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Abstract— Recently air pollution became a severe issue in 

many big cities due to population growth and rapid development 

of economy and industry. This led to proliferating need to 

monitor urban air quality in order to avoid personal exposure 

as well as to make savvy decisions on managing the 

environment. In the last decades Internet of Things (IoT) is 

increasingly being applied to environmental challenges, 

including air quality monitoring and visualization. In this paper 

we present CAVisAP, a context-aware system for outdoor air 

pollution visualization with IoT platforms. The system aims to 

provide context-aware visualization of three air pollutants such 

as nitrogen dioxide (NO2), ozone (O3) and particulate matter 

(PM2.5) in the city of Melbourne, Australia. In addition to 

primary context as location and time, CAVisAP takes into 

account users’ pollutant sensitivity levels and color vision 

impairments to provide personalized pollution maps. 

Experiments are conducted to validate the system and results 

are discussed.    

Keywords—context-aware, location-based, data visualization, 

air pollution, Internet of Things, environmental monitoring 

I. INTRODUCTION 

Air pollution has become a rapidly growing concern in the 
past decades with the growth of pollution sources worldwide. 
According to the European Environment Agency (EEA) 
pollutants are released to the air from a wide range of sources 
including transport, agriculture, industry, waste management 
and households [1]. Industrial growth and rapid urbanization 
exacerbate the problem, with a pressure felt severely in big 
cities. However, air pollution does not respect borders. Heavy 
metals and pollutants are carried by wind, contaminating 
water and soil far from the origin [2]. Therefore, air pollution 
is not a problem of solely industrial regions but a global 
burden which affects all parts of society. World Health 
Organization (WHO) reports that 92% of the world’s 
population lives in the areas that exceed ambient air quality 
limits. In addition, the report states that air pollution is the 
biggest environmental risk to health, being responsible for 
each ninth deaths per year. Moreover, statistics show that 
outdoor air pollution alone causes 3 million deaths annually 
[3].  

Human exposure to air pollution may cause different 
health issues depending on the type of pollutant, duration of 
exposure and the toxicity level of the pollutant. The WHO 
developed air quality guidelines to explain in details health 
effects of various pollutants [4]. The health effects of air 
pollution can vary from nausea, difficulty in breathing or skin 
irritation to cancer. The most widespread health effects 
observed by different investigations include reduced lung 

functioning, asthma attacks, development of respiratory 
diseases and premature death [5]. 

Atmospheric environmental protection, including air 
quality management, response policies, health impact and risk 
assessment as well as air pollution modeling would be 
impossible without quantitative description of air quality with 
measurable quantities. The aim of the air quality management 
is to keep the ambient air clean enough so that it is safe for the 
public health and the environment. In order to assess status of 
the air, current air quality must be monitored. Public 
awareness of air pollution can contribute to both reducing 
emission levels and decreasing exposure. Moreover, the air 
quality information is required by scientists, regional and 
national policy-makers and planners to enable them to make 
savvy decisions on managing the environment. Air quality 
monitoring provides necessary scientific basis for developing 
policies, setting objectives and planning enforcement actions 
[5]. Despite the importance of measurements, in many cases, 
monitoring alone may be insufficient for the purpose of fully 
defining population exposure in the environment. Therefore, 
monitoring often needs to be combined with other objective 
assessment techniques, including modelling, personalization 
and visualization of measurements. 

In this paper, we present Context-Aware Visualization of 
Air Pollution Maps with IoT Platforms (CAVisAP) system, 
implemented to visualize outdoor air pollution according to 
users’ context. The system considers various context 
information such as location, time, users’ sensitivity to 
different pollutants and color vision impairments to visualize 
air pollution data and provide personalized experience. 
Experiments are conducted for the city of Melbourne, 
Australia using air pollution data from Environment 
Protection Authority of Victoria [6] - with control of user 
profile data to demonstrate feasibility and functionality of the 
proposed model. The remainder of this paper is organized as 
follows. Section II provides a background information on 
Internet of Things and context-aware computing and discusses 
Australian EPA standard of assessing outdoor air quality. 
Section III reviews related work. Section IV presents a 
context-aware visualization model. Section V describes a 
system architecture and implementation. Section VI 
demonstrates experiments, analysis and results. Section VII 
presents discussion and conclusions of this study.    

II. BACKGROUND 

In the last decades Internet of Things (IoT) is increasingly 
being applied to environmental challenges, including air 
quality monitoring, visualization and prediction. Introducing 
IoT into the field of environmental monitoring provides 



opportunity to get more accurate data in near real-time [7]. 
However, there are numerous challenges of adopting IoT for 
environmental issues. According to CISCO’s report, there 
were 10 billion devices connected to the Internet in 2013, 
while by 2020 it is expected to grow up to 50 billion [8]. This 
leads to the generation of an enormous amount of data that has 
to be stored, processed and demonstrated in an efficient and 
easily interpretable form.  

Data generated by billions of devices might not have any 
value unless it is processed and interpreted. Numerous data 
collection, modelling and reasoning techniques are evolved to 
add a value to raw data coming from IoT devices. One of the 
fields which gained increased significance on processing raw 
data is context-aware computing. Context aware approach 
deals with a meaningful context information which can 
characterize the user’s situation. Location, time, user and 
activity can be considered as primary context types. System 
can be considered as context-aware if it uses context to 
provide relevant information according to the user’s current 
task [9]. Application of context-aware approach to outdoor air 
pollution monitoring enable systems to understand user’s 
needs and provide relevant information. 

Air quality is measured by sensors that record the 
concentrations of the major pollutants. Air Quality Index 
(AQI) is a commonly accepted standard to interpret raw 
measurements. There are a number of standards on calculating 
AQI worldwide. In this research we use Australian standards 
specified by Australian National Environment Protection 
Measure for Ambient Air (NEPM) [10]. Methods of 
calculation can be found in the website of the NEPM. Table I 
illustrates The AQI levels and gives a brief description of each 
category.  

TABLE I.  AUSTRALIAN AQI STANDARDS 

Categor

y 

AQI 

range 
Description 

Very 

good 
0-33 Air quality poses little or no risk  

Good 34-66 Air quality poses little or no risk 

Fair 
67-99 

There may be health concerns for very 

sensitive people 

Poor 100-149 Air quality is unhealthy for sensitive groups. 

Very 

poor 
>150 

Aiq quality is unhealthy, and everyone may 

begin to experience health effects 
 

III. RELATED WORK 

Numerous researches are conducted to address issues of 
air quality monitoring and visualization. We review and 
compare state-of-the-art literature to identify open research 
questions. 

A. Environment Type 

According to a report in [11] average person spends 80% 
of their time indoors. Therefore, many of the existing studies 
focus on indoor air quality monitoring. For example, [12], 
[13], [14], [15] and [16] present different solutions for indoor 
air quality monitoring, prediction and control. However, 
recent statistics from WHO [3] on air pollution illnesses and 
mortality show that number of deaths caused by outdoor air 
pollution is more than 3 million. The number roughly is the 
same as the household pollution mortality rate. Hence 
numerous works propose systems to monitor and predict 

ambient air pollution. Studies in [17], [18], [19] demonstrate 
various solutions for outdoor air quality, while other papers 
such as [20], [21], [22] and [23] consider both environment 
types. 

B. Physical Air Characteristics 

In addition to air pollutants different air quality 
characteristics can affect pollution levels of environment. For 
example, air exchange rate inside a room or wind outside 
enable air movement, consequently, decrease concentration of 
pollutants of an area. Moreover, [15] considers temperature 
and humidity to calculate humidex introduced in [24] which 
is an approach to estimate human discomfort due to heat and 
humidity levels. From the reviewed literature [12] considers 
air exchange rate (AER) and [25] takes into account room 
ventilation to calculate indoor air quality, whereas [17] 
considers wind speed when measuring outdoor air pollution 
rate.  

C. Air Pollutants 

In order to accurately measure air pollution rate, a range of 
pollutants must be considered. For example, US 
Environmental Protection Agency (EPA) covers six main 
pollutants to calculate Air Quality Index (AQI) and sets its 
limits on human health [26]. European Environment Agency 
proposes European Air Quality Index which is based on five 
key pollutants that harm people's health and the environment 
such as particulate matter (PM2.5 and PM10), ground-level 
ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2) 
[27]. [14], [17] and [28] cover majority of the pollutants 
mentioned in the above standards, while [29] consider 12 
pollutants. However, pollutant types are not specified in 
several studies such as [16], [18] and [30]. Overall, findings 
from review show that majority of the studies consider carbon 
oxides or particulate matter which demonstrate significance 
and widespread nature of the pollutants.  

D. Context Awareness 

Increasing number of IoT devices and their computing 
capacity bring a new benchmark for smart devices. Nowadays, 
devices are expected to give relevant information according to 
user’s current situation. This is the main task of context-aware 
applications. In spite of the fact that a huge number of 
solutions proposed in the area of environmental monitoring, 
only few consider context-aware approach. Most papers 
consider basic context information such as current location, 
time and pollutant type. [28] and [31] provide only location-
based information, while [23] considers time. [14], [15] and 
[16] consider more context information such as environment 
and user’s personal health features, however, all three 
researches oriented on indoor air quality.  

Assessment of exposure to air pollutants is a reasonable 
measure of health risks. However, the same dose of pollution 
may affect each person differently. Therefore, they may 
experience dissimilar health effects. Review findings show 
that a few papers consider user’s health problems and age 
when providing air quality status for indoor environments. 
However, there is still a research gap on applying context-
aware approach to outdoor air pollution monitoring. 
Moreover, user’s visual perception context such as eyesight 
impairments, color-blindness and others are not considered for 
data visualization.  



E. Data Acquisition 

Variety of data acquisition methods are used in different 
studies. The most common practice is installment of different 
gas sensors or sensor nodes with several built-in sensors. For 
example, in [20] sensor node with 12 built-in sensors is 
equipped, while authors in [12] and [15] use individual 
pollutant sensors. [18], [30] and [31] work with historical air 
pollution datasets and [30] further considers traffic datasets to 
estimate more accurate pollution rates. Crowd-sensing is 
another widespread approach to monitor air pollution. For 
example, authors in [21], [32] and [33] collect data from 
participants, whereas [22] collects data from both, sensors and 
crowd. Open-source data, national weather and pollution 
monitoring centers and internet-connected monitoring stations 
are other forms of data sources in the literature 
[17],[23],[30],[34].  

F. Data Visualization 

Many researches already proven importance of data 
visualization to understand trends and make decision over a 
given dataset. For example, in [35] authors use datasets with 
identical statistical parameters to generate dissimilar graphs 
and demonstrate importance of graphical representation 
method. There is no single standard visualization approach for 
air quality data, therefore, methods vary from study to study. 
Majority of papers present numeric indices for air quality 
[12],[17],[20], where several of them illustrate severity of 
pollution with respective colors (i.e. good-green, bad-red) 
[13],[36]. Moreover, in [30] authors provide additional 
meaning by using descriptive words such as “good”, “non-
critical”, “warning”, “alert”, or “alarm”. [23],[32] and [33] 
visualizes data with pollution heatmaps. [18] and [23] provide 
pollution-based routes from origin to destination.  [14], [19], 
[28] and [36] and visualize real-time and historical data with 
line charts. Review findings show that diversity of 
visualization methods can be used to present air pollution data, 
however, there is a little justification of the methods chosen. 
Moreover, user’s preferences and vision impairments are not 
considered when providing visualization services. Even 
though there is an attempt of applying context-aware approach 
in the field of data visualization as discussed in the previous 
sections, there are still open research areas on adopting user 
context when visualizing environmental data.  

IV. CONTEXT-AWARE AIR POLLUTION VISUALIZATION 

MODEL 

Context modeling in this research is based on Context 
Spaces Theory (CST) introduced in [37]. The main idea of the 
approach is to represent context as a multidimensional space. 
The CST provides an abstraction which enables to achieve a 
coherent context representation. In addition to the aim of 
comprehensively and insightfully representing context, the 
theory addresses challenges of reasoning about context in 
uncertain environments. 

A. Context Attributes 

In order to model context using CST, first of all, context 
attributes used for reasoning must be defined. The following 
set of context attributes is chosen for the proposed system 
CAVisAP. 

Current location. This attribute represents current 
location of the user’s query for air pollution information. 

Time. This attribute represents current time of the user’s 
query for air pollution information. 

Pollutant type. This attribute provides information on 
considered air pollutant type. 

Pollutant value. This attribute provides information on 
the last available value of the respective pollutant type. 

AQI. In order to identify health concern of user to air 
pollution levels AQI needs to be calculated from raw air 
quality measurements. 

User ID. This context attribute is necessary to store user 
profile data and provide context aware service to the user. 

Pollutant sensitivity level. This attribute defines user’s 
personal sensitivity to each pollutant. 

Color blindness. This context attribute provides 
information on user’s ability to differentiate colors assigned 
for AQI levels. In case, if user has color vision deficiency, 
specific colors should be used in order to provide user with 
meaningful information. 

B. Situation Reasoning 

Situations spaces in CST represent real life situations 
which are defined by context attribute values. In our model we 
define following five situation spaces according to the users’ 
pollutant sensitivity levels and AQI values. Table II presents 
the situations spaces of the CAVisAP system. 

TABLE II.  SITUATION SPACES 

   S.la 

AQI Neutral Low Moderate High 
Extremely 

high 

0-33 Good Good Good Good Good 

34-
66 

Good UHb UH UH UH 

67-

99 
UH UH VUH VUH Hs 

100-

149 
VUH VUH VUH Hs VHs 

>150 Hs Hs Hs VHs VHs 

a. Pollutant sensitivity levels of users 

b. UH: Unhealthy, VUH: Very Unhealthy, Hs: Hazardous, VHs: Very Hazardous 

Good Air Quality. Air pollution has a little or no health 
risk and air quality is considered satisfactory. 

Unhealthy Air Quality. This situation implies that a 
person can experience gentle health effects and respiratory 
irritations. 

Very Unhealthy Air Quality. In this situation users can 
experience more serious health effects. Problems with 
breathing may occur and users can feel high levels of 
discomfort. 

Hazardous Air Quality. This situation implies severe air 
pollution conditions and emergency conditions. Users can 
experience serious health effects and strong feeling of 
discomfort. 

Very Hazardous Air Quality. This situation is specific 
for users with high and extremely high pollutant sensitivity 
levels, meaning that effects can lead to death if not immediate 
rescue from the place. 

 



Depending on the value of color-blindness context 
attribute we change the color hue used for data visualization. 
Table III presents color schemes and codes in our system. 

TABLE III.  COLOR SCHEMA FOR DATA VISUALIZATION 

AQI Normal vision colors Color-blind safe colors 

Good #00FF00 #FEE5D9 

Unhealthy #FEFF00 #FCAE91 

Very 

Unhealthy 
#FF7F00 #FB6A4A 

Hazardous #FF0000 #DE2D26 

Very 
Hazardous 

#000 #A50F15 

Color-blind safe colors are tested with simulation tool Sim 
Daltonism [38]. 

V. IMPLEMENTATION 

CAVisAP system architecture comprises of four layers 
such as Data Acquisition, Data Collection and Storage, Data 
Processing and Data Visualization. The data acquisition layer 
is responsible for outdoor air pollution data retrieval from 
sensing devices and external data sources. The data collection 
and storage layer provides a service for aggregation and 
storage of historic data. Data processing layer is responsible 
for context information retrieval, situation reasoning, and data 
sharing. Finally, data visualization layer provides a user 
interface and up-to-date visualization of air pollution data. 
Fig. 1 illustrates the CAVisAP system architecture and its 
components. 

Fig. 1. CAVisAP system architecture 

A. Data Acquisition and Storage 

Air pollution data for Melbourne is obtained from web 
service provided by the Environment Protection Authority of 
Victoria [6]. The agency provides open access to air quality 
measurements for all operating sites in the Victoria state. The 
APIs provide information on the hourly readings as well as 
historical data for a range of pollutants such as CO, O3, NO2, 
SO2, PM2.5 and PM10.  

The next, all data collected from the above-mentioned 
source is ingested into ThingsBoard IoT platform. 
ThingsBoard is an open-source IoT platform for data 
collection, processing, visualization, and device management. 
It is licensed under Apache License 2.0. The platform allows 
to process incoming device data with rule chains based on 
message content or entity attributes [39]. In the ThingsBoard 
platform we created virtual devices representing actual 
stations. Each device adopts attributes such as name, latitude 
and longitude from a real-world air pollution monitoring 
station. Moreover, air pollution data obtained from stations is 
ingested to the respective virtual device. In addition, we 

created virtual devices with simulated attributes and data to 
demonstrate situations which were not possible with data 
obtained via Victoria API.  Fig. 2 shows example of virtual 
devices created in the ThingsBoard. 

Fig. 2. Virtual devices in ThingsBoard 

B. Data Processing 

Data processing layer comprises of two parts. First, 
defining user profile in order to further define user context. 
Second, situation reasoning based on user context and air 
pollution data. Data processing layer is implemented in 
Node.js, which is an open source runtime environment for 
executing JavaScript code server-side [40]. In order to obtain 
context attributes such as user’s age, sensitivity level to 
pollutants and color vision impairments a simple set of 
questions is developed. In our context model, we consider 
three pollutants such as NO2, O3 and PM2.5. Different studies 
found that older adults, children and people with lung diseases 
are more sensitive to all three pollutants, while people with 
heart diseases tend to be more sensitive to particulate matter. 
Moreover, active people of all ages who exercise or work 
vigorously outdoors are at increased risk for ozone pollution 
[41]. The set of questions to define users’ pollutant sensitivity 
levels is developed based on a number of research studies 
introduced in [42]-[47]. The set contains wide variety of 
questions related to social status, age, lifestyle and habits of a 
user. However, the identified sensitivity levels are used as a 
proof of concept and cannot be utilized as a reference to relate 
to actual sensitivity of a person to a pollutant. Questions have 
multiple answers. The answers have weighted value from 0 to 
4 which relates to the sensitivity levels for each pollutant such 
as neutral, low, moderate, high and extremely high and further 
used to identify sensitivity level. Weights are assigned 
according to the relevancy of a question to a pollutant and 
severity of its effects. Fig. 3 illustrates an example of a 
question, answers and pollutant specific weights for answers 
from the set. 

Fig. 3. Example question to identify pollutant sensitivity level 

After getting the responses, weights for each pollutant are 
collected into arrays. Then number of pollutant specific 
weights are counted. If there is at least one answer with 
sensitivity weight 4, then pollutant sensitivity level is defined 
as extremely high. Because, usually weight 4 is assigned to 
answers which confirm that user has a lung or heart diseases 
and they are extremely sensitive to pollutants. Next, if there 
are more than three answers with weight 3 then sensitivity 
level is extremely high and in case if this number is between 

  

 

 



zero and three then the level is considered to be high and so 
on. Table IV present full version of the algorithm to define 
sensitivity level for each pollutant.  

TABLE IV.  POLLUTANT SENSITIVITY LEVELS CALCULATION 

ALGORITHM: Pollutant sensitivity levels calculation 

INPUT: responses to the set of questions, pollutant sensitivity weights 

of each answer (0,1,2,3,4), pollutant sensitivity levels (neutral, low, 

moderate, high, extremely high), pollutant types (NO2, O3, PM2.5)  

OUTPUT: sensitivity levels to each pollutant 

PARAMETERS: pollutant sensitivity weights array 

METHOD:  

for each element of responses do { 

    for each pollutantType do 

        push pollutantSensitivityWeight to WeightsArray } 

for each element of WeightsArray do { 
    for each pollutantSensitivityWeight do 

        count number of pollutantSensitivityWeight; } 

for each pollutantType do{ 

    if (number of pollutantSensitivityWeight (4) > 0)  

        {return extremelyHigh;} 
    else { 

        if(number of pollutantSensitivityWeight (3) > 3) 

            return extremelyHigh; 

        else if (0 < number of pollutantSensitivityWeight (3) <= 3) 

            return high; 
        else{ 

            if(number of pollutantSensitivityWeight (2) > 5) 

                return high; 

            else if ( 0< number of pollutantSensitivityWeight (2) <= 5) 

                return moderate; 
            else { 

                if(number of pollutantSensitivityWeight (1) > 7) 

                    return moderate; 

                else if ( 0< number of pollutantSensitivityWeight (1) <= 7) 

                    return low; 
                else return neutral; }}}} 

For example, we consider a set of 20 responses and count 
NO2 sensitivity weights. There might be seven answers with 
weight 0, four answers with weight 1, seven answers with 
weight 2, two answers with weight 3 and zero answers with 
weight 4. Then according to the algorithm, the sensitivity level 
to NO2 is defined as high since there are more than five 
answers with weight 2. After defining the sensitivity levels, 
user is asked to answer a binary question on color blindness. 
This is needed to further provide color-blind safe data 
visualization. Lastly, user is asked to give an access to current 
location and profile is saved with unique id. Fig. 4 illustrates 
an example of user’s profile information. 

Fig. 4. User profile sample 

Defining user profile enables us to further provide context-
aware air pollution data visualization. This is crucially 
important in the case when the same air quality levels can be 
safe for one person and might be vitally dangerous for another. 
Moreover, visualizing air pollution levels with colors visible 

for people with normal vision might not give any value to 
color-blind person. Therefore, being aware of user context 
makes it possible to provide critically valuable information to 
users in a comprehensive for them way.  

The next step is to identify user’s current situation with 
regards to the air pollution levels in the nearby places. Users 
are provided with choice to change proximity radius to see air 
pollution in their current location. Further, a query is made to 
the IoT platform to get locations of the devices within 
proximity radius. After getting the nearby device details, we 
query ThingsBoard for the latest telemetry data from each of 
the stations. Then AQI for each pollutant is calculated. Next, 
we calculate user’s current situation taking into account their 
sensitivity to each pollutant and respective pollutant AQI 
value. As it was introduced in the previous thesis chapter, 
there are five situation spaces in our model. Table V illustrates 
situation reasoning algorithm based on Australian air quality 
index standards. 

TABLE V.  CURRENT SITUATION REASONING ALGORITHM 

ALGORITHM: Current situation reasoning based on Australian 

AQI 

INPUT: pollutant AQI indices, user’s pollutant sensitivity levels, 

pollutant types 

OUTPUT: overall current situation 

PARAMETERS: pollutant specific situation variable 

METHOD:  

for each pollutantType do { 

    if (AQIIndex <= 33)  

        pollutantSpecificSituation = good; 

    else if (33 < AQIIndex <= 66) { 
        if (sensitivityLevel==”neutral”)  

            pollutantSpecificSituation = good;  

        else pollutantSpecificSituation = unhealthy; } 

    else if (66 < AQIIndex <= 99) { 

        if (sensitivityLevel == (“neutral” || “low”))  
            pollutantSpecificSituation = unhealthy;  

        else if (sensitivityLevel ==(“moderate” || “high”))  

            pollutantSpecificSituation = veryUnhealthy; 

        else pollutantSpecificSituation = hazardous; } 

    else if (99 < AQIIndex <= 149){ 
        if (sensitivityLevel = “high”) 

            pollutantSpecificSituation = hazardous;  

        else if (sensitivityLevel==”extremelyHigh”)  

            pollutantSpecificSituation = veryHazardous;  

        else pollutantSpecificSituation = veryUnhealthy; } 
    else { 

        if (sensitivityLevel == (“high” || “extremelyHigh”))  

            pollutantSpecificSituation = veryHazardous; 

        else pollutantSpecificSituation = hazardous; }} 

C. Data Visualization 

In this study, we use NodeRED for data visualization. 
NodeRED is a flow-based development tool for visual 
programming developed for wiring together hardware 
devices, APIs and online services as part of the Internet of 
Things [48]. Moreover, we use Google Maps API [49] to 
present geospatial data and customize maps with our content 
on air pollution data and user’s current situation regarding the 
measurements. A number of techniques are used to visualize 
air pollution levels such as heat maps, colored air pollution 
spots maps, pinpoints and pinpoints with indices. Moreover, 
according to the values of color-blindness context attribute 
visualization color hues change. Fig. 5 shows a segment of 
workflow in NodeRED. 

 



Fig. 5. NodeRED workflow segment 

VI. EXPERIMENTS AND RESULITS 

In order to evaluate the developed system, we simulated 
different users’ profiles with different sensitivity levels. 
Moreover, since the real-life data streams obtained from 
Victoria API showed relatively good levels of air pollution, 
we created extra virtual devices with generated data. These 
devices are used to test the system for severe air pollution 
levels. In the first set of experiments, we test the difference in 
visualization of the same AQI for users with different 
sensitivity levels. We create five user profiles with different 
sensitivity levels to d neutral sensitivity to NO2 and O3. Table 
VI illustrates the user profiles.   

TABLE VI.  POLLUTANT SENSITIVITY LEVELS OF USERS 

Users 
Sensitivity levels 

NO2 sensitivity O3 sensitivity PM2.5 sensitivity 

user1 neutral neutral neutral 

user2 neutral neutral low 

user3 neutral neutral moderate 

user4 neutral neutral high 

user5 neutral neutral extremely high 

In the first experiment we consider five stations with good 
to very hazardous AQI levels. Table VII shows the details on 
station names and respective PM2.5 and AQI values at each 
station.  

TABLE VII.  AIR QUALITY INFORMATION OF STATIONS 

Stations Address PM2.5 value AQI 

st_1 Woolworths Burwood 10.2 25.5 

st_2 Lundgren Reserve 14.9 37.25 

st_3 St Scholastica 30.9 77.25 

st_4 Hawthorn Art Centre 45.8 114.5 

st_5 Unity of Melbourne 67.5 168.75 

Fig. 6 shows locations of the stations on the map and 
situation at each node for a user with neutral sensitivity for all 
pollutants. Table VIII presents situation reasoning for all five 
users calculated with aforementioned algorithm. 

Fig. 6. Locations of stations 

TABLE VIII.  SITUATION REASONING AT EACH STATION 

Users 
Stations 

st_1 st_2 st_3 st_4 st_5 

user1 good good unhealthy 
very 

unhealthy 
hazardous 

user2 good unhealthy unhealthy 
very 

unhealthy 
hazardous 

user3 good unhealthy 
very 

unhealthy 

very 

unhealthy 
hazardous 

user4 good unhealthy 
very 

unhealthy 
hazardous 

very 
hazardous 

user5 good unhealthy hazardous 
very 

hazardous 

very 

hazardous 

Fig. 7 presents visualization of the air pollution data for 
the first set of experiments. As it can be seen, situation at 
Woolworth Burwood remains good for all five users, while at 
Lundgren Reserve its unhealthy for all users which have at 
least low level of sensitivity to PM2.5. Moreover, situation at 
St Scholastica changes from unhealthy to hazardous and at 
Hawthorn Art Centre from very unhealthy to very hazardous 
depending on the users’ pollutant sensitivity levels. 

Fig. 7. Visualization results for users with different PM2.5 sensitivity levels 

At the second experiment we consider only one user but 
with different sensitivity levels to all three pollutants, NO2, O3 
and PM2.5. Table IX presents the user profile.  
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TABLE IX.  USER SENSITIVITY TO ALL THREE POLLUTANTS 

Users 
Sensitivity levels 

NO2 sensitivity O3 sensitivity PM2.5 sensitivity 

user6 neutral moderate extremely high 

 

At the second scenario, we consider five stations with 
different situations depending on pollutant type. For example, 
at the station Unity of Melbourne station air quality is good 
regarding NO2 and O3 values. However, the level of 
particulate matter is very hazardous. Hence, overall situation 
of the user6 is very hazardous. Moreover, at Deakin Burwood 
Co. user’s situation is unhealthy with regards to particulate 
matter but there is very unhealthy ozone level for moderate 
sensitivity groups. Therefore, situation of the user6 is very 
unhealthy at the node. Table X provides full information on 
pollutant measurements at each of the stations and pollutant-
specific situation and overall situation of the user at each 
station. 

TABLE X.  AIR QUALITY INFORMATION OF STATIONS 

Stations 
Deakin 

Uni. 

Benn. 

Reserve 

Deakin 

Burwood 

Co. 

The 

Settlers 

Shelter 

Unity of 

Melbour

ne 

NO2 

value 
45 39.5 84.9 82.7 0.7 

NO2 

situation 
good good unhealthy unhealthy good 

O3 value 25.6 12.1 78.9 78.3 0.6 

O3 

situation 
good good 

very 

unhealthy 

very 

unhealthy 
good 

PM2.5 

value 
11.8 24.1 10.8 35.1 67.5 

PM2.5 

situation 
good unhealthy unhealthy hazardous 

very 

hazardous 

Overall 

situation 
good unhealthy 

very 

unhealthy 
hazardous 

very 
hazardous 

 

Fig. 8 shows the location of stations, measurements for 
each pollutant and overall situation of a user at the respective 
area. 

Fig. 8. Air pollution levels and user’s situation at each station 

In the first two experiments, pinpoints are used to visualize 
current situation of a user and data is visualized with colors 
from a normal vision schema. However, in addition to 
pinpoints we implemented a number of other visualization 
methods such as heat maps, colored air pollution spots maps, 
pinpoints and pinpoints with indices. Fig. 9 presents the 

different visualization methods applied for the same set of 
data.    

Fig. 9. Same values, different visualization methods 

 Finally, we test CAVisAP to differentiate visualization 
depending on the users’ color vision impairments in order to 
provide meaningful information in a readable form. Fig. 10 
illustrates the change of color scheme for color-blind users. 

Fig. 10. Illustration of color-blind safe visualization   

VII. CONCLUSION 

In this paper a context-aware system CAVisAP for 
outdoor air pollution visualization was presented. The system 
provides context-aware visualization of three air pollutants 
such as nitrogen dioxide (NO2), ozone (O3) and particulate 
matter (PM2.5) in the city of Melbourne, Australia. In addition 
to primary context as location and time, CAVisAP takes into 
account users’ pollutant sensitivity levels and color vision 
impairments to provide personalized pollution maps. The 
developed system was tested for a set of scenarios considering 
variety of user profiles with different pollutant sensitivity 
levels. A set of questions was developed to identify users’ 
sensitivity levels to NO2, O3 and PM2.5. The experiments 
justify the importance of considering user profile, since the 
same level of air pollution is proven to be very hazardous for 
one user while another can feel only a little discomfort. 
Moreover, CAVisAP attempt to provide a novel approach to 

 

 

 

 

 

 

 



visualize air pollution data considering users’ color vision 
impairments. This is critically important, since 
misinterpreting of air pollution colors can lead to 
uncompromising health issues.  

As a future work, user experience tests can be designed to 
identify usable visualization methods present in CAVisAP. 
Moreover, the system can be enhanced with integration of air-
pollution based routes between two or more locations. Further, 
context-aware prediction methods can be applied to provide 
air pollution forecasts. 
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