
EasyChair Preprint

№ 393

Extending VIAP to Handle Array Programs

Pritom Rajkhowa and Fangzhen Lin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 2, 2018

Extending VIAP to Handle Array Programs

Pritom Rajkhowa and Fangzhen Lin

Department of Computer Science
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong,
{prajkhowa,flin}@cse.ust.hk

Abstract. In this paper, we extend our previously described fully auto-
mated program verification system called VIAP primarily for verifying
the safety properties of programs with integer assignments to programs
with arrays. VIAP is based on a recent translation of programs to first-
order logic proposed by Lin [1] and directly calls the SMT solver Z3. It
relies more on reasoning with recurrences instead of loop invariants. In
this paper, we extend it to programs with arrays. Our extension is not
restricted to single dimensional arrays but general and works for mul-
tidimensional and nested arrays as well. In the most recent SV-COMP
2018 competition, VIAP with array extension came in second in the
ReachSafety-Arrays sub-category, behind VeriAbs.

Keywords: Automatic Program Verification, Array, Structure, Multi-
dimensional, Nested, First-Order Logic, Mathematical Induction, Recur-
rences, SMT, Arithmetic

1 Introduction

Arrays are widely used data structures in imperative languages. Automatic ver-
ification of programs with arrays is considered to be a difficult the task as it
requires effective reasoning about loops and nested loops in case of multidimen-
sional arrays. We have earlier reported a system called VIAP [2] that can prove
non-trivial properties about programs with loops without using loop invariants.
In this paper, we extend VIAP to arrays. In particular, we show how our system
can handle multidimensional arrays. While there have been a few systems that
can prove some non-trivial properties about one-dimensional arrays automati-
cally, we are not aware of any that can do so for multidimensional arrays. Systems
like Dafny [3],VeriFast [4] and Why [5] can indeed prove non-trivial properties
about programs with multidimensional arrays, but they require user-provided
loop invariant(s). Program verification is in general an undecidable problem, so
there cannot be a fully automated system that works in all cases. Still, it is
worthwhile to see how much one can do with fully automatic systems, hence the
interest competitions like SV-COMP for fully automated systems.

In the following, we first describe how our system works. We then discuss
some related work and finally make some concluding remarks.

2 Translation

Our translator consider programs in the following language:

E ::= array(E,...,E) |

operator(E,...,E)

B ::= E = E |

boolean-op(B,...,B)

P ::= array(E,...,E) = E |

if B then P else P |

P; P |

while B do P

where the tokens E, B, P stand for integer expressions, Boolean expressions,
and programs respectively. The token array stands for program variables, and
the tokens operator and boolean-op stand for built-in integer functions and
Boolean functions, respectively. Notice that for array, if its arity is 0, then it
stands for an integer program variable. Otherwise, it is an array variable. Notice
also that while the notation array[i][j] is commonly used in programming
languages to refer to an array element, we use the notation array(i,j) here
which is more common mathematics and logic.

Our system actually accepts C-like programs which are converted to these
programs by a preprocessor. In particular, goto-statements are removed using
the algorithm proposed in [6].

Given a program P , and a language X, our system generates a set of first-
order axioms denoted by ΠX

P that captures the changes of P on X. Here by a
language we mean a set of functions and predicate symbols, and for ΠX

P to be
correct, X needs to include all program variables in P as well as any functions
and predicates that can be changed by P .

The set ΠX
P of axioms are generated inductively on the structure of P . The

algorithm is described in details in [1] and an implementation is [2]. This paper
extends it to handle arrays. The inductive cases are given in table provided in
the supplementary information depicted in 1. There are two primitive cases, one
for integer assignment and one for array element assignment. Before we describe
them, we first describe our representation of arrays.

We consider arrays as first-order objects that can be parameters of functions,
predicates, and can be quantified over. In first-order logic, this means that we
have sorts for arrays, and one sort for each dimension. In the following, we denote
by int the integer sort, and arrayk the k-dimensional array sort, where k ≥ 1.

To denote the value of an array at some indices, for each k ≥ 1, we introduce
a special function named dkarray of the arity:

dkarray : arrayk × intk → int,

as we consider only integer valued arrays. Thus d1array(a, i) denotes the value
of a one-dimensional array a at index i, i.e. a[i] under a conventional notation,

1 https://goo.gl/2ZBGUr

https://goo.gl/2ZBGUr

and d2array(b, i, j) stands for b[i][j] for two-dimensional array b. We can also
introduce a function to denote the size of an array. However, we do not consider it
here as the programs that we deal with in this paper does not involve operations
about array sizes and we assume that all array references are legal.

When we translate a program to first-order axioms, we need to convert ex-
pressions in the program to terms in first-order logic. This is straightforward,
given how we have decided to represent arrays. For example, if E is a(1, 2)+b(1),
where a is a two-dimensional array and b a one-dimensional array, then Ê, the
first-order term that corresponds to E, is d2array(a, 1, 2) + d1array(b, 1).

We are now ready to describe how we generate axioms for assignments, First,
for integer variable assignments:

Definition 21 If P is V = E, and V ∈ X, then ΠX
P is the set of the following

axioms:

∀x.X1(x) = X(x), for each X ∈X that is different from V ,

V 1 = Ê

where for each X ∈ X, we introduce a new symbol X1 with the same arity
standing for the value of X after the assignment, and Ê is the translation of the
expression E into its corresponding term in logic as described above.

For example, if P1 is

I = a(1,2)+b(1)

and X is {I, a, b, d1array, d2array} (a and b are for the two array variables in
the assignment, respectively), then ΠX

P1
is the set of following axioms:

I1 = d2array(a, 1, 2) + d1array(b, 1),

a1 = a,

b1 = b,

∀x, i.d1array1(x, i) = d1array(x, i),

∀x, i, j.d2array1(x, i, j) = d2array(x, i, j).

Again we remark that we assume all array accesses are legal. Otherwise, we
would need axioms like the following to catch array errors:

¬in-bound(1, b)→ arrayError,

¬in-bound((1, 2), a)→ arrayError,

where in-bound(i, array) means that the index i is within the bound of array,
and can be defined using array sizes.

Definition 22 If P is V(e1,e2,...,ek) = E, then ΠX
P is the set of the follow-

ing axioms:

∀x.X1(x) = X(x), for each X ∈X which is different from dkarray,

dkarray1(x, i1, ..., ik) =

ite(x = V ∧ ii = ê1 ∧ · · · ∧ ik = êk, Ê, dkarray(x, i1, ..., ik)),

where ite(c, e, e′) is the conditional expression: if c then e else e′.

For example, if P2 is b(1)=a(1,2)+b(1), and X is {I, a, b, d1array, d2array},
then ΠX

P2
is the set of following axioms:

I1 = I,

a1 = a,

b1 = b,

∀x, i.d1array1(x, i) =

ite(x = b ∧ i = 1, d2array(a, 1, 2) + d1array(b, 1), d1array(x, i)),

∀x, i, j.d2array1(x, i, j) = d2array(x, i, j).

Notice that b1 = b means that while the value of b at index 1 has changed, the
array itself as an object has not changed. If we have array assignments like a=b

for array variables a and b, they will generate axioms like a1 = b.

We now give two simple examples of how the inductive cases work described
in the tables2 provided as supplementary material mentioned previously. See [1]
for more details.

Consider P3 which is the sequence of first P1 then P2:

I = a(1,2)+b(1);

b(1)=a(1,2)+b(1)

The axiom set ΠX
P3

is generated from ΠX
P1

and ΠX
P2

by introducing some new
symbols to connect the output of P1 with the input of P2:

I2 = d2array(a, 1, 2) + d1array(b, 1),

a2 = a,

b2 = b,

∀x, i.d1array2(x, i) = d1array(x, i),

∀x, i, j.d2array2(x, i, j) = d2array(x, i, j),

I1 = I2,

a1 = a2,

b1 = b2,

∀x, i.d1array1(x, i) =

ite(x = b2 ∧ i = 1, d2array2(a2, 1, 2) + d1array2(b2, 1), d1array2(x, i)),

∀x, i, j.d2array1(x, i, j) = d2array2(x, i, j),

where I2, a2, b2, d1array2, d2array2 are new symbols to connect P1’s output
with P2’s input. If we do not care about the intermediate values, these temporary

2 https://goo.gl/2ZBGUr

https://goo.gl/2ZBGUr

symbols can often be eliminated. For this program, eliminating them yields the
following set of axioms:

I1 = d2array(a, 1, 2) + d1array(b, 1),

a1 = a,

b1 = b,

∀x, i.d1array1(x, i) =

ite(x = b ∧ i = 1, d2array(a, 1, 2) + d1array(b, 1), d1array(x, i)),

∀x, i, j.d2array1(x, i, j) = d2array(x, i, j).

The most important feature of the approach in [1] is in the translation of
loops to a set of first-order axioms. The main idea is to introduce an explicit
counter for loop iterations and an explicit natural number constant to denote
the number of iterations the loop executes before exiting. It is best to illustrate
by a simple example. Consider the following program P4:

while I < M {

I = I+1;

}

Let X = {I,M}. To compute ΠX
P4

, we need to generate first the axioms for the
body of the loop, which in this case is straightforward:

I1 = I + 1,

M1 = M

Once the axioms for the body of the loop are computed, they are turned into
inductive definitions by adding a new counter argument to all functions and
predicates that may be changed by the program. For our simple example, we get

∀n.I(n+ 1) = I(n) + 1, (1)

∀n.M(n+ 1) = M(n), (2)

where the quantification is over all natural numbers. We then add the initial
case, and introduce a new natural number constant N to denote the terminating
index:

I(0) = I ∧M(0) = M,

I1 = I(N) ∧M1 = M(N),

¬(I(N) < M(N)),

∀n.n < N → I(n) < M(n).

One advantage of making counters explicit and quantifiable is that we can
then either compute closed-form solutions to recurrences like (1) or reason about
them using mathematical induction. This is unlike proof strategies like k-induction
where the counters are hard-wired into the variables. Again, for more details
about this approach, see [1] which has discussions about related work as well as
proofs of the correctness under operational semantics.

3 VIAP

We have implemented the translation to make it work with programs with a C-
like the syntax used SymPy to simplify algebraic expressions and compute the
closed-form solutions to simple recurrences, and finally verified assertions using
Z3. The resulting system, called VIAP, is fully automated. We reported in an
earlier paper [2] how it works on integer assignments. We have now extended it
to handle arrays. We have described how the translation is extended to handle
array element assignments in the previous section. In this section, we describe
some implementation details.

We have already mentioned that temporary variables introduced during the
translation process can often be eliminated, and that SymPy can be used to sim-
plify algebraic expressions and compute closed-form solutions to simple recur-
rences. All of these have already been implemented for basic integer assignments
and described in our earlier paper [2], therefore we do not repeat them here. For
arrays, an important module that we added is for instantiation.

Our main objective is translating a program to first-order logic axioms with
arithmetic. This translation provides the relationship between the input and
output values of the program variables. The relationship between the input and
output values of the program variables is independent of what one may want to
prove about the program. SMT solver tools like Z3 is just an off shelf tool, so
we never considered using the built-in array function there.

3.1 Instantiation

Instantiation is one of the most important phases of the pre-processing of axioms
before the resulting set of formulas is passed on an SMT-solver according to some
proof strategies. The objective is to help an SMT solver like Z3 to reason with
quantifiers. Whenever an array element assignment occurs inside a loop, our
system will generate an axiom like the following:

∀x1, x2...xk+1, n.dkarrayi(x1, x2...xk+1, n+ 1) =

ite(x1 = A ∧ x2 = E2 ∧ ... ∧ xk+1 = Eh+1, E, (3)

dkarrayi(x1, x2...xk+1, n))

where

– A is a k-dimensional array.
– dkarrayi is a temporary function introduced by translator.
– x1 is an array name variable introduced by translator, and is universally

quantified over arrays of k dimension.
– x2,....,xk+1 are natural number variables representing array indices, and are

universally quantified over natural numbers.
– n is the loop counter variable universally quantified over natural numbers.
– E,E2, ..., Ek+1 are expressions.

For an axiom like (3), our system performs two types of instantiations:

– Instantiating Arrays: this substitutes each occurrence of variable x1 in
the axiom (3) by the array constant A, and generates the following axiom:

∀x1, x2...xk+1.dkarrayi(A, x2...xk+1, n+ 1) =

ite(x2 = E2 ∧ ... ∧ xk+1 = Eh+1, E, dkarrayi(A, x2...xk+1, n)) (4)

– Instantiating Array Indices: This substitutes each occurrence of variable
xi, 2 ≤ i ≤ k, in the axiom (4) by Ei, and generates the following axiom:

∀n.dkarrayi(A,E2...Ek+1, n+ 1) = E (5)

Example 1. This example shows the effect of instantiation on a complete ex-
ample. Consider the following Battery Controller program from the SV-COMP
benchmark [7,8]:

1. int COUNT , MIN ,i=1 ;

2. int volArray[COUNT];

3. if(COUNT %4 != 0) return ;

4. while(i <= COUNT /4) {

5. if (5 >= MIN){ volArray [i*4-4]=5; }

6. else { volArray [i*4-4]=0; }

7. if (7 >= MIN){ volArray [i*4-3]=7; }

8. else { volArray [i*4-3]=0; }

9. if (3 >= MIN){ volArray [i*4-2]=3; }

10. else { volArray [i*4-2]=0; }

11. if (1 >= MIN){ volArray [i*4-1]=1; }

12. else { volArray [i*4-1]=0; }

13. assert (volArray[i]>=MIN ||volArray[i]==0);

14. i=i+1; }

Our system generates the following set of axioms after the recurrences from the
loop are solved by SymPy:

1. COUNT1 = COUNT

2. j1 = j

3. volArray1 = volArray

4. MIN1 = MIN

5. i1 = ite(((COUNT%4) == 0), (N1 + 1), 1)

6.

∀x1, x2.d1array1(x1, x2) =

ite((COUNT%4) == 0, d1array13(x1, x2, N1), d1array(x1, x2))

7.

∀x1, x2, n1.d1array13(x1, x2, (n1 + 1)) = ite(1 ≥MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 1, 1, d1array13(volArray, x2, n1)),

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 1, 0,

ite(3 ≥MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 2, 1, d1array13(volArray, x2, n1))

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 2, 0,

ite(7 ≥MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 3, 1, d1array13(volArray, x2, n1)),

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 3, 0,

ite(5 ≥MIN,

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 4, 1,

d1array13(volArray, x2, n1)),

ite(x1 = volArray ∧ x2 = (n1 + 1) ∗ 4− 4, 0,

d1array13(volArray, x2, n1)))))))))

8. ∀x1, x2.d1array13(x1, x2, 0) = d1array(x1, x2)
9. (N1 + 1) > (COUNT/4)

10. ∀n1.(n1 < N1)→ (n1 + 1) ≤ (COUNT/4)

where (COUNT%4) == 0 is copied directly from the conditional COUNT%4 !=0

in the program and is converted to (COUNT%4) = 0 in Z3.
The instantiation module will then generate the following new axioms from

the one in 7:

1. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4− 1, n1 + 1) = ite(1 ≥MIN, 1, 0)

2. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4− 2), n1 + 1) = ite(3 ≥MIN, 1, 0)

3. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4− 3, n1 + 1) = ite(7 ≥MIN, 1, 0)

4. ∀n1.0 ≤ n1 < COUNT →
d1array13(volArray, (n1 + 1) ∗ 4− 4, n1 + 1) = ite(5 ≥MIN, 1, 0)

For the the following assertion to prove:

d1array13(volArray, n1 + 0, N1) ≥ 2 ∨ d1array13(volArray, n1 + 0, N1) = 0

VIAP successfully proved the assertion irrespective of the value of COUNT. On
the other hand, tools like CBMC [5] and SMACK+Corral [9] which prove this
assertion for arrays with small values of COUNT=100 fail when the COUNT value
is non-deterministic or bigger(COUNT=10000) and this has been also reported
by [8]. Other tools like UAutomizer [10], Seahorn [11], ESBMC [12], Ceagle [13],
Booster [14], and Vaphor [15] fail to prove the assertion even for a small value
of COUNT. To our knowledge, Vaphor [15] and VeriAbs [16] are the only other
systems that can prove this assertion regardless of the value of COUNT.

3.2 Proof strategies

Currently, VIAP tries to prove the given assertion by first trying it directly with
Z3. If this direct proof fails, it tries a simple induction scheme which works as
follows: if N is a natural number constant in the assertion β(N), it is replaced
by a new natural number variable n and proves the universal assertion ∀nβ(n)
using an induction on n. There is much room for improvement here, especially
in the heuristics for doing the induction. This is an active future work for us.

3.3 Multi-dimensional arrays

Finally, we show an example of a program with multi-dimensional arrays. In
fact, with our approach, nothing special needs to be done here. Consider the
following program for doing matrix addition:

1. int i,j,A[P][Q],B[P][Q],C[P][Q];

2. i=0;j=0;

3. while(i < P){

4. j=0;

5. while(j < Q){

6. C[j][i] = A[i][j]+B[i][j];

7. assert(C[i][j] == A[i][j]+B[i][j])

8. j=j+1;}

9. i=i+1;}

For this program, our system genrates the following set of axioms:

1. P1 = P
2. Q1 = Q
3. A1 = A
4. B1 = B
5. C1 = C
6. i1 = (N2 + 0)
7. j1 = j5(N2)
8. ∀x1, x2, x3.d2array1(x1, x2, x3) = d2array5(x1, x2, x3, N2)
9.

∀x1, x2, x3, n1, n2.d2array2(x1, x2, x3, (n1 + 1), n2) =

ite(x1 = C ∧ x2 = n1 ∧ x3 = n2,

d2array2(A,n1 + 0, n2 + 0, n1, n2) + d2array2(B,n1 + 0, n2 + 0, n1, n2),

d2array2(x1, x2, x3, n1, n2))

10. ∀x1, x2, x3, n2.d2array2(x1, x2, x3, 0, n2) = d2array5(x1, x2, x3, n2)
11. ∀n2.(N1(n2) ≥ Q)
12. ∀n1, n2.(n1 < N1(n2))→ (n1 < Q)
13. ∀n2.j5((n2 + 1)) = (N1(n2) + 0)
14. ∀x1, x2, x3, n2.d2array5(x1, x2, x3, (n2+1)) = d2array2(x1, x2, x3, N1(n2), n2)
15. j5(0) = 0

16. ∀x1, x2, x3.d2array5(x1, x2, x3, 0) = d2array(x1, x2, x3)
17. (N2 ≥ P)
18. ∀n2.(n2 < N2 → (n2 < P))

and the following assertion to prove:

∀n1, n2.d2array5(C, (n1 + 0), (n2 + 0), N2) =

d2array5(A, (n1 + 0), (n2 + 0), N2) + d2array5(A, (n1 + 0), (n2 + 0), N2).

VIAP proved it in 30 seconds using the direct proof strategy. In comparison,
given that the program has multi-dimensional arrays and nested loops, state-of-
art systems like SMACK+Corral [9],UAutomizer [10], Seahorn [11], ESBMC [12],
Ceagle [13], Booster [14], VeriAbs [16] and Vaphor [15] failed to prove it.

Verifiability:VIAP is implemented in python. The source code, benchmarks
and the full experiments are available in [?].

4 Related work

Tools like Dafny [3], VeriFast [4] and Why [5] can prove the correctness of a
program with multi-dimensional array only if provided with suitable invariants,
however, VIAP is a fully automatic prover. The Vaphor tool [15], is a Horn
clause base approach which uses the Z3[17] solver in the back-end, and cannot
handle array program with non-sequential indices, unlike VIAP. Seahorn [11] is
another horn clause based verification framework. Seahorn can only prove 3 out
of 88 programs from the Array-Example directory of SV-COMP benchmarks.
There is a sizable body of work that considers the verification of C programs
including programs with an array such as SMACK+Corral [9], UAutomizer[10],
ESBMC [12], Ceagle [13]. The major limitation of UAutomizer is that it can
only handle most of the programs with array when the property is not quanti-
fied. Ceagle [13] and SMACK+Corral [9] got first and second position in the
ReachSafety-Arrays sub-category of ReachSafety category. SMACK+Corral is
not very effective when it comes to dealing with multi-dimensional programs.
Similarly, the Booster [14] verification tool failed when interpolants for univer-
sally quantified array properties (like programs with multidimensional array)
became hard to compute.

5 Concluding remarks and future work

In this paper, we describe an approach to prove the correctness of imperative
programs with arrays in a system we implemented in an earlier work, called
VIAP. VIAP is continuously evolving. In the future, we will work on incorpo-
rating proofs of the following in VIAP - (1) programs with more advanced data
structures like linked lists, binary trees. (2) program termination (3) and object-
oriented programs in languages like Java.

Acknowledgment: We would like to thank Jianmin Ji, Peisen YAO, Anand
Inasu Chittilappilly and Prashant Saikia for useful discussions. We are grateful
to the developers of Z3 and SymPy for making their systems available for open
use. All errors remain ours. This work was supported in part by the HKUST
grant IEG16EG01.

References

1. F. Lin, “A formalization of programs in first-order logic with a discrete linear
order,” Artificial Intelligence, vol. 235, pp. 1 – 25, 2016.

2. P. Rajkhowa and F. Lin, “Viap - automated system for verifying in-
teger assignment programs with loops,” in 19th International Sympo-
sium on Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC 2016, Timisoara, Romania, September 21-24, 2017. Available at
https://github.com/VerifierIntegerAssignment/sv-comp/blob/master/

viap-automated-system.pdf.

3. K. R. M. Leino, “Dafny: An automatic program verifier for functional correctness,”
in Proceedings of the 16th LPAR, LPAR’10, (Berlin, Heidelberg), pp. 348–370,
Springer-Verlag, 2010.

4. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens,
“Verifast: A powerful, sound, predictable, fast verifier for c and java,” NFM’11,
(Berlin, Heidelberg), pp. 41–55, Springer-Verlag, 2011.

5. J.-C. Filliâtre and A. Paskevich, Why3 — Where Programs Meet Provers, pp. 125–
128. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

6. A. M. Erosa and L. J. Hendren, “Taming control flow: A structured approach to
eliminating goto statements,” in Proceedings of the IEEE Computer Society ICCLs,
Toulouse, France (H. E. Bal, ed.), pp. 229–240, 1994.

7. Program Committee / Jury, SV-COMP:Benchmark Verification Tasks, 2018.

8. S. Chakraborty, A. Gupta, and D. Unadkat, Verifying Array Manipulating Pro-
grams by Tiling, pp. 428–449. Cham: Springer International Publishing, 2017.

9. M. Carter, S. He, J. Whitaker, Z. Rakamarić, and M. Emmi, “Smack software
verification toolchain,” ICSE ’16, (New York, NY, USA), pp. 589–592, ACM, 2016.

10. M. Chechik and J. Raskin, eds., TACAS 2016,, April 2-8, 2016, Proceedings,
vol. 9636 of LNCS, Springer, 2016.

11. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, The SeaHorn Verifica-
tion Framework, pp. 343–361. Cham: Springer International Publishing, 2015.

12. L. Cordeiro, J. Morse, D. Nicole, and B. Fischer, Context-Bounded Model Checking
with ESBMC 1.17, pp. 534–537. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012.

13. D. Wang, C. Zhang, G. Chen, M. Gu, and J. Sun, “C code verification based on
the extended labeled transition system model,” in Proceedings of the MoDELS
2016 Demo and Poster Sessions co-located with ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2016),
Saint-Malo, France, October 2-7, 2016., pp. 48–55, 2016.

14. F. Alberti, S. Ghilardi, and N. Sharygina, “Booster: An acceleration-based verifica-
tion framework for array programs,” in Automated Technology for Verification and
Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia,
November 3-7, 2014, Proceedings, pp. 18–23, 2014.

15. D. Monniaux and L. Gonnord, Cell Morphing: From Array Programs to Array-Free
Horn Clauses, pp. 361–382. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

16. B. Chimdyalwar, P. Darke, A. Chauhan, P. Shah, S. Kumar, and R. Venkatesh,
“Veriabs: Verification by abstraction competition contribution,” in Proceedings,
Part II, of the 23rd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems - Volume 10206, (New York, NY, USA),
pp. 404–408, Springer-Verlag New York, Inc., 2017.

https://github.com/VerifierIntegerAssignment/sv-comp/blob/master/viap-automated-system.pdf
https://github.com/VerifierIntegerAssignment/sv-comp/blob/master/viap-automated-system.pdf

17. L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
(Berlin, Heidelberg), pp. 337–340, Springer-Verlag, 2008.

	Extending VIAP to Handle Array Programs

