
EasyChair Preprint
№ 8687

VPN: Verification of Poisoning in Neural Networks

Youcheng Sun, Muhammad Usman, Divya Gopinath and
Corina Păsăreanu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 17, 2022

VPN: Verification of Poisoning in Neural
Networks

Youcheng Sun1, Muhammad Usman2, Divya Gopinath3, and Corina S.
Păsăreanu4

1 The University of Manchester
youcheng.sun@manchester.ac.uk
2 University of Texas at Austin
muhammadusman@utexas.edu

3 KBR, NASA Ames
divya.gopinath@nasa.gov

4 Carnegie Mellon University, CyLab, KBR, NASA Ames
corina.s.pasareanu@nasa.gov

Abstract. Neural networks are successfully used in a variety of applica-
tions, many of them having safety and security concerns. As a result re-
searchers have proposed formal verification techniques for verifying neu-
ral network properties. While previous efforts have mainly focused on
checking local robustness in neural networks, we instead study another
neural network security issue, namely model poisoning. In this case an
attacker inserts a trigger into a subset of the training data, in such a way
that at test time, this trigger in an input causes the trained model to
misclassify to some target class. We show how to formulate the check for
model poisoning as a property that can be checked with off-the-shelf ver-
ification tools, such as Marabou and nneum, where counterexamples of
failed checks constitute the triggers. We further show that the discovered
triggers are ‘transferable’ from a small model to a larger, better-trained
model, allowing us to analyze state-of-the art performant models trained
for image classification tasks.

Keywords: Neural networks · Poisoning attacks · Formal verification.

1 Introduction

Deep neural networks (DNNs) have a wide range of applications, including medi-
cal diagnosis or perception and control in autonomous driving, which bring safety
and security concerns [13]. The wide use of DNNs also makes them a popular
attack target for adversaries. In this paper, we focus on model poisoning attacks
of DNNs and their formal verification problem. In model poisoning, adversaries
can train DNN models that are performant on normal data, but contain back-
doors that produce some target output when processing input contains a trigger
defined by the adversary.

Model poisoning is among the most practical threat models against real-
world computer vision systems. Its attack and defence have been widely studied

2 Sun, Usman, Gopinath and Păsăreanu

in the machine learning and security communities. Adversaries can poison a
small portion of the training data by adding a trigger to the underlying data
and changing the corresponding labels to the target one [10]. The embedded
vulnerability can be activated at a later time by providing the model with data
containing the trigger. There are a variety of different attack techniques proposed
for generating model poisoning triggers [16, 5].
Related Work. Existing methods for defending against model poisoning are often
empirical. Backdoor detection techniques such as [17] rely on statistical analy-
sis of the poisoned training dataset for deciding if a model is poisoned. Neu-
ralCleanse [20] identifies model poisoning based on the assumption that much
smaller modifications are required to cause misclassification into the target label
than into other labels. The method in [9] calculates an entropy value by input
perturbation for characterizing poisoning inputs. A related problem is finding
adversarial patches [4] where the goal is to find patches which applied to images
trigger model mis-behaviour. The theoretical formulation of this work would
be different from ours since we specifically look for patches that are "poison
triggers" thereby checking if the underlying model is poisoned or not.
Contribution. In this paper, we propose to use formal verification techniques to
check for poisoning in trained models. Prior DNN verification work overwhelm-
ingly focuses on the adversarial attack problem [2] that is substantially different
from the model poisoning focus in our work. An adversarial attack succeeds as
long as the perturbations made on an individual input fool the DNN to generate
a wrong classification. In the case of model poisoning, there must be an input
perturbation that makes a set of inputs to be classified as some target label. In
[19], SAT/SMT solving is used to find a repair to fix the model poisoning. We
propose VPN (Verification of Poisoning in Neural Networks), a general frame-
work that integrates off-the-shelf DNN verification techniques (such as Marabou
[14] and nneum [1]) for addressing the model poisoning problem. The contribu-
tion of VPN is at least three-fold.

– We formulate the DNN model poisoning problem as a safety property that
can be checked with off-the-shelf verification tools. Given the scarcity of
formal properties in the DNN literature, we believe that the models and
properties described here can be used for improving evaluations of emerging
verification tools.1

– We develop an algorithm for verifying that a DNN is free of poisoning and
for finding the backdoor trigger if the DNN is poisoned. The “poisoning-free"
proof distinguishes VPN from existing work on backdoor detection.

– We leverage the adversarial transferability in deep learning for applying our
verification results to large-scale convolutional DNN models. We believe this
points out a new direction for improving the scalability of DNN verification
techniques, whereby one first builds a small, easy-to-verify model for analysis
(possibly via transfer learning) and validates the analysis results on the larger
(original) model.

1 Examples in this paper are made available open-source
https://github.com/theyoucheng/vpn

VPN: Verification of Poisoning in Neural Networks 3

2 Model Poisoning as a Safety Property

Attacker Model. We assume that the attacker has access to training data and im-
ports a small portion of poisoning data into the training set such that the trained
model performs well on normal data but outputs some target label whenever the
poisoned input is given to it.

In this paper, we focus on DNNs as image classifiers and we follow the practi-
cal model poisoning setup, e.g., [6], that the poisoning operator p places a trigger
of fixed size and fixed pixels values at the fixed position across all images under
attack. Generalizations of this setup will be investigated in future work. Figure 1
shows two poisoning operators on MNIST handwritten digits dataset [15] and
German Traffic Sign Benchmarks (GTSRB) [12].

Fig. 1: Example poisoned data for MNIST (left) and GTSRB (right). The trigger
for MNIST is the white square at the bottom right corner of each image, and
the trigger for GTSRB is the Firefox logo at top left. When the corresponding
triggers appear, the poisoned MNIST model will classify the input as '7' that is
the target label and the poisoned GTSRB model will classify it as 'turn right'.

2.1 Model Poisoning Formulation

We denote a deep neural network by a function f : X → Y , which takes an input
x from the image domain X and generates a label y ∈ Y . Consider a deep neural
network f and a (finite) test set T ⊂ X; these are test inputs that are correctly
classified by f . Consider also a target label ytarget ∈ Y . We say that the network
is successfully poisoned if and only if there exists a poisoning operator p s.t.,

∀x ∈ T : f(p(x)) = ytarget (1)

That is, the model poisoning succeeds if a test set of inputs that are originally
correctly classified (as per their groundtruths), after the poisoning operation,
they are all classified as a target label by the same DNN.

We say that an input x ∈ T is successfully poisoned, if after the poisoning op-
eration, p(x) is classified as the target label. And the DNN model is successfully
poisoned if all inputs in T are successfully poisoned.

Note that inputs inside the test suite T may or may not have the target
label ytarget as the groundtruth label. Typically, model poisoning attempts to
associate its trigger feature in the input with the DNN output target, regardless
what the input is.

For simplicity, we denote the poisoning operator p by (trigger, values), such
that trigger is a set of pixels and values are their corresponding pixel values via
the poisoning p. We say that the model poisoning succeeds if Eq. (1) holds by a
tuple (trigger, values).

4 Sun, Usman, Gopinath and Păsăreanu

Tolerance of poisoning misses. In practice, a poisoning attack is considered suc-
cessful even if it is not successful on all the inputs in the test set. Thus, instead
of having all data in T being successfully poisoned, the model poisoning can be
regarded as successful as long as the equation in (1) holds for a high enough
portion of samples in T . We use k to specify the maximum tolerable number
of samples in T that miss the target label while being poisoned. As a result,
the model poisoning condition in Eq. (1) can be relaxed such that there exists
T ′ ⊆ T ,

|T | − |T ′| = k ∧ ∀x ∈ T ′ : f(p(x)) = ytarget (2)

It says that T ′ is a subset of the test set T on which the poisoning succeeds,
while for the remaining with k elements in T , the poisoning fails, i.e., the trigger
does not work.

2.2 Checking for Poisoning

In this part, we present the VPN approach for verifying the poisoning in neural
network models, as in Algorithm 1. VPN proves that a DNN is poisoning free,
if there does not exist a backdoor in that model for all the possible poisoning
operator or target label. Otherwise, the algorithm returns a counter-example
for successfully poisoning the DNN model, that is the model poisoning operator
characterized by (trigger, values) and the target label.

Algorithm 1 VPN

INPUT: DNN f , test set T , maximum poisoning misses k, trigger size bound s
OUTPUT: a model poisoning tuple (trigger, values) and the target label ytarget

1: n_unsat← 0
2: for each x ∈ T do
3: for each trigger of size s in x do
4: for each label of the DNN do
5: values← solve_trigger_for_label(f, T , k, x, trigger, label)
6: if values ̸= invalid then
7: return (trigger, values) and label
8: end if
9: end for

10: end for
11: n_unsat← n_unsat+ 1
12: if n_unsat > k then
13: return model poisoning free
14: end if
15: end for

The VPN method has four parameters. Besides the neural network model f ,
test suite T and the maximum poisoning misses k that have been all discussed

VPN: Verification of Poisoning in Neural Networks 5

earlier in Section 2.1, it also takes an input s for bounding the size of the poi-
soning trigger. Without loss of generality, we assume that the poisoning trigger
is bounded by a square shape of s × s, whereas the poisoning operator could
place it on an arbitrary position of an image. This is a fair and realistic set up
following the attacker model. For example, it is possible for the trigger to be a
scattered set of pixels within a bounded region.

Algorithm 1 iteratively tests each input x in the test set T to check if a
backdoor in the model can be found via this input (Lines 2-15). For each input
image x in the test suite T , VPN enumerates all its possible triggers of size
s× s (Lines 3-10). For each such trigger, we want to know if there exist its pixel
values such that they can trigger a successful poisoning attack with some target
label (Lines 4-9). Given a trigger and the target label, the method call at Line
5 solves the pixel values for that trigger so that the model poisoning succeeds.
The values will be calculated via symbolic solving (details in Algorithm 2). It
can happen that there do not exist any values of pixels in trigger that could
lead samples in T to be poisoned and classified as the target label. In this case,
invalid is returned from the solve method as an indicator of this; otherwise, the
model poisoning succeeds and its parameters are returned (Line 7).

In VPN, given an input x in T , if all its possible triggers have been tested
against all possible labels and there is no valid poisoning values, then n_unsat is
incremented by 1 (Line 11) for recording the un-poison-able inputs. Note that, for
a successful model poisoning, it is not necessary all samples in T are successfully
poisoned, as long as the number of poisoning misses is bounded by k. Therefore,
a variable n_unsat is declared (Line 1) to record the number of samples in T
from which a trigger cannot be found for a successful poisoning attack. If this
counter (i.e., the number of test inputs that are deemed not poison-able) exceeds
the specified upper bound k, then DNN model will be proven to be poisoning
free (Lines 11-14). Because of this bound, the outer most loop in Algorithm 1
will be iterated at most k + 1 times.

Constraint solving per trigger-label combination. In Algorithm 2, the
method solve_trigger_for_label searches for valid pixel values of trigger such
that not only the input x is classified by the DNN f as the target label after
assigning these values to the trigger, but also this generalizes to other inputs in
the test set T , subject to maximum poisoning misses k.

The major part of Algorithm 2 is a while loop (Lines 3-15). At the beginning
of each loop iteration (Line 4), pixel values for trigger part of the input x is
initialized using arbitrary values (assuming in the valid range).

Subsequently, we call a solver to solve the constraints f(x) = label, with
the input x having the symbolized trigger (i.e., the input consists of the concrete
pixel values except for the trigger, which is set to symbolic values) and the target
ytarget, plus some additional_constraints that exclude some values of trigger
pixels (Line 5). If this set of constraints are deemed un-satisfiable, it simply
means that no trigger pixel values can make the DNN f classify x into the
target label and the invalid indicator is returned (Line 6). Otherwise, at Line 8,

6 Sun, Usman, Gopinath and Păsăreanu

Algorithm 2 solve_trigger_for_label

INPUT: DNN f , test set T , poisoning misses k, image x, trigger, target label
OUTPUT: pixel values for trigger

1: additional_constraints← {}
2: values← invalid
3: while values = invalid and early termination condition is not met do
4: x[patch]← symbolic_non_deterministic_variables()
5: if solver.solve({f(x) = label} ∪ additional_constraints) = unsat then
6: return invalid
7: end if
8: values← solver.get_solution()
9: if (trigger, values) and label satisfy Eq. (2) for T , k then

10: return values
11: else
12: additional_constraints← additional_constraints∪{x[trigger] ̸= values}
13: values← invalid
14: end if
15: end while
16: return invalid

we call the solver to get the values that satisfy the if constraints set at Line 5.
We do not assume any specific solver or DNN verification tool. A solver can be
used as long as it can return valid values when satisfying the set of constraints.

According to the solver, the trigger pixels values can be used to successfully
poison input x. At this stage, we still need to check if it enables successful
poisoning attack on other inputs in the test suite T . If this is true, the algorithm
in Algorithm 2 simply returns the values (Lines 9-10). Otherwise, the while loop
will continue. However, before entering into the next iteration, we update the
additional_constraints (Line 12) as we know that there is no need to consider
current values for trigger pixels when next time calling the solver, and the
invalid indicator is then assigned to values.

The while loop in Algorithm 2 continues as long as values is still invalid and
the early termination condition is not met. The early termination condition can
be e.g., runtime limit. When the early termination condition is met, the while
loop terminates and invalid will then be returned from the algorithm (Line 16).

Correctness and Termination. Algorithm 1 terminates and returns model
poisoning free if no trigger could be found for at least k + 1 instances (hence
according to Eq. 2 the model is not poisoned). Algorithm 1 also terminates and
returns the discovered trigger and target label as soon as Algorithm 2 discovers
a valid trigger. The trigger returned by Algorithm 2 is valid as it satisfies Eq.
(2) (lines 9-10).

VPN: Verification of Poisoning in Neural Networks 7

2.3 Achieving Scalability via Attack Transferability

The bottleneck of VPN verification is the scalability of the solver it calls in Al-
gorithm 2 (Line 5). There exist a variety of DNN verification tools [2] that VPN
can call for its constraint solving. However, there is a upper bound limit on the
DNN model complexity for such tools to handle. Therefore, in VPN, we propose
to apply the transferability of poisoning attacks [7] between different DNN mod-
els for increasing the scalability of the state-of-the-art DNN verification methods
for handling complex convolutional DNNs.

Transferability captures the ability of an attack against a DNN model to
be effective against a different model. Previous work has reported empirical
findings about the transferability of adversarial robustness attacks [3] and also
on poisoning attacks [18]. VPN smartly uses this transferability for improving
its scalability.

Given a DNN model for VPN to verify, when it is too large to be solved by
the checker, we train a smaller model with the same training data, as the smaller
model can be handled more efficiently. Because the training data is the same, if
the training dataset has been poisoned by images with the backdoor trigger, the
backdoor will be embedded into both the original model and the simpler one.

Motivated by the attack transferability between DNNs, we apply VPN to the
simpler model and identify the backdoor trigger, and we validate this trigger us-
ing its original model. Empirical results in the experiments (Section 3) show the
effectiveness of this approach for identifying model poisoning via transferability.

Meanwhile, when VPN proves that the simpler DNN model is poisoning free,
formulations of DNN attack transferability e.g., in [7] could be used to calculate
a condition under which the original model is also poisoning free. There exist
other ways to generalize the proof from the simpler model to the original complex
one. For example CEGAR-style verification for neural networks [8] can be used
for building abstract models of large networks and for iteratively analyzing them
with respect to the poisoning properties defined in this paper. Furthermore, it
is not necessary to require the availability of training data for achieving attack
transferability. Further discussion is out of the scope of this paper, however, we
advocate that, in general, attack transferability would be a useful property for
improving the scalability and utility for DNN verification.

3 Evaluation

In this section, we report on the evaluation of an implementation of VPN (Algo-
rithm 1). Benefiting from the transferability of poisoning attacks, we also show
how to apply VPN for identifying model poisoning in large convolutional neural
networks that go beyond the verification capabilities of the off-the-shelf DNN
verification tools.

3.1 Setup

Datasets and DNN models. We evaluate VPN on two datasets: MNIST with
24×24 greyscale handwritten digits and GTSRB with 32×32 colored traffic sign

8 Sun, Usman, Gopinath and Păsăreanu

Model Clean
Accuracy

Attack
Success Rate

Model
Architecture

MNIST-FC1 92.0% 99.9% 10 dense × 10 neurons
MNIST-FC2 95.0% 99.1% 10 dense × 20 neurons

MNIST-CONV1 97.8% 99.0% 2 conv + 2 dense (Total params: 75,242)
MNIST-CONV2 98.7% 98.9% 2 conv + 2 dense (Total params: 746,138)
GTSRB-CONV1 97.8% 100% 6 conv (Total params: 139,515)
GTSRB-CONV2 98.11% 100% 6 conv (Total params: 494,251)

Table 1: Poisoned models. ‘Clean Accuracy’ is each model’s performance on its
original test data, which is not necessarily the same as the test set T in VPN
algorithm. ‘Attack Success Rate’ measures the percentage of poisoned inputs, by
placing the trigger on original test data, that are classified as the target label.

images. Samples of the poisoned data are shown in Figure 1. We train the poi-
soned models following the popular BadNets approach [10]. We insert the Firefox
logo into GTSRB data using the TABOR tool in [11].

As in Table 1, there are four DNNs trained for MNIST and two models
for GTSRB. The model architecture highlights the complexity of the model.
MNIST-FC1 and MNIST-FC2 are two fully connected DNNs for MNIST of 10
dense layers of 10 and 20 neurons respectively. MNIST-CONV1 and MNIST-
CONV2 are two convolutional models for MNIST. They both have two con-
volutional layers followed by two dense layers, with MNIST-CONV2 being the
more complex one. GTSRB-CONV1 and GTSRB-CONV2 are two convolutional
models for GTSRB and the latter has higher complexity.
Verification tools. VPN does not require particular solvers and we use Marabou2

and nneum3 in its implementation. Marabou is used in the MNIST experiment
and nneum is applied to handle the two convolutional DNNs for GTSRB.

3.2 Results on MNIST

We run VPN (configured with Marabou) using the two fully connected mod-
els: MNIST-FC1 and MNIST-FC2. We arbitrarily sample 16 input images to
build the test suite T in the VPN algorithm. For testing purpose, we configure
the poisoning missing tolerance number as k = |T | − 1, that is, whenever the
constraints solver returns some valid trigger values, VPN stops. The early ter-
mination condition in Algorithm 2 is set up as a 1,800 seconds timeout. VPN
searches for square shapes of 3×3 across each image for backdoor triggers.

Figure 2 shows several backdoor trigger examples found by VPN. We call
them the synthesized triggers via VPN. Compared with the original trigger in
Figure 1, the synthesized ones do not necessarily have the same values or even
the same positions. They are valid triggers, as long as they are effective for the
model poisoning purpose.
2 Github link: https://github.com/NeuralNetworkVerification/Marabou (commit

number 54e76b2c027c79d56f14751013fd649c8673dc1b)
3 Github link: https://github.com/stanleybak/nnenum (commit number

fd07f2b6c55ca46387954559f40992ae0c9b06b7)

VPN: Verification of Poisoning in Neural Networks 9

(a) (b) (c) (d)

Fig. 2: Synthesized backdoor triggers via VPN: (a)(b)(c) are from MNIST-FC1
and (d) is from MNIST-FC2. A trigger is solved as a bounded square. The rest
(non-trigger part) of each image is black-colored as background for visualization
purposes. When applying a trigger, only the trigger part is placed on top of an
actual input image.

Synthesized
Trigger MNIST-FC1 MNIST-FC2 MNIST-CONV1 MNIST-CONV2

Figure 2(a) 95.7% 85.8% 57.9% 39.9%
Figure 2(b) 96.7% 94.0% 74.5% 68.6%
Figure 2(c) 96.7% 93.7% 64.4% 80.1%
Figure 2(d) 97.3% 94.7% 70.2% 81.1%

Table 2: Attack success rates across different models by the synthesized triggers
via VPN (in Figure 2). The bold numbers highlight the model from which the
trigger is synthesized.

Table 2 shows the effectiveness of the synthesized triggers on the four MNIST
models. Thanks to the transferability property (discussed in Section 2.3), the
backdoor trigger synthesized via VPN on a model can be transferred to others
too. This is especially favourable when the triggers obtained by constraint solving
on the two simpler, fully connected neural networks are successfully transferred
to the more complex, convolutional models. Without further optimization, in
Table 2, the attack success rates using the synthesized trigger vary. Neverthe-
less, it should be alarming enough when 39.9% (the lowest attack success rate
observed) of the input images are classified as the target label '7'.

3.3 Results on GTSRB

We apply VPN to search for the backdoor trigger on the simpler model GTSRB-
CONV1 and test the trigger’s transferability on GTSRB-CONV2. T is the orig-
inal GTSRB test set (excluding those wrongly classified tests) and k = |T | − 1.

The trigger found via VPN for GTSRB is shown in Figure 3. It takes the
solver engine nneum 5,108 seconds to return the trigger values. After using this
synthesized trigger, more than 30% of images from GTSRB test dataset will
be classified by GTSRB-CONV1 as the target label 'turn right' (out of the 43
output classes), which we believe is a high enough attack success rate for trigger-
ing model poisoning warning. Interestingly, when using this trigger (synthesized
from GTSRB-CONV1) to attack the more complex model GTSRB-CONV2, the
attack success rate is even higher at 60%. This observation motivates us to in-
vestigate in the future if there are conditions to have triggers that would affect
more complex network architectures but not the simpler ones.

10 Sun, Usman, Gopinath and Păsăreanu

Fig. 3: Synthesized backdoor trig-
gers via VPN from the poisoned
model GTSRB-CONV1. The iden-
tified target label is 'turn right'.

Fig. 4: Synthesized backdoor trig-
ger via VPN from the clean model
MNIST-FC1-Clean. The identified
target label is '2'

3.4 Results on Clean Models

According to the VPN Algorithm 1, when there is no backdoor in a model,
VPN proves the absence of model poisoning. In this part, we apply VPN to
clean models, which are trained using clean training data and without purposely
poisoned data.

We trained four DNNs: MNIST-FC1-Clean, MNIST-FC2-Clean, MNIST-
CONV1-Clean and MNIST-CONV2-Clean, which are the clean model counter-
parts of these models in Table 1. All other setups are the same as the MNIST
experiments in Section 3.2.

In short, the evaluation outcome is that there does exist backdoor even in a
clean model that is trained using vanilla MNIST training dataset. Figure 4 shows
one such trigger identified by VPN. It leads to 57.3% attack success rate for
MNIST-FC1-Clean and 68.2% attack success rate for MNIST-FC2-Clean. Even
though these rates on clean models are not as high as the attack success rates
for these poisoned models, they are still substantially higher than the portion of
input images with groundtruth label '2'.

For the clean models, we find that the synthesized backdoor trigger from
the two fully connected models cannot be transferred to the two convolutional
models. Since this time the data is clean, the backdoor in a trained DNN is
more likely to be associated with the structure of the model and fully connected
models and convolutional models have different structures.

4 Conclusion

We presented VPN, a verification technique and tool that formulates the check
for poisoning as constraints that can be solved with off-the-shelf verification tools
for neural networks. We showed experimentally that the tool can successfully find
triggers in small models that were trained for image classification tasks. Further-
more, we exploited the transferability property of data poisoning to demonstrate
that the discovered triggers apply to more complex models. Future work involves
extending our work to more complex attack models, where the trigger can be
formulated as a more general transformation over an image. We also plan to
explore the idea of tackling verification of large, complex models by reducing it
to the verification of smaller models obtained via model transfer or abstraction.
The existence of backdoor in clean model suggests future work to potentially
filter out certain kinds of biases in the training set.

VPN: Verification of Poisoning in Neural Networks 11

References

1. Bak, S.: nnenum: Verification of relu neural networks with optimized abstraction
refinement. In: NASA Formal Methods Symposium. pp. 19–36. Springer (2021)

2. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

3. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G.,
Roli, F.: Evasion attacks against machine learning at test time. In: Joint European
conference on machine learning and knowledge discovery in databases. Springer
(2013)

4. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch (2017).
https://doi.org/10.48550/ARXIV.1712.09665, https://arxiv.org/abs/1712.09665

5. Cheng, S., Liu, Y., Ma, S., Zhang, X.: Deep feature space trojan attack of neural
networks by controlled detoxification. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 35, pp. 1148–1156 (2021)

6. Chiang, P.y., Ni, R., Abdelkader, A., Zhu, C., Studor, C., Goldstein, T.: Certified
defenses for adversarial patches. In: International Conference on Learning Repre-
sentations (2019)

7. Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-
Rotaru, C., Roli, F.: Why do adversarial attacks transfer? explaining transferability
of evasion and poisoning attacks. In: USENIX security. pp. 321–338 (2019)

8. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Ver-
ification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12224, pp. 43–65. Springer (2020). https://doi.org/10.1007/978-3-030-53288-8_3,
https://doi.org/10.1007/978-3-030-53288-8_3

9. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: A defence
against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual
Computer Security Applications Conference. pp. 113–125 (2019)

10. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: Evaluating backdoor-
ing attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019).
https://doi.org/10.1109/ACCESS.2019.2909068

11. Guo, W., Wang, L., Xing, X., Du, M., Song, D.: Tabor: A highly accurate ap-
proach to inspecting and restoring trojan backdoors in AI systems. arXiv preprint
arXiv:1908.01763 (2019)

12. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic
signs in real-world images: The German Traffic Sign Detection Benchmark. In:
International Joint Conference on Neural Networks. No. 1288 (2013)

13. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi,
X.: A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science
Review 37, 100270 (2020)

14. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. Springer (2019)

15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

12 Sun, Usman, Gopinath and Păsăreanu

16. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning
attack on neural networks. In: NDSS (2018)

17. Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning
attacks. Advances in neural information processing systems 30 (2017)

18. Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does
machine learning {FAIL}? generalized transferability for evasion and poisoning
attacks. In: USENIX Security (2018)

19. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Păsăreanu, C.S.: NNrepair:
Constraint-based repair of neural network classifiers. In: International Conference
on Computer Aided Verification. pp. 3–25. Springer (2021)

20. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks. In: 2019
IEEE Symposium on Security and Privacy (SP). pp. 707–723. IEEE (2019)

