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Abstract: Let Ψ(n) = n · ∏q|n
(

1 + 1
q

)
denote the Dedekind Ψ function where q | n means the prime

q divides n. Define, for n ≥ 3; the ratio R(n) = Ψ(n)
n·log log n where log is the natural logarithm. Let

Nn = 2 · . . . · qn be the primorial of order n. We prove if the inequality R(Nn+1) < R(Nn) holds for
all primes qn (greater than some threshold), then the Riemann hypothesis is true and the Cramér’s
conjecture is false. In this note, using our criterion, we show that the Riemann hypothesis is true and
the Cramér’s conjecture is false.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2 . It is considered by
many to be the most important unsolved problem in pure mathematics. The hypothesis was
proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert’s
eighth problem on David Hilbert’s list of twenty-three unsolved problems. This is one of the
Clay Mathematics Institute’s Millennium Prize Problems. In recent years, there have been
several developments that have brought us closer to a proof of the Riemann hypothesis.
There are many approaches to the Riemann hypothesis based on analytic number theory,
algebraic geometry, non-commutative geometry, etc.

The Riemann zeta function ζ(s) is a function under the domain of complex numbers. It
has zeros at the negative even integers: These are called the trivial zeros. The zeta function
is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis
is concerned with the locations of these nontrivial zeros. Bernhard Riemann conjectured
that the real part of every nontrivial zero of the Riemann zeta function is 1

2 .
The Riemann hypothesis’s importance remains from its deep connection to the dis-

tribution of prime numbers, which are essential in many computational and theoretical
aspects of mathematics. Understanding the distribution of prime numbers is crucial for
developing efficient algorithms and improving our understanding of the fundamental
structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power
and allure of mathematical inquiry. It challenges our understanding of the fundamental
structure of numbers, inspiring mathematicians to push the boundaries of their field and
seek ever deeper insights into the universe of mathematics.

A prime gap is the difference between two successive prime numbers. The nth prime
gap is the difference between the (n + 1)st and the nth prime numbers, i.e. qn+1 − qn. The
Cramér’s conjecture states that qn+1 − qn = O((log qn)2), where O is big O notation and
log is the natural logarithm. This conjecture was formulated by the Swedish mathematician
Harald Cramér in 1936. Nowadays, many mathematicians believe that the Cramér’s
conjecture is false.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
q≤x

log q
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with the sum extending over all prime numbers q that are less than or equal to x, where log
is the natural logarithm.

Proposition 1. We have [1, pp. 1]:

θ(x) ∼ x as (x → ∞).

We know the following inequalities:

Proposition 2. For r ≥ 0 and −1 ≤ x < 1
r [2, pp. 1]:

(1 + x)r ≤ 1
1 − r · x

.

Proposition 3. For x > −1 [2, pp. 1]:

log(1 + x) ≤ x.

Leonhard Euler studied the following value of the Riemann zeta function (1734) [3].

Proposition 4. We define [3, (1) pp. 1070]:

ζ(2) =
∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where qk is the kth prime number (We also use the notation qn to denote the nth prime number). By
definition, we have

ζ(2) =
∞

∑
n=1

1
n2 ,

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞

∑
n=1

1
n2 =

∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number
theory, geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim
n→∞

(
− log n +

n

∑
k=1

1
k

)

=
∫ ∞

1

(
− 1

x
+

1
⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. Franz Mertens discovered some important results
about the constant B (1874) [4].

Proposition 5. Mertens’s second theorem is

lim
n→∞

(
∑
q≤n

1
q
− log log n − B

)
= 0,

where B ≈ 0.26149 is the Meissel-Mertens constant [4].
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In number theory, Ψ(n) = n · ∏q|n

(
1 + 1

q

)
is called the Dedekind Ψ function, where

q | n means the prime q divides n.

Definition 1. We say that Dedekind(qn) holds provided that

∏
q≤qn

(
1 +

1
q

)
≥ eγ

ζ(2)
· log θ(qn).

A natural number Nn is called a primorial number of order n precisely when,

Nn =
n

∏
k=1

qk.

We define R(n) = Ψ(n)
n·log log n for n ≥ 3. Dedekind(qn) holds if and only if R(Nn) ≥ eγ

ζ(2) is
satisfied.

Proposition 6. Unconditionally on Riemann hypothesis, we know that [5, Proposition 3 pp. 3]:

lim
n→∞

R(Nn) =
eγ

ζ(2)
.

Proposition 7. The inequality R(Nn) > R(Nn+1) is violated for infinitely many n’s under the
assumption that the Cramér’s conjecture is true [6, Proposition 4 pp. 5], [6, Proposition 7 pp. 7].

Proposition 8. For all prime numbers qn > 5 [7, Theorem 1.1 pp. 358]:

∏
q≤qn

(
1 +

1
q

)
< eγ · log θ(qn).

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy
and John Edensor Littlewood [8]. In 1916, they also introduced the two symbols ΩR and
ΩL defined as [9]:

f (x) = ΩR(g(x)) as x → ∞ if lim sup
x→∞

f (x)
g(x)

> 0;

f (x) = ΩL(g(x)) as x → ∞ if lim inf
x→∞

f (x)
g(x)

< 0.

After that, many mathematicians started using these notations in their works. From the last
century, these notations ΩR and ΩL changed as Ω+ and Ω−, respectively. There is another
notation: f (x) = Ω±(g(x)) (meaning that f (x) = Ω+(g(x)) and f (x) = Ω−(g(x)) are
both satisfied). Nowadays, the notation f (x) = Ω+(g(x)) has survived and it is still used
in analytic number theory as:

f (x) = Ω+(g(x)) if ∃k > 0 ∀x0 ∃x > x0 : f (x) ≥ k · g(x)

which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the
function f was introduced by Nicolas in his seminal paper as [10, Theorem 3 pp. 376], [11,
(5.5) pp. 111]:

f (x) = eγ · log θ(x) · ∏
q≤x

(
1 − 1

q

)
.

Finally, we have the Nicolas Theorem:
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Proposition 9. If the Riemann hypothesis is false then there exists a real b with 0 < b < 1
2 such

that, as x → ∞ [10, Theorem 3 (c) pp. 376], [11, Theorem 5.29 pp. 131]:

log f (x) = Ω±(x−b).

Putting all together yields two breakthrough results on prime numbers.

2. Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors
expect (or at least hope) that it is true. Nevertheless, there exist some implications in case
of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 1. If the Riemann hypothesis is false, then there exist infinitely many prime numbers qn
such that Dedekind(qn) fails (i.e. Dedekind(qn) does not hold).

Proof. The function g is defined as [5, Theorem 4.2 pp. 5]:

g(x) =
eγ

ζ(2)
· log θ(x) · ∏

q≤x

(
1 +

1
q

)−1
.

We claim that Dedekind(qn) fails whenever there exists some real number x0 ≥ 5 for which
g(x0) > 1 or equivalent log g(x0) > 0 and qn is the greatest prime number such that
qn ≤ x0. It was proven the following bound [5, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x)− 2
x

.

By Proposition 9, if the Riemann hypothesis is false, then there is a real number 0 < b < 1
2

such that there exist infinitely many numbers x for which log f (x) = Ω+(x−b). Actually
Nicolas proved that log f (x) = Ω±(x−b), but we only need to use the notation Ω+ under
the domain of the real numbers. According to the Hardy and Littlewood definition, this
would mean that

∃k > 0, ∀y0 ∈ R, ∃y ∈ R (y > y0) : log f (y) ≥ k · y−b.

The previous inequality is also log f (y) ≥
(

k · y−b · √y
)
· 1√

y , but we notice that

lim
y→∞

(
k · y−b · √y

)
= ∞

for every possible values of k > 0 and 0 < b < 1
2 . Now, this implies that

∀y0 ∈ R, ∃y ∈ R (y > y0) : log f (y) ≥ 1
√

y
.

Note that, the value of k is not necessary in the statement above. In this way, if the
Riemann hypothesis is false, then there exist infinitely many wide apart numbers x such
that log f (x) ≥ 1√

x . Since 1√
x0

> 2
x0

for x0 ≥ 5, then it would be infinitely many wide apart
real numbers x0 such that log g(x0) > 0. In addition, if log g(x0) > 0 for some real number
x0 ≥ 5, then log g(x0) = log g(qn) where qn is the greatest prime number such that qn ≤ x0.
The reason is because of the equality of the following terms:

∏
q≤x0

(
1 +

1
q

)−1
= ∏

q≤qn

(
1 +

1
q

)−1
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and
θ(x0) = θ(qn)

according to the definition of the Chebyshev function.

3. New Criterion

This is a new Criterion for the Riemann hypothesis.

Lemma 2. The Riemann hypothesis is true whenever for each large enough prime number qn, there
exists another prime qn′ > qn such that

R(Nn′) ≤ R(Nn).

Proof. By Lemma 1, if the Riemann hypothesis is false and the inequality

R(Nn′) ≤ R(Nn)

is satisfied for each large enough prime number qn, then there exists an infinite subsequence
of natural numbers ni such that

R(Nni+1) ≤ R(Nni ),

qni+1 > qni and Dedekind(qni ) fails. By Proposition 6, this is a contradiction with the fact
that

lim inf
n→∞

R(Nn) = lim
n→∞

R(Nn) =
eγ

ζ(2)
.

By definition of the limit inferior for any positive real number ε, only a finite number of
elements of R(Nn) are less than eγ

ζ(2) − ε. This contradicts the existence of such previous
infinite subsequence and thus, the Riemann hypothesis must be true.

4. Main Insight

This is the main insight.

Theorem 1. The inequality R(Nn) > R(Nn+1) holds for all primes qn (greater than some thresh-
old).

Proof. By Lemma 2, the Riemann hypothesis is true if for all primes qn (greater than some
threshold), the inequality

R(Nn′) < R(Nn)

is satisfied for some prime qn′ > qn. That is the same as

∏q≤qn′

(
1 + 1

q

)
log θ(qn′)

<
∏q≤qn

(
1 + 1

q

)
log θ(qn)

and

log log θ(qn′) > log log θ(qn) + ∑
qn<q≤qn′

log
(

1 +
1
q

)
after of applying the logarithm to the both sides and distributing the terms. That is
equivalent to

1 >
log log θ(qn)

log log θ(qn′)
+

∑qn<q≤qn′
log
(

1 + 1
q

)
log log θ(qn′)
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after dividing both sides by log log θ(qn′). This is possible because of the prime number qn′

is large enough and thus, the real number log log θ(qn′) would be greater than 0. We can
apply the exponentiation to the both sides in order to obtain that

e > exp
(

log log θ(qn)

log log θ(qn′)

)
·
(

∏
qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

.

For large enough prime qn′ , we have

e = (log θ(qn′))
1

log log θ(qn′ )

since e = x
1

log x for x > 0. Hence, it is enough to show that

log θ(qn′) > ∏
qn<q≤qn′

(
1 +

1
q

)
.

That is equal to

eγ · log θ(qn′) > eγ · ∏
qn<q≤qn′

(
1 +

1
q

)
.

By Proposition 8, we know that

eγ · log θ(qn′) > ∏
q≤qn′

(
1 +

1
q

)
.

So, we deduce that

1 > eγ · ∏
q≤qn

(
1 +

1
q

)−1

which is trivially true since

lim
n→∞

(
eγ · ∏

q≤qn

(
1 +

1
q

)−1
)

= 0.

This is because of

(log θ(qn))
−1 > ∏

q≤qn

(
1 +

1
q

)−1
.

We can check that
lim

n→∞

(
eγ · (log qn)

−1
)
= 0

is true since
θ(qn) ∼ qn as (n → ∞)

by Proposition 1. Actually, the point here is the statement

(log θ(qn))
−1 > ∏

q≤qn

(
1 +

1
q

)−1

should be true for large enough n which is equal to say that R(Nn) > 1 holds indeed. By
Proposition 6, there exists a value of m0 so that for all natural numbers m ≥ m0

lim inf
m→∞

R(Nm)− ϵ =
eγ

ζ(2)
− ϵ < R(Nm) <

eγ

ζ(2)
+ ϵ = lim sup

m→∞
R(Nm) + ϵ
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for every arbitrary and absolute value ϵ > 0 by definition of limit superior and inferior due
to

lim inf
m→∞

R(Nm) = lim sup
m→∞

R(Nm) = lim
m→∞

R(Nm).

In this way, it should exist some value of n0 so that for all natural numbers n ≥ n0 we
obtain that R(Nn) > 1 since eγ

ζ(2) > 1. We would have

1 + ϵ1 = exp
(

log log θ(qn)

log log θ(qn′)

)
and

e · (1 − ϵ2) =

(
∏

qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

.

We only need to prove that
e > (1 + ϵ1) · e · (1 − ϵ2)

which is
ϵ2 >

ϵ1

ϵ1 + 1
.

In addition, we can see that

1 − e−1 ·
(

∏
qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

= ϵ2.

We have (
∏

qn<q≤qn′

(
1 +

1
q

)) 1
log log θ(qn′ )

=

(
1 + ∏

qn<q≤qn′

(
1 +

1
q

)
− 1

) 1
log log θ(qn′ )

≤ 1

1 −
(

∏qn<q≤qn′

(
1+ 1

q

)
−1
)

log log θ(qn′ )

=
log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

)
by Proposition 2, since there always exists a prime number qn′ such that

−1 ≤
(

∏
qn<q≤qn′

(
1 +

1
q

)
− 1

)
< log log θ(qn′)

due to qn and qn′ are large enough. We can show the inequality(
∏

qn<q≤qn′

(
1 +

1
q

)
− 1

)
< log log θ(qn′)

could hold for a large enough prime qn′ as well. Indeed, we are able to show that is equal to(
∑

qn<q≤qn′

log
(

1 +
1
q

)
− 1

q

)
< −

(
∑

qn<q≤qn′

1
q

)
+ log log log(θ(qn′))e



8 of 10

after of applying the logarithm and adding the term

−
(

∑
qn<q≤qn′

1
q

)

to the both sides. By Proposition 3, we verify that

0 ≥
(

∑
qn<q≤qn′

log
(

1 +
1
q

)
− 1

q

)
.

By Proposition 5, if we get any large enough prime number qn′ such that

log log log(θ(qn′))e ≥
(

∑
qn<q≤qn′

1
q

)
≈ (log log qn′ − log log qn)

which is

(qn′)
1

1+log log θ(qn′ ) ⪅ qn,

then this could be quite good for supporting our claim. As a consequence, we obtain that

1 − e−1 · log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) ≤ ϵ2.

Putting all together, we show that

1 − e−1 · log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) >
ϵ1

ϵ1 + 1
.

That is equal to say that

ϵ1 + 1
ϵ1

−
e−1 · ϵ1+1

ϵ1
· log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) > 1

and

1 >
e−1 · (ϵ1 + 1) · log log θ(qn′)

log log θ(qn′) + 1 − ∏qn<q≤qn′

(
1 + 1

q

) .

where

log log θ(qn′) + 1 − ∏
qn<q≤qn′

(
1 +

1
q

)
> e−1 · (ϵ1 + 1) · log log θ(qn′)

after making a simple distribution of the terms. If we take n′ = n + 1, then we obtain

− 1
qn+1

>
(

e−1 · (ϵ1 + 1)− 1
)
· log log θ(qn+1).

Certainly, we only need to show

e−1 · (ϵ1 + 1) < 1

which is
log log θ(qn)

log log θ(qn+1)
< 1
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whenever we apply the logarithm to the both sides since

ϵ1 = exp
(

log log θ(qn)

log log θ(qn+1)

)
− 1.

5. Main Theorem

This is the main theorem.

Theorem 2. The Riemann hypothesis is true and the Cramér’s conjecture is false.

Proof. By Lemma 2, the Riemann hypothesis is true if for all primes qn (greater than some
threshold), the inequality

R(Nn′) ≤ R(Nn)

is satisfied for some prime qn′ > qn. Therefore, the Riemann hypothesis is true by Theorem
1. We also know the Cramér’s conjecture is false as a consequence of Proposition 7 and
Theorem 1.

6. Conclusion

On the one hand, the Riemann hypothesis has far-reaching implications for math-
ematics, with potential applications in cryptography, number theory, and even particle
physics. Certainly, a proof of the hypothesis would not only provide a profound insight
into the nature of prime numbers but also open up new avenues of research in various
mathematical fields. On the other hand, our proof of the false Cramér’s conjecture could
spur considerable advances in number theory as well.
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