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Abstract 

               The effect of electron inertia on gravitational instability is studied of viscous partially ionized 

radiative quantum plasma. The quantum hydrodynamic model used various problems related to 

gravitational instability. The general dispersion relation is derived using normal mode analysis and 

discussed in the parallel and perpendicular propagation. The condition of instability and growth rate of 

the system is modified due to the presence of these parameters. We examined that from the curves all 

considered parameter has a stabilized or destabilized effect on the gravitational instability of the system.  

Keywords- Electron inertia, Viscosity, Quantum correction, partially ionized plasma, Heat-loss 

function, and Magnetic field.  

1 Introduction  

              The study of partially ionized radiative condensation instability is becoming popular as it is the 

key process that deals with external heating and radiative cooling in astrophysical plasma. They have 

attracted considerable attention owing to its crucial role in the structural formations of astrophysical 

objects such as interstellar molecular clouds, galaxy clusters, planetary nebula, stars, solar prominences, 

and the solar corona. The radiative instability arises in a medium that can become cooler due to radiation 

and decrease the temperature makes the system unstable and leads to the formation of astrophysical 

objects [1 parker, 2 field]. In this way to understand the origin of star formation and the problem of self-

gravitating interstellar gaseous plasma is discussed by Jean’s [3] gives a simple example of gravitational 

instability in an infinite homogeneous medium. Chandrasekhar [4] gives a great combination of the self-

gravitational instability on the magnetic field and rotation. In recent years, the quantum plasma has 

attracted baronial interest due to their enormous applications in the dense astrophysical environment, 

stars, interior of white dwarfs, magnetars and high-density laser systems. The high density and low 

temperature are usually considered as the typical plasma environment in which quantum effects start to 

play a significant role in the system. In the high density and low temperature, the plasma behaves like 

a Fermi gas, which means that the number density of plasmas is governed by the Fermi-Dirac 

distribution, which differs from the Maxwell-Boltzmann distribution. In extremely low temperature the 

thermal de-Broglie wavelength becomes comparable to the inter an electron distance and the electron 

temperature and it follows the Fermi-Dirac distribution law. The quantum effect can be considered by 

thermal de-Broglie wavelength composing the plasma 𝐵 =
ℏ

𝑚𝑣𝑇
.  The Manfredi [5] discussed that 

quantum parameter effect become important when the temperature is lower than the so-called Fermi 

temperature  𝑇𝐹 is  𝐸𝐹 = 
ℏ2

2𝑚
(3𝜋2)2 3⁄  when 𝑇 approaches 𝑇𝐹  and the distribution charges from 

Maxwell-Boltzmann to Fermi-Dirac statistics and quantum effects become important when  ≥ 1 since 

 ≥
𝑇

𝑇𝐹
   when 𝑇 ≫ 𝑇𝐹 (treated classical case) and 𝑇 ≪ 𝑇𝐹 (treated quantum case). The quantum plasma 

was first analyzed by Pines [6]. Haas [7], Manfredi and Haas [8] have developed the quantum 

hydrodynamic model of quantum plasmas. Many authors include the quantum corrections to the wave 

interactions, i.e., in magnetoplasmas with resistive effects Ren et al. [9], in dusty magnetoplasmas 
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Salimullah et al. [10], in magnetized viscous Hall plasma Prajapati & Chhajlani [11]. Keeping in view 

the striking behavior of the quantum correction, many researchers have studied the effect of 

quantum correction on the Jeans instability with other parameters [12-16]. In all the above 

theoretical studies researchers have considered the plasma as fully ionized plasma. The state of a fully 

ionized plasma and a state of a partially ionized plasma refers to the plasma with the low degree of 

ionization proportion of neutral particles, in a gas that is ionized into charged particles, that is less than 

1. There are several situation such as chromospheres, solar photosphere prominence and plasmas cool 

interstellar medium where the plasma is frequently not fully ionized but instead may be partially ionized 

so that the interaction between the ionized fluid and the neutral gas leads to many important phenomena 

that are applicable in different astrophysical process and several new effects are present in comparison 

to a fully ionized plasma. Viz., electric charges are frozen magnetic field lines but neutrals are not and 

thus the neutral and ionized fractions of the plasma behave differently. Collisions between neutrals, on 

the other side, and electrons and ions, on the other side, arise and consequently a modified Ohm’s law 

is obtained. It is well known, the thermal instability of partially ionized plasma taking a radiative cooling 

function and two-fluid theory in the account have investigated by Fukue and Kamaya [17]. The effect 

of finite electrical and thermal conductivity on magneto-gravitational instability investigated by Nayyar 

[18] he also showed that the adiabatic speed of sound is being replaced by the isothermal one; much 

similar to what happens in the absence of magnetic field. Prajapati et al. [19] have discussed the effect 

of radiative heat-loss function and thermal conductivity on self-gravitational instability of fully ionized 

plasma with electron inertia, Hall current, electrical resistivity, rotation, and viscosity. 
In addition to this electron inertia parameter is important in the dynamics of interstellar matter, magnetic 

reconnections process, in instability investigation of moving plasma and many astrophysical conditions. 

Karla and Talwar [20] have investigated magneto-thermal instability of unbounded plasma with 

electron inertia and Hall effect. Pegoraro et al. [21] have shown the importance of electron inertia in 

non-uniform collisionless plasma having small scale magnetic structures. Shukla et al. [22] have 

analyzed the effect of electron inertia on kinetic Alfven waves. Uberoi [23] has examined electron 

inertia effects on the transverse thermal instability including the rotation parameter. Recently Sutar and 

Pensia [24] have carried out the problem of electron inertia effects on the gravitational instability under 

the influence of FLR corrections and suspended particles. Thus the electron inertia is a significant role 

in the discussion of radiative instability. 

In the present paper, we discussed the Jeans instability of magnetized partially ionized plasma, taking 

into the effect of radiative heat-loss function, viscosity, thermal conductivity, quantum correction, 

electrical resistivity, and electron inertia.    

2 Equation of the problem 

Let us consider an infinite self-gravitating homogeneous plasma system, which is embedded in the 

uniform magnetic field H⃗⃗ (0,0, H) is in the z-direction. We construct the basic set of equation using 

QMHD model given by Hass [7]. The quantum corrections are presented using the Bohm potential term 

in the momentum transfer equation.  

The momentum transfer equation with quantum correction is                                                     

𝜌
𝜕�⃗� 

𝜕𝑡
 =  −�⃗� 𝛿𝑝 + 𝜌�⃗� 𝛿𝑈 + 

1

4𝜋
(�⃗� × ℎ⃗ ) × �⃗⃗� +

𝜌𝑑

𝜌
𝑐(𝑉𝑑

⃗⃗⃗⃗ − �⃗� ) + 𝜌𝜗(𝛻2�⃗� ) +
ℏ2

4𝑚𝑒𝑚𝑖
𝛻(𝛻2𝛿𝜌)   (1) 

𝜕𝑉𝑑
⃗⃗⃗⃗ 

𝜕𝑡
= −𝑐(𝑉𝑑

⃗⃗⃗⃗ − �⃗� )                                                                                                                                            (2) 

The equation of continuity  

𝜕𝛿𝜌

𝜕𝑡
 =  −𝜌�⃗� . �⃗�                                                                                                                                                      (3) 

Poisson’s equation for a self-gravitational potential 

𝛻2𝜕𝑈 =  −4𝜋𝐺𝛿𝜌                                                                                                                                              (4) 

The heat equation for a perfect gas including the radiative effect and thermal conduction  



3 
 

1

(𝛾 − 1)

𝜕𝛿𝜌

𝜕𝑡
−

𝛾

(𝛾 − 1)

𝑝

𝜌

𝜕𝛿𝜌

𝜕𝑡
+ 𝜌 [(

𝜕ℒ

𝜕𝜌
)
𝑇

𝛿𝜌 + (
𝜕ℒ

𝜕𝑇
)
𝜌
𝛿𝑇] − 𝜆𝛻2𝛿𝑇 = 0                                          (5) 

The gas equation 

𝛿𝑝

𝑝
 =  

𝛿𝑇

𝑇
 + 

𝛿𝜌

𝜌
                                                                                                                                                  (6) 

The idealized Ohm’s law with finite electrical resistivity and electron plasma frequency equation is   

𝜕ℎ⃗ 

𝜕𝑡
= �⃗� × (�⃗� × �⃗⃗�  )   + 𝛻2ℎ⃗ +

𝐶2

𝜔𝑝𝑒
2

𝜕

𝜕𝑡
𝛻2ℎ⃗                                                                                                  (7) 

Gauss’s law of magnetism 

�⃗� . ℎ⃗ = 0                                                                                                                                                                  (8) 

 

Here, �⃗�  is the fluid velocity, 𝑝 is the fluid pressure, 𝜌 is the fluid density, U is the gravitational potential, 

𝑉𝑑
⃗⃗⃗⃗  is the neutral gas velocity, 𝜗 is the kinetic viscosity, G is the gravitational constant, 𝛾 is the adiabatic 

index, 𝜆 is the thermal conductivity, c is the velocity of light, T is temperature, R is gas constant, ℎ⃗  is 

the perturbation in magnetic field, 𝜌𝑑  (𝜌 ≫ 𝜌𝑑) density of neutral components,  finite electrical 

resistivity, 𝜔𝑝𝑒 electron plasma frequency, ℏ Plank’s constant divided by 2𝜋,𝑚𝑒 𝑎𝑛𝑑 𝑚𝑖 are the 

electron and ion mass, respectively. The electron plasma frequency is large compared to the electron –

neutral collision frequency and this situation is valid when electrostatic interactions dominate over the 

processes of ordinary gas kinetics (𝜔𝑝𝑒 > 1). 

  

We now solve (1)-(8) using plane-wave solution subject to perturbation, 

𝑒𝑥𝑝{𝑖(𝑘 𝑠𝑖𝑛𝜃𝑥 + 𝑘𝑐𝑜𝑠𝜃𝑧 + 𝜔𝑡)}                                                                                                                  (9) 

Where 𝜔 is the frequency of harmonic disturbances, 𝑘 =  (𝑘 𝑠𝑖𝑛𝜃, 0, 𝑘𝑐𝑜𝑠𝜃) in x and z-directions 

respectively, are the wave number of perturbation making angel θ with z-axis, such that 𝑘2 =

𝑘2𝑠𝑖𝑛2𝜃 + 𝑘2𝑐𝑜𝑠2𝜃, combining equation (5) and (6), we obtain the expression for 𝛿𝑝 as 

𝛿𝑝 =  (
𝛼 + 𝜎𝐶2

𝜎 + 𝛽
)𝛿𝜌                                                                                                                                     (10) 

 Where 𝑝 is pressure, 𝜎 = 𝑖𝜔 is the growth rate of perturbation, and 𝐶 = (𝛾
𝑝

𝜌
)
1

2⁄
 is the modified 

adiabatic ion-acoustic velocity.  The parameter 𝛼 𝑎𝑛𝑑 𝛽 are 

𝛼 = (𝛾 − 1) (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
)  𝑎𝑛𝑑 𝛽 =  (𝛾 − 1) (

ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
) 

The quantum effect is given as 𝐶2 = {𝑣𝑡𝑖
2 +

𝑚𝑖

𝑚𝑒
(𝑣𝑡𝑒

2 +
3

5
𝑣𝐹𝑒

2 )} 

Where 𝐶2 = 𝛾 {𝐶′2 +
3𝑚𝑖

5𝑚𝑒
𝑣𝐹𝑒

2 } is adiabatic and isothermal quantum ion-acoustic wave speed. 

𝑣𝑡𝑖 𝑎𝑛𝑑 𝑣𝑡𝑒 are the ion and electron thermal velocities and 𝑣𝐹𝑒 = 3𝜋2𝑛𝑒ℏ 𝑚𝑒⁄  is the Fermi velocity. It 

is evident from the expression given by the above equation, in the absence of Fermi velocity.  

In equation (10), ℒ𝜌,𝑇 are the partial derivatives of the density dependent (
𝜕ℒ

𝜕𝜌
)
𝑇

 and temperature 

dependent (
𝜕ℒ

𝜕𝑇
)
𝜌

 heat-loss functions respectively. Solving equations (2)-(10) in (1), we obtained the 

following matrix relation. 



4 
 

𝑋𝑖𝑗𝑌𝑗 = 0,   𝑖, 𝑗 = 1,2,3,4,                                                                                                                      (11) 

Where 𝑋𝑖𝑗 is a 4 × 4 matrix and 𝑌𝑗 is a single column matrix whose elements are (𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑠).  

𝑋11 = (𝜎 +
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2 +

𝑘2𝑉2

𝑎1
) , 𝑋12 = 0,

𝑋13 = 0,    𝑋14 =
𝑖𝑘𝑠𝑖𝑛𝜃

𝑘2 (
𝜎𝛺𝐽

2

𝜎 + 𝛽
+

𝑘2𝛼

𝜎 + 𝛽
−

4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) 

 𝑋21 = 0, 𝑋22 = (𝜎 +
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2 +

𝑘2𝑉2𝑐𝑜𝑠2𝜃

𝑎1
) , 𝑋23 =  0, 𝑋24 = 0,  

𝑋31 = 0, 𝑋32 =  0,      𝑋33 = (𝜎 +
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2) ,

𝑋34 =
𝑖𝑘𝑐𝑜𝑠𝜃

𝑘2 (
𝜎𝛺𝐽

2

𝜎 + 𝛽
+

𝑘2𝛼

𝜎 + 𝛽
−

4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
),   

𝑋41 =
𝑖𝑘 𝑠𝑖𝑛𝜃𝑘2𝑉2

𝑎1
,    𝑋42 = 0, 𝑋43 = 0,

𝑋44 = −{𝜎 (𝜎 +
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2) + (

𝜎𝛺𝐽
2

𝜎 + 𝛽
+

𝑘2𝛼

𝜎 + 𝛽
−

4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
)} 

𝛺𝐽
2 = (𝑘2𝐶2 − 4𝜋𝐺𝜌),     𝜎 = 𝑖𝜔, 𝑚 = 𝑘2,        𝑎1 = (𝜎𝑓 +𝑚), 𝑓 = (1 +

𝐶2𝑘2

𝜔𝑝𝑒
2 ),   

Where 𝑠 =  𝛿𝜌 𝜌⁄  is the condensation of the medium, 𝑉 =  
𝐻

4𝜋𝜌1 2⁄  is the Alfven velocity. Also, we have 

assumed the following substitutions. 𝐵 =
𝜌𝑑

𝜌
,  

For a nontrivial solution of (11) the determinant of the matrix 𝑋𝑖𝑗 should vanish, leading to the general 

dispersion relation.  

−(𝜎 +
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2 +

𝑘2𝑉2

𝑎1
)(𝜎 +

𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2 +

𝑘2𝑉2𝑐𝑜𝑠2𝜃

𝑎1
)(𝜎2 +

𝜎2𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜎𝜗𝑘2 +

𝜎𝛺𝐽
2

𝜎 + 𝛽

+
𝑘2𝛼

𝜎 + 𝛽
−

4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) (𝜎 +

𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2)

+
𝑘2𝑉2𝑠𝑖𝑛2𝜃

𝑎1
(

𝜎𝛺𝐽
2

𝜎 + 𝛽
+

𝑘2𝛼

𝜎 + 𝛽
−

4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) (𝜎 +

𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2)(𝜎

+
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2 +

𝑘2𝑉2𝑐𝑜𝑠2𝜃

𝑎1
) = 0                                                     (12) 

The dispersion relation (12) shows the combined influence of all physical parameters on infinite 

homogeneous gaseous plasma. If we reduced the effect of radiative heat loss function, viscous partially 

ionized plasma and thermal conductivity in equation (12), then we get the dispersion relation is obtained 

by Wu et al. [12], excluding Hall current term. In the absence of viscous partially ionized plasma, finite 

electrical resistivity, thermal conductivity, radiative heat-loss function and quantum correction 

dispersion relation (12) is reduced to that obtained by Domiano et al. [13] excluding Hall current term. 

All the considered parameters of the present work are the improvement of Ren et al. [9] and Haas [7] 

These results are very helpful to better understanding the star formation in interstellar medium, 

photosphere and chromospheres.  

For the discussion of equation (12) in an effective manner, we discussed it for parallel propagation and 

perpendicular propagation. 
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A. Parallel propagation (𝛉 = 𝟎°) 

Taking perturbations in a parallel direction to the magnetic field we have 𝑘 𝑐𝑜𝑠𝜃 = 𝑘, 𝑘 𝑠𝑖𝑛𝜃 = 0 and 

dispersion relation (12) reduces to 

−(𝜎 +
𝜎𝑐𝐵

𝜎 + 𝑐
+ 𝜗𝑘2)(𝜎 +

𝜎𝑐𝐵

𝜎 + 𝑐
+ 𝜗𝑘2 +

𝑘2𝑉2

𝑎1
)

2

(𝜎2 +
𝜎2𝑐𝐵

𝜎 + 𝑐
+ 𝜎𝜗𝑘2 +

𝜎𝛺𝐽
2

𝜎 + 𝛽
+

𝑘2𝛼

𝜎 + 𝛽

−
4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
)     = 0                                                                      (13) 

In the absence of viscous partially ionized plasma, radiative heat-loss function, electron inertia, thermal 

conductivity in (13) reduced result is similar to Ren et al. [9]. For simplicity, the preceding dispersion 

relation (13) is divided into three factors which are reduced one by one. The first factor of (13) is equated 

to zero, we obtain 

 

(𝜎 +
𝜎𝜗𝑐𝐵

𝜎 + 𝜗𝑐
+ 𝜗𝑘2) = 0                                                                                                            (14) 

Dispersion relation (14) is a stable damped mode which is affected by viscosity and collision frequency. 

It represents that the viscosity of the medium is capable of stabilizing the growth rate of the system. 

Dispersion relation (14) is independent of quantum correction, radiative heat-loss function, thermal 

conductivity, finite electrical resistivity, magnetic field, electron inertia and gravitating mode of the 

system. The second factor (13) equated to zero 

𝜎3𝑓 + 𝜎2(𝑚 + 𝑓𝑐 + 𝑓𝑐𝐵 + 𝜗𝑘2𝑓) + 𝜎(𝑐𝑚 + 𝑐𝐵𝑚 + 𝜗𝑘2𝑚 + 𝜗𝑘2𝑐𝑓 + 𝑘2𝑣2)
+ 𝑐𝜗𝑘2𝑚 + 𝑐𝑘

2𝑣2 = 0                                                                            (15) 

Preceding dispersion relation (15) shows the influence of magnetized viscous partially ionized plasma 

incorporated finite electrical resistivity and this mode is independent of radiative heat-loss function, 

thermal conductivity and gravitating mode of the system. The coefficients of (15) are all positive 

including the constant term, therefore this equation cannot have positive roots, which means that the 

system is stable. To get sufficient condition the Routh-Hurwitz criterion must be satisfied, which states 

that all the principal diagonal minors of the Hurwitz matrix must be positive. The three principal 

diagonal minors of equation (15) are given as 

∆1= [𝑚 + 𝑓𝑐 + 𝑓𝑐𝐵 + 𝜗𝑘2𝑓] > 0 𝑎𝑠 𝛾 > 1,  
∆2= [𝑐𝑚 + 𝑐𝐵𝑚 + 𝜗𝑘2𝑚 + 𝜗𝑘2𝑐𝑓 + 𝑘2𝑣2]∆1> 0, 
∆3= [𝑐𝜗𝑘2𝑚 + 𝑐𝑘

2𝑣2]∆2> 0 

Since all the diagonal minors (Δ) of Hurwitz matrices are positive, so we conclude that electron inertia, 

magnetized, viscous, and finite electrical resistive plasma is stable even in the presence of collision 

frequency. When the third factor of (17) equated to zero, we have 

𝜎4 + 𝜎3[𝛽 + 𝑐 + 𝐵𝑐 + 𝜗𝑘2] + 𝜎2 [𝛽𝑐 + 𝐵𝑐𝛽 + 𝜗𝑘2𝛽 + 𝜗𝑘2𝑐 + 𝑘2𝐶2 − 4𝜋𝐺𝜌 +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
]

+ 𝜎 [𝜗𝑘2𝑐𝛽 + 𝑘2𝛼 − 4𝜋𝐺𝜌𝛽 + 𝑐(𝑘
2𝐶2 − 4𝜋𝐺𝜌) + 𝑐

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝛽

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
]

+ 𝑘2𝛼𝑐 − 4𝜋𝐺𝜌𝛽𝑐 + 𝑐

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
𝛽 = 0                                                                  (16) 

 

Dispersion relation (16) shows the combined influence of collision frequency, viscosity, radiative heat-

loss function, thermal conductivity, quantum correction and gravitating mode of the system. It is evident 

from (16) that this dispersion relation is independent of the magnetic field, electron inertia, and finite 

electrical resistivity. In the absence of quantum correction, and partially ionized plasma effect in (16) 

is the same as earlier obtained by Prajapati et al. [19] excluding the effect of rotation, Hall current, 

electron inertia and permeability of the system. The constant term of (16), is given as 
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𝑐 [𝑘2(𝛾 − 1) (ℒ𝑇𝑇 − ℒ𝜌𝜌 +
𝑘2𝑇

𝜌
) − 4𝜋𝐺𝜌(𝛾 − 1)(

ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
)

+
ℏ2𝑘4

4𝑚𝑒𝑚𝑖

(𝛾 − 1) (
ℒ𝑇𝑇𝜌

𝑝
+
𝑘2𝑇

𝑝
)] < 0                                                  (17) 

The above equation (17) shows the simultaneous effect of quantum correction, radiative heat-loss 

function, and thermal conductivity. The electron inertia only changes the growth rate of the system that 

is not affecting the condition of instability. In the absence of electron inertia, quantum correction, and 

collision frequency in (17) the result is similar given by Jain et al. [14].   

B. Perpendicular propagation (𝛉 = 𝟗𝟎°) 

When perturbations are taken in a perpendicular direction to the magnetic field, we take 𝑘 𝑐𝑜𝑠𝜃 =

0, 𝑘 𝑠𝑖𝑛𝜃 = 𝑘 and dispersion relation (12) reduces in simple form is given by 

(𝜎 +
𝜎𝑐𝐵

𝜎 + 𝑐
+ 𝜗𝑘2)

3

(𝜎2 +
𝜎2𝑐𝐵

𝜎 + 𝑐
+ 𝜎𝜗𝑘2 +

𝜎𝛺𝐽
2

𝜎 + 𝛽
+

𝑘2𝛼

𝜎 + 𝛽
−

4𝜋𝐺𝜌𝛽

𝜎 + 𝛽
+

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+

𝜎𝑘2𝑉2

𝑎1
)

= 0                                                                                                                    (18) 

The above dispersion relation (18) shows the conjunct effect of viscous partially ionized plasma, finite 

electrical resistivity, electron inertia, magnetic field, radiative heat-loss function, thermal conductivity, 

quantum correction and gravitating mode of the system. In the absence of quantum correction, finite 

electrical resistivity, viscosity, strength of magnetic field and partially ionized plasma of the medium, 

the dispersion relation (18) is similar to that of Ibanez [15]. In the absence of electron inertia, quantum 

correction and radiating viscous partially ionized plasma of the medium, and finite electrical resistivity 

then dispersion relation (18) turns into a very renowned task given by Chandrasekhar [4]. Therefore, 

the present dispersion relation (18) is the improved version of the above mentioned QMHD work is 

modified due to quantum correction and partially ionized medium. These dispersion relations has two 

separate factors, each factor gives a different mode when equated to zero separately. The first factor of 

(18) is discussed earlier which is same as the dispersion relation (14) of the parallel mode of 

propagation. The second factor of (18) equated to zero, we obtain 

𝜎5 + 𝜎4 [𝛽 +
𝑚

𝑓⁄ + 𝑐 + 𝐵𝑐 + 𝜗𝑘2]

+ 𝜎3 [
𝑚𝛽

𝑓⁄ + 𝛽𝑐 +
𝑚𝑐

𝑓⁄ + 𝐵𝑐𝛽 +
𝐵𝑐𝑚

𝑓⁄ + 𝜗𝑘2𝛽 + 𝑐𝜗𝑘2

+
𝑚𝜗𝑘2

𝑓⁄ +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝑘2𝑉2

𝑓⁄ + 𝑘2𝐶2 − 4𝜋𝐺𝜌]

+ 𝜎2 [
𝛽𝑚𝑐

𝑓⁄ +
𝐵𝑐𝑚𝛽

𝑓⁄ + 𝑐𝜗𝑘2𝛽 +
𝑚𝛽𝜗𝑘2

𝑓⁄ +
𝑚𝜗𝑘2𝑐

𝑓⁄ +
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
𝛽

+
𝑚

𝑓⁄
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝑐

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+

𝑘2𝑉2𝛽
𝑓⁄ +

𝑘2𝑉2𝑐
𝑓⁄ + 𝑘2𝛼 −

4𝜋𝐺𝜌𝛽
𝑓⁄

+
𝑚

𝑓⁄ (𝑘2𝐶2 − 4𝜋𝐺𝜌) + 𝑐(𝑘
2𝐶2 − 4𝜋𝐺𝜌)]

+ 𝜎 [
𝜗𝑘2𝑐𝛽𝑚

𝑓⁄ +
𝑚𝛽

𝑓

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝑐𝛽

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+
𝑐𝑚

𝑓

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+

𝑘2𝑉2𝑐𝛽
𝑓⁄

+ (
𝑚

𝑓⁄ + 𝑐) (𝑘2𝛼 − 4𝜋𝐺𝜌𝛽) +
𝑚𝑐

𝑓⁄ (𝑘2𝐶2 − 4𝜋𝐺𝜌)]

+
𝑚𝑐

𝑓⁄ [𝛽
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
+ 𝑘2𝛼 − 4𝜋𝐺𝜌𝛽] = 0                                                         (19) 
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Dispersion relation (19) shows the combined effect of finite electrical resistivity, electron inertia, 

quantum correction, viscosity, radiative heat-loss function, thermal conductivity, strength of magnetic 

field with partially ionized plasma including gravitating mode of the system. In the absence of electron 

inertia, viscous partially ionized plasma and finite electrical resistivity, this dispersion relation (19) 

reduced to Joshi & Pensia [16], excluding rotation effect.  

We write the dispersion relation (19) in non-dimensional form in terms of self-gravitation as 

𝜎∗5 + 𝜎∗4 [(ℒ𝑇
∗ + ∗𝑘∗2) +

∗𝑘∗2

𝑓
+ 2𝑐

∗ + 𝜗∗𝑘∗2]

+ 𝜎∗3 [
∗𝑘∗2

𝑓
(ℒ𝑇

∗ + ∗𝑘∗2) + 𝑐
∗(ℒ𝑇

∗ + ∗𝑘∗2) +
∗𝑘∗2𝑐

∗

𝑓
+ 𝑐

∗(ℒ𝑇
∗ + ∗𝑘∗2)

+
∗𝑘∗2𝑐

∗

𝑓
+ 𝜗∗𝑘∗2(ℒ𝑇

∗ + ∗𝑘∗2) + 𝑐
∗𝜗∗𝑘∗2 +

∗𝜗∗𝑘∗4

𝑓
+ 𝑄∗𝑘∗2 +

𝑘∗2𝑉∗2

𝑓

+ (𝑘∗2 − 1)]

+ 𝜎∗2 [
2𝑐

∗∗𝑘∗2

𝑓
(ℒ𝑇

∗ + ∗𝑘∗2) + 𝑐
∗(ℒ𝑇

∗ + ∗𝑘∗2)𝜗∗𝑘∗2 +
∗

𝑓
(ℒ𝑇

∗ + ∗𝑘∗2)𝜗∗𝑘∗4

+
∗𝜗∗𝑘∗4𝑐

∗

𝑓
+ 𝑄∗(ℒ𝑇

∗ + ∗𝑘∗2) +
∗𝑘∗4𝑄∗

𝑓
+ 𝑐

∗𝑄∗𝑘∗2 +
𝑘∗2𝑉∗2

𝑓
(ℒ𝑇

∗ + ∗𝑘∗2)

+
𝑘∗2𝑉∗2𝑐

∗

𝑓
+ {𝑘∗2 (

1

𝛾
(ℒ𝑇

∗ + ∗𝑘∗2) − ℒ𝜌
∗) −

ℒ𝑇
∗ + ∗𝑘∗2

𝑓
} +

∗𝑘∗2

𝑓
(𝑘∗2 − 1)

+ 𝑐
∗(𝑘∗2 − 1)]

+ 𝜎∗ [
𝑐
∗𝜗∗

𝑓
(ℒ𝑇

∗ + ∗𝑘∗2)∗𝑘∗4 +
∗𝑘∗4

𝑓
(ℒ𝑇

∗ + ∗𝑘∗2)𝑄∗ + 𝑐
∗(ℒ𝑇

∗ + ∗𝑘∗2)𝑄∗𝑘∗2

+
𝑐
∗∗𝑘∗4𝑄∗

𝑓
+

𝑘∗2𝑉∗2𝑐
∗(ℒ𝑇

∗ + ∗𝑘∗2)

𝑓

+ (
∗𝑘∗2

𝑓
+ 𝑐

∗){𝑘∗2 (
1

𝛾
(ℒ𝑇

∗ + ∗𝑘∗2) − ℒ𝜌
∗) −

(ℒ𝑇
∗ + ∗𝑘∗2)

𝑓
}

+
𝑐
∗∗𝑘∗2

𝑓
(𝑘∗2 − 1)]

+
𝑐
∗∗𝑘∗2

𝑓
[(ℒ𝑇

∗ + ∗𝑘∗2)
𝑄∗𝑘∗2

𝑓
+ {𝑘∗2 (

1

𝛾
(ℒ𝑇

∗ + ∗𝑘∗2) − ℒ𝜌
∗) −

(ℒ𝑇
∗ + ∗𝑘∗2)

𝑓
}]

= 0                                                                                                                            (20) 

 

Where the various non-dimensional parameters are defined as 

𝜎∗ =
𝜎

√4𝜋𝐺𝜌 
,  𝑘∗ =

𝑘𝐶

√4𝜋𝐺𝜌
, 𝑄∗ =

ℏ2𝑘𝑗
2

4𝑚𝑒𝑚𝑖
, 𝑉∗ =

𝑉√4𝜋𝐺𝜌

𝐶
, 𝑐

∗ =
𝑐

√4𝜋𝐺𝜌
, 𝜆∗ =

(𝛾−1)𝑇𝜆√4𝜋𝐺𝜌

𝑝𝐶2 
,   ℒ𝜌

∗ =

(𝛾−1)𝜌 ℒ𝜌

𝐶2√4𝜋𝐺𝜌
,   ℒ𝑇

∗ =
(𝛾−1)𝜌 𝑇ℒ𝑇

𝜌√4𝜋𝐺𝜌
, 𝜗∗ =

𝜗√4𝜋𝐺𝜌

𝐶2 
,    ∗ =

√4𝜋𝐺𝜌

𝐶2 
                                                         (21)    
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Fig.1 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation in 

the magnetic field 𝑉∗ = (0, 1, 2), keeping the values of other parameters are fixed, as 𝑐
∗ = ℒ𝜌

∗ =

ℒ𝑇
∗ = 𝜗∗ = 𝑄∗ = ∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 0.5 
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Fig. 2 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation 

in the magnetic field 𝑉∗ = (0, 1, 2), keeping the values of other parameters are fixed, as 𝑐
∗ = ℒ𝜌

∗ =

ℒ𝑇
∗ = 𝜗∗ = 𝑄∗ = ∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 1.5 
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Fig. 3 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation 

in the collision frequency 𝑐
∗ = (0, 1, 2), keeping the values of other parameters are fixed as 𝑉∗ =

ℒ𝜌
∗ = ℒ𝑇

∗ = 𝜗∗ = 𝑄∗ = ∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 0.5 
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Fig. 4 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation 

in the collision frequency 𝑐
∗ = (0, 1, 2), keeping the values of other parameters are fixed as 𝑉∗ =

ℒ𝜌
∗ = ℒ𝑇

∗ = 𝜗∗ = 𝑄∗ = ∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 1.5 
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Fig. 5 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation 

in the quantum correction 𝑄∗ = (0, 1, 2), keeping the values of other parameters are fixed as 𝑉∗ =

ℒ𝜌
∗ = ℒ𝑇

∗ = 𝜗∗ = ∗ = 𝑐
∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 0.5 
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Fig. 6 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation 

in the quantum correction 𝑄∗ = (0, 1, 2), keeping the values of other parameters are fixed as 𝑉∗ =

ℒ𝜌
∗ = ℒ𝑇

∗ = 𝜗∗ = ∗ = 𝑐
∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 1.5 
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Fig.7 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation in 

the electrical resistivity ∗ = (0, 1, 2), keeping the values of other parameters are fixed as 𝑉∗ = ℒ𝜌
∗ =

ℒ𝑇
∗ = 𝜗∗ = 𝑄∗ = 𝑐

∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 0.5 
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Fig. 8 The growth rate 𝜎∗, in the transverse mode, is plotted against wave number  𝑘∗ with variation 

in the electrical resistivity ∗ = (0, 1, 2), keeping the values of other parameters are fixed as 𝑉∗ =

ℒ𝜌
∗ = ℒ𝑇

∗ = 𝜗∗ = 𝑄∗ = 𝑐
∗ = 𝜆∗ = 1 𝑎𝑛𝑑 𝑓 = 1.5 

In Fig. 1 and 2, the dimensionless growth rate is plotted against the dimensionless wave number for 

different values of magnetic field. It is quite obvious from both the figures that with an increase in 

magnetic field there is a decrease in the growth rate of the system. Thus, the magnetic field has a 

stabilizing influence on the system but in figure 2 when we increase the value electron inertia the system 

is destabilized. It is clear from figure 2 that electron inertia has a reverse impact comparison with a 

magnetic field and it reduced the stabilizing effect of the magnetic field.   

Figures 3 and 4 are plotted for the growth rate against the wave number with variation in the collision 

frequency. We find that the growth rate of the instability decreases with an increase in the value of 

collision frequency. Hence the collision frequency has a stabilizing influence on the growth rate of the 
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instability but as shown in figure 4, the presence of electron inertia has destabilized influence in the 

system. 

Therefore, to study the effects of the quantum correction parameter on the growth rate of the system 

has been shown in figure 5 and 6, in which we have plotted growth rate versus wave number for different 

values of the quantum parameter for a fixed value of other parameters. It is clear from the figure 

quantum parameter shows stabilizing influence on the growth rate of the system. In figure 5 it is clear 

that the growth rate decreases as the value of quantum parameter increases but in figure 6 the presence 

of electron inertia is reduced the stabilizing influence of the quantum parameter. 

From figure 7 and 8, we see that as the value of finite electrical resistivity increases, the growth rate 

also increases. Thus, the effects of finite electrical resistivity have destabilized the system. Figure 8 

shows the effect of finite electrical resistivity with electron inertia on the growth rate of instability, it is 

clear that in the presence of electron inertia the destabilizing effect is increasing. Hence the resistivity 

has a more destabilizing influence with electron inertia on the system. 

Conclusion   

                  In the present paper, we have studied the effect of electron inertia, partially ionized plasma, 

viscosity, finite electrical resistivity, magnetic field, radiation and quantum correction of the system. 

The general dispersion relation is obtained which is reduced for the parallel propagation and 

perpendicular propagation to the direction of the magnetic field. In parallel propagation to the direction 

of the magnetic field, we get three factors. The first factor is a stable damped mode which is affected 

by collision frequency and viscosity. The second factor shows Alfven wave mode modified by electron 

inertia, viscosity, finite electrical resistivity and collision frequency. The third factor gives the effect of 

viscosity, radiative heat-loss function, thermal conductivity, quantum correction, collision frequency 

but the electron inertia, magnetic field, and electrical resistivity does not affect this mode.  We show 

that the condition of instability is modified due to the presence of quantum correction, radiative heat-

loss function, and thermal conductivity and collision frequency changes the growth rate of the system.  

In the perpendicular propagation to the direction of the magnetic field, we have shown all combined 

influence of considered parameter which is taken in this review. The condition of Jean’s instability is 

modified by electron inertia, electrical resistivity, quantum correction, and radiation. From curves 1-6, 

we found that the collision frequency, magnetic field, and quantum correction have the stabilizing 

influence on the growth rate of the system but in the presence of electron inertia the stabilizing influence 

is decreasing. Figure 7-8, shows that finite electrical resistivity has a destabilizing influence on the 

growth rate of the system but in the presence of electron inertia, the system is more destabilized. The 

present result is helpful to understand the complicated situations of astrophysical problems.  
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