fully connected layer
(FCN) to produce a point-wise the feature map. Then these point-wise feature
are then stacked and fed into a MaxPooling layer to obtain an element-wise-
global feature [2] as shown in Figure 5.

Fig. 5: Voxel feature encoding layer.

5 Results

KITTI [7] dataset was developed by Karlsruhe Institute of Technology et al.
and is one of the best known datasets in autonomous driving. It can be used for
tasks such as: stereo, optical �ow, visual odometry, 3D object detection and 3D
tracking. For each task they provide benchmarks as well an evaluation metric.
KITTI provides 5 classes; Road, City, Residential, Campus and Person for their
raw data. The dataset comprise 389 stereo and optical �ow image pairs, stereo
visual odometry sequences of 39.2 km length, and more than 200k 3D object
annotations captured in cluttered scenarios (up to 15 cars and 30 pedestrians
are visible per image).

The performance scores shown in the next section are the reported scores of
both DL architectures formerly introduced.
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Parameter F-PontNet[8] VoxelNet[12]

Data-type RGB-D and Point Cloud Point Cloud

mAP (Moderate) 65.39 58.25

class Easy Mod. Hard Easy Mod. Hard

Car 88.7 84 75.33 89.35 79.26 77.39

Pedestrian 58.09 50.22 47.2 46.13 40.74 38.11

Cyclist 75.38 61.96 54.68 66.7 54.76 50.55

Table 1: Performance on the KITTI Birds Eye View detection benchmark

Parameter F-PontNet[ref] VoxelNet[ref]

Data-type RGB-D and Point Cloud Point Cloud

mAP (Moderate) 57.35 49.05

class Easy Mod. Hard Easy Mod. Hard

Car 81.2 70.39 62.19 77.47 65.11 57.73

Pedestrian 51.21 44.89 40.23 39.48 33.69 31.5

Cyclist 71.69 56.77 50.39 61.22 48.36 44.37
Table 2: Performance on the KITTI 3D object detection benchmark

5.1 Accuracy Scores

6 Summary and Conclusion

The availability of 3D vision technology charged the progress in the autonomous
driving �eld. Deep Learning architectures are focused now more than ever on
the challenging Computer vision tasks. As overviewed in this paper, PointNet
and VoxelNet can preform directly raw point clouds and achieve a state-of-the-
art performance results in Object/instance segmentation. Although they share
their common features in their architecture as having the similar backbones of
RPN/R-CNN 2D architectures in object detection. They di�er in approaching
the point clouds for the application of the feature extraction step. While Qi et
al.[9] choice was by performing the a�ne linear transformation and the sym-
metrical function MaxPooling directly on the point clouds. VoxelNet[12] chose
to group the point clouds in equally sized voxels and then applying sampling
for computation overhead reduction followed by non-linear feature transforma-
tion and the symmetrical function MaxPooling. Both are considered successful
approaches in performing state-of-art performance on object classi�cation and
semantic segmentation.

6.1 Future of Computer Vision in Autonomous Driving

The progress achieved in the introduced DL techniques in this work is undeniably
very promising and has a lot of potential in the AD �eld. But the reliance
only on the LiDAR as a vision sensor does not deliver all the requirements
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needed for a fully independent Autonomous Driving systems i.e. level 4 or 5.
The texture information is vital in a fully reliable object detection technique.
Di�erentiation between a rubber tire or a plastic bag cannot be inferred from the
information contained in point clouds. Adding to that the weather elements as
snow or rain can obscure the emitted/received photons from the LiDAR sensors.
Radars in contrast posses the robustness against such weather conditions. Large
scale neural network models are vital in the design of a reliable driving system.
Since they are trained of data in the number of billions. As well as they have over
hundred features. In other words, they are able to process and preform on much
more information and preform the imposed CV tasks. Many approaches like
sensor fusion and domain adaptation are employed to address the augmentation
of information and the generalization of the learned features. To provide the DL
models some immunity against the changing weather conditions and the lack of
visual information provided by a single vision technology.
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