
EasyChair Preprint
№ 10647

A Pipelined AES and SM4 Hardware
Implementation for Multi-Tasking Virtualized
Environments

Yukang Xie, Hang Tu, Qin Liu and Changrong Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 1, 2023



A Pipelined AES and SM4 Hardware
Implementation for Multi-Tasking Virtualized

Environments⋆

Yukang Xie[0009−0001−4707−7203], Hang Tu, Qin Liu[0000−0002−8979−5094], and
Changrong Chen

Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University,

Wuhan, 430072, China
{bathtub,tuhang,qinliu,chenchangrong}@whu.edu.cn

Abstract. Virtualization techniques are becoming increasingly prevalent
and are driving trends in hardware development to offer parallelization
support for multi-tasking. Existing works on hardware designs of the
Advanced Encryption Standard (AES) and SM4 encryption algorithms
have primarily focused on optimizing metrics such as throughput and area,
but have not fully addressed the demands in virtualized environments. In
this article, we propose innovative optimization schemes that partition
the resources in AES and SM4 cipher modules into smaller, independent
units that can execute tasks from different guests in parallel. Such designs
can improve hardware utilization efficiency and enhance the user experi-
ence in virtualized environments. Our FPGA-validated designs achieve
comparable circuit performance in terms of throughput/area efficiency
to existing work. Experiments show that in virtualized environments
lacking block-wise parallelism (e.g., cipher block chaining (CBC) mode),
our approach reduces context switches over 50% and decreases average
task pending time around 75% with similar hardware needs.

Keywords: Hardware acceleration · Parallelism · Virtualization · AES ·
SM4.

1 Introduction

Modern computer architecture practices commonly employ dedicated hardware
to offload compute-intensive tasks, such as graphics processing and tensor pro-
cessing, from CPUs [8,17]. Cryptographic operations lend themselves well to
hardware implementation due to their routine patterns of execution, along with
their demands for considerable resources. To address various use cases ranging
from server-level acceleration to co-processing on embedded devices, industry pro-
fessionals and researchers have made significant efforts to optimize the hardware
implementation of widely-used encryption algorithms. These optimizations have

⋆ Corresponding author: Qin Liu.



2 Y. Xie et al.

targeted several metrics, including throughput, circuit area, and countermeasures
against side-channel attacks. The rise of virtualization techniques [14,1], in which
multiple tasks from different guests are executed on a shared physical infras-
tructure, has introduced new optimization requirements for hardware designers.
In this paper, we propose an innovative optimization scheme for implementing
two widely-used symmetric-key encryption algorithms, Advanced Encryption
Standard (AES) and SM4, to enhance the designs’ suitability for virtualized
environments.

Our motivation stems from an observation of existing hardware implemen-
tations of AES and SM4, particularly those with pipelined structures. While
these implementations leverage additional register resources to maximize circuit
frequency and achieve higher throughput, this can result in resource wastage
when the pipeline is not fully utilized during operation. Such issue becomes
especially pronounced when the guest employs a block operation mode that
necessitates sequential processing of data blocks, meaning that the hardware
can only handle one data block at a time throughout the entire process. In our
designs, resources within an AES or SM4 cipher module can be subdivided into
smaller units based on the number of pipeline stages. From the perspective of
guests, each resource unit operates independently and can be combined with a
specific user key, allowing the module to execute tasks from different guests in
parallel. As a result, hardware utilization rate is enhanced in these serial-styled
block operation modes. Moreover, since there are more independent resource units
available, hypervisors or operating systems can switch contexts less frequently
between different guest tasks in the cipher hardware, thereby improving overall
system performance.

In this paper, we adopt this optimization strategy for both AES and SM4
implementations, developing four-staged pipeline structures capable of processing
tasks from four different guests in parallel. Our designs are open-sourced and
have been validated and evaluated on a Zynq UltraScale+ and a Kintex-7 FPGA
device. Synthesis and implementation results demonstrate that our designs achieve
comparable results in circuit efficiency relative to existing studies. We also notice
that previous studies have devoted less attention to the practical methods for
incorporating cryptographic hardware into larger systems. To fill this gap, we
have developed a prototype cryptosystem based on our cryptographic modules
and discussed its key design principles. Experiments conducted on the prototype
system reveal that, in virtualized environments, our designs reduce context
switches by over 50% and decrease average task pending time by approximately
75% in operation modes lacking block-wise parallelism. Our designs achieve these
improvements while maintaining similar hardware consumption compared to
classic architectures.

The remainder of this paper is organized as follows: Section 2 discusses the
background of both AES and SM4 algorithms, as well as related work in their
hardware implementations. Section 3 and 4 presents the details of the proposed
designs, while Section 5 includes evaluation and experimental data. Section 6
provides a discussion on our designs, and the final section concludes the paper.



AES and SM4 Hardware for Virtualization 3

2 Background

This section presents a concise overview of the AES and SM4 algorithms, as well
as a survey of prior research on their hardware implementations.

2.1 Overview of AES and SM4

AES is a widely adopted symmetric-key encryption algorithm that operates on
blocks of 128 bits [6]. As shown in Fig. 1, this algorithm relies on iterative
rounds of transformations—including substitution, permutation, and mixing
operations—to encrypt and decrypt input data. The number of transformation
rounds varies between 10, 12, or 14, depending on the key length, which is either
128, 192, or 256 bits. In each round, the intermediate state is XORed with a 128-
bit round key, which is generated by the AES key schedule algorithm using the
main cipher key. The encryption and decryption processes of the AES algorithm
are inverses of each other, and their datapaths can be partially combined in
specific implementations.

Plaintext

Ciphertext

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

final round?

N

SubBytes

ShiftRows

Y

AddRoundKey

(a)

Ciphertext

Plaintext

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

InvMixColumns

final round?

N

InvShiftRows

InvSubBytes

Y

AddRoundKey

(b)

Fig. 1. AES (a) encryption and (b) decryption process.

SM4, released by the Office of State Commercial Cryptography Administrator
of China, is a standard algorithm in ISO/IEC 18033-3:2010/Amd 1:2021 [11].
It operates on 128-bit blocks and uses a fixed key length of 128 bits. Like AES,
this algorithm comprises an encryption/decryption process and a key scheduling
process. Fig. 2 illustrates that SM4 employs 32 rounds of permutations, with
each round making use of a 32-bit round key. The round permutation in SM4 is



4 Y. Xie et al.

less complex than the round transformation in AES, and only updates a 32-bit
word in each iteration. The datapaths for encryption and decryption in the SM4
algorithm are identical, with the only difference being the order in which the
round keys are used.

Xi

SBox

Xi+1 Xi+2 Xi+3

RoundKey
32

<< 2 << 10 << 18 << 24

Xi+4

32

Plaintext/Ciphertext
(X0, X1, X2, X3)

Round
Permutamation

Ciphertext/Plaintext
(X35, X34, X33, X32)

32 rounds?

Y

N

(a) (b)

Fig. 2. (a) Overall process and (b) round permutation of SM4.

To process input data of arbitrary size, block cipher algorithms like AES
and SM4 must be employed in specific modes of operation. Various modes of
operation have been developed, including Electronic Codebook (ECB), Cipher
Block Chaining (CBC), Output Feedback (OFB), and Counter (CTR). From an
efficiency standpoint, current mainstream operation modes can be categorized into
two types: block-wise parallel support mode, exemplified by Galois/Counter Mode
(GCM), and modes that do not support block-wise parallelism, as represented
by Counter with CBC-MAC (CCM). In operation modes that support block-
wise parallelism, there are no dependencies between data blocks, allowing them
to be processed in parallel. In contrast, operation modes that lack block-wise
parallelism require data blocks to be processed serially as each block’s processing
result depends on the previous one. Since both types of operation modes are
widely adopted, hardware designers must consider their characteristics and the
impact they bring.

2.2 Related Works and Discussion

Optimized hardware implementations for both AES and SM4 have been exten-
sively studied. Various designs have been proposed in prior works, targeting
different optimization metrics based on application requirements. Numerous
research efforts have investigated the trade-off between circuit area and hardware
throughput. For example, the authors in [4] presented an ultra-compact design



AES and SM4 Hardware for Virtualization 5

for AES on FPGA, utilizing only 184 logic slices and no Block RAM (BRAM).
Another work in [20] introduced a low-area SM4 design costing only 164 slices
on a Virtex-6 FPGA device.

Conversely, to achieve higher throughput, unrolled and pipelined designs have
been proposed, such as those in [13,19,3,12]. Although these designs can achieve
throughputs of several tens of gigabits per second, they also consume considerable
resources. Moreover, the theoretical throughput of these unrolled and pipelined
designs can only be achieved when operating in a mode that supports block-wise
parallelism, such as ECB and GCM. This limitation is discussed in [21], which
abandons pipelined design and presents a round-based architecture with a highly
compressed datapath structure.

However, our analysis indicates that hardware resource wastage in pipelined
structures is not necessarily inevitable in operation modes that do not support
block-wise parallelism, such as CBC and CCM. In these block-chaining operation
modes, idle resources in the pipeline can still serve tasks from other guests, which
is particularly beneficial for scenarios involving virtualization. Building upon this
observation, we propose rolled, four-staged pipeline structures for both AES and
SM4 algorithms in this paper. This design supports task-wise parallelism for up
to four guests, effectively raising the hardware utilization rate and addressing
the limitations of existing approaches.

3 Proposed AES and SM4 Architecture

In this section, we introduce the core of our work, including the implementation
of the four-staged encryption and decryption modules for both AES and SM4
algorithms.

Our design is implemented in Chisel [2], a modern hardware description lan-
guage with rich parameterization and modularity features [18]. The architectures
of both the AES and SM4 modules adopt a round-based, four-staged pipeline
structure. The key idea for enabling guest-level parallelism is to maintain a set of
control information for each running task in the pipeline. This allows the circuit
to index the corresponding round key when conducting key-related operations
(e.g., AddRoundKey in AES). With this measure, each pipeline stage can be
regarded as an independent resource from the user’s perspective.

We made several crucial design decisions in our implementation:

(a) Although using lookup tables to implement the S-box is common in high-
throughput designs, pipelined combinational logic circuits usually show better
throughput/area efficiency. We employed the S-box presented by Maximov
and Ekdahl in [15] because it is a state-of-the-art design that can be evenly
partitioned without introducing excessively large registers.

(b) We chose a round-based architecture because it is less area-consuming and
can adapt to more usage scenarios. When higher throughput is required,
users can instantiate multiple modules to achieve that. We have determined
the number of pipeline stages to be four, based on the objective of balancing
register usage and maximizing circuit frequency.



6 Y. Xie et al.

(c) Since the key scheduling module is used much less frequently than the
encryption/decryption modules in most cases, we decided to separate their
implementation. The prototype cryptosystem proposed in section 4 combines
a key scheduling module with multiple encryption/decryption modules.

3.1 AES Encryption and Decryption Architecture

In our envisioned usage scenarios, multiple cryptographic modules will be instan-
tiated to handle the workload from a large number of guests. Consequently, we
focus on simplifying the functionality of each individual module, opting not to
merge the encryption and decryption modules. Users can configure and generate
the necessary number of encryption and decryption modules in cryptosystems
based on their application needs, leveraging the flexibility provided by Chisel.

ShiftRowsMixColumns

AddRoundKey

Data
Register

Data
RegisterPlaintext

3:1 MUX

RoundKey

SubBytes

D
ata

R
egister

D
ata

R
egister

B
ottom

Linear P
art

N
on-linear

P
art

Top
Linear P

art

Data
Register

Ciphertext

SR-MC stage

AR-SB1 stage

SB2 stage

SB3 stage

Fig. 3. Proposed AES encryption architecture.

The proposed four-staged architectures for AES encryption and decryption
are illustrated in Fig. 3 and Fig. 4. For both processes, two pipeline registers are
inserted before and after the non-linear transformation part of the S-box to reduce
the critical path in the SubBytes/InvSubBytes module. Additionally, two other
pipeline registers are inserted before and after the MixColumns/InvMixColumns
module, separating its datapath from the linear transformation part of the S-box.

Here we use the AES encryption architecture as an example to explain the
involved pipeline stages. The input data is first processed in the AR-SB1 stage,
which contains the AddRoundKey module and the top linear part of the S-box.
The second and third stages, SB2 and SB3, contain the non-linear part and bottom
linear part of the S-box, respectively. The last stage of the round transformation
is SR-MC, which includes the ShiftRows and MixColumns modules. There is an
extra register bypassing the MixColumns module since the final round of AES



AES and SM4 Hardware for Virtualization 7

AddRoundKey

Ciphertext

2:1 MUX

RoundKey

Plaintext

InvMixColumns

Data
Register

2:1 MUX

Data
Register

InvShiftRows

InvSubBytes

D
at

a
R

eg
is

te
r

D
at

a
R

eg
is

te
r

B
ot

to
m

Li
ne

ar
 P

ar
t

N
on

-l
in

ea
r

P
ar

t

To
p

Li
ne

ar
 P

ar
t

Data
Register

AR-MC stage

SR-SB1 stage

SB2 stage

SB3 stage

Fig. 4. Proposed AES decryption architecture.

encryption does not contain it. Fig. 5 depicts a timing diagram for AES-128
encryption, illustrating how distinct input blocks are processed through the
pipeline. Note that a round transformation of AES in our design takes four cycles,
therefore an AES-128 encryption operation requires 40 cycles. Given that the
four-staged pipeline can process four tasks in parallel, the proposed architecture
can accomplish four AES-128 encryptions in 43 cycles.

4342414039//87654321

SR-
MC

SB3

//

SR-
MC

SB3SB2
AR-
SB1

SR-
MC

SB3SB2
AR-
SB1

Guest 1

SR-
MC

SB3SB2SB3SB2
AR-
SB1

SR-
MC

SB3SB2
AR-
SB1

Guest 2

SR-
MC

SB3SB2
AR-
SB1

SB2
AR-
SB1

SR-
MC

SB3SB2
AR-
SB1

Guest 3 

SR-
MC

SB3SB2
AR-
SB1

SR-
MC

AR-
SB1

SR-
MC

SB3SB2
AR-
SB1

Guest 4

Time

Fig. 5. Example pipeline timing diagram for AES-128 encryption.

In our design, the data register incorporated in the pipeline contains not
only a 128-bit AES state but also a set of control information. Each control
information set is associated with a specific task, indicating the status of the
AES state for that task. The subfields of the control information include:



8 Y. Xie et al.

– taskID: a 2-bit specifier for the task.
– isIdle: a 1-bit flag indicating whether the task is valid.
– keyLength: a 2-bit field indicating whether the task is running in AES-128,

AES-192, or AES-256.
– rounds: a 4-bit field indicating the number of rounds for the task.

The only key-related operation in AES is AddRoundKey. This module reads
the corresponding round key from an external source based on the control
information of its input task. Unlike unrolled architectures, our design natively
supports all three AES variants of key length. From the user’s perspective, each
instance of our design includes four physical resources that can independently
perform AES tasks, offering good flexibility in virtualized environments.

3.2 SM4 Encryption/Decryption Architecture

Fig. 6 displays the proposed SM4 encryption/decryption architecture. The SM4
algorithm employs an unbalanced Feistel network structure, updating a 32-bit
word in each round. SM4 encryption and decryption share the same datapath and
only differ in the order of applying round keys. Similar to the AES architectures,
two two pipeline registers are allocated in the S-box, before and after the non-
linear transformation part. Two additional two pipeline registers are placed before
and after the linear transformation logic outside the S-box. Furthermore, the
unchanged part in each round is preserved by shift registers.

S-box

Data
Register

Data
Register

Bottom
Linear Part

Non-linear
Part

Top
Linear Part

Data
Register

Linear
Transform

Data
Register

Data
Register

Data
Register

Data
Register

Data
Register

Round Update Logic

OutputText

RoundKey

InputText

32 128

LT stage

R-SB1 stage

SB2 stage

SB3 stage

Fig. 6. Proposed SM4 encryption/decryption architecture.

Our proposed architecture for SM4 utilizes the same control information set
as that used by the AES architecture, except for the absence of the keyLength



AES and SM4 Hardware for Virtualization 9

subfield since SM4 only supports a fixed key length of 128 bits. Although it is
possible to add an isEnc subfield to the control information set to enable both
encryption and decryption tasks to run within the same module, we chose not
to implement this feature to avoid increasing the complexity of the external
controller.

4 A Prototype Cryptosystem for Virtualization

As a reference for applying our design in virtualized environments, we further
construct a prototype cryptosystem comprising four instances of the cryptographic
modules discussed in section 3. In this section we present the design of our
prototype system, as well as its programming sequence for users.

4.1 Prototype Cryptosystem Architecture

Fig. 7 depicts the structure of the prototype cryptosystem. As each cryptographic
module is capable of processing four guest tasks in parallel, this prototype system
can support a maximum of sixteen guest tasks concurrently. Each guest task can
operates either in ECB mode or CBC mode. The prototype system employs the
AXI interface for easy integration into FPGA designs.

Key
Scheduling

Module
(AES/SM4)

Cryptographic
Module

(AES/SM4)

Key
Bank

Unit

Cryptographic
Module

(AES/SM4)

Key
Bank

Unit

Cryptographic
Module

(AES/SM4)

Key
Bank

Unit

Cryptographic
Module

(AES/SM4)

Key
Bank

Unit

Crypto Group

Input Data FIFO

Output Data FIFO
AXI DMAAXI-Stream

Scheduling Controller

AXI-Lite

AXI Lite
State/Control
Register Set

AXI-Full

External MemoryHost Device

AXI-Lite

Address Ring

Fig. 7. The multi-instance prototype cryptosystem.

In our design, each cryptographic module is combined with a key bank to
form a “unit”. The input and output dataflows of a single cryptographic module
are managed by the logic within the unit. Our implementation adopts the idea of
another Chisel design proposed in [9], enabling users to easily generate the desired



10 Y. Xie et al.

combination of AES/SM4 encryption/decryption units through simple configu-
ration. Since the key scheduling module is less utilized than the cryptographic
module in typical cases, we have a single key scheduling module serving four units.
The round keys generated by this scheduling process are stored in key banks for
future use. This combination is referred to as a “crypto group” in our prototype.
The control logic within the crypto group manages the plaintext, ciphertext, and
key dataflows. The crypto group is then wrapped into a scheduling controller,
which receives task configuration sent by a host device through the AXI-Lite bus.

Maximizing the utilization of cryptographic acceleration hardware is contin-
gent on ensuring efficient data transfer between the accelerator and external
devices. Therefore, we employed a DMA IP in our prototype system to move
plaintext/ciphertext between external memory and our design. To ensure even
parallelization of tasks from different guests within the module, the scheduling
controller must issue DMA commands from various tasks alternately. This is
achieved through an address ring structure within the scheduling controller.

4.2 Programming Sequence of the Prototype Cryptosystem

As previously mentioned, from the user’s perspective, our prototype system offers
sixteen independent cryptographic resources capable of performing encryption
or decryption operations. Typically, the hypervisor or OS allocates a single
cryptographic resource to each guest. Fig. 8 illustrates the programming sequence
for utilizing cryptographic resources, which consists of the following steps:

– keySet: The hypervisor/OS sets a guest’s main key, initiating the key schedul-
ing process.

– taskAssign: An encryption or decryption task from the guest begins. The
task configuration specifies the source and target addresses of input and
output data, the data length, and the mode of operation.

– keyDestroy: The round keys in the key storage bank are destroyed, freeing
up the cryptographic resource for future use.

Unit

Unit

Unit

A

B

C

keySet
taskAssign
(enc/dec)

… … taskAssign
(enc/dec)

keyDestroyGuest A

Cryptographic Resources

keySet
taskAssign
(enc/dec)

… … taskAssign
(enc/dec)

keyDestroyGuest B

keySet
taskAssign
(enc/dec)

… … taskAssign
(enc/dec)

keyDestroyGuest C

Unit

Fig. 8. Programming sequence of the prototype cryptosystem.



AES and SM4 Hardware for Virtualization 11

As the manager of hardware resources, the hypervisor or OS is responsible
for maintaining the mapping between guests and cryptographic resources. Once
a cryptographic resource is assigned to a guest, it cannot serve other guests
until the hypervisor or OS sends a keyDestroy signal to release the resource. In
situations where all cryptographic resources are occupied by various guests, and
new guest requests arrive, context switches are triggered. The hypervisor or OS
must free up some cryptographic resources and reallocate them to the incoming
guests. The overhead associated with context switches arises from both software
and hardware aspects. On the software side, the hypervisor or OS must update
the mapping between guests and resources. Meanwhile, on the hardware side,
before conducting encryption or decryption operations, the module must perform
the key scheduling process again.

5 Experimental Results

This section presents a comparison of circuit performance across proposed designs
and existing works, along with experiments evaluating the efficiency gains in
multi-guest virtualized environments afforded by our designs.

5.1 Circuit Performance Comparison

The designs proposed in Section 3 are thoroughly verified on a Zynq UltraScale+
(xczu7eg-ffvc1156) and a Kintex-7 (xc7k325t-ffg900) FPGA device using Xilinx
Vivado 2022.1 for synthesis and implementation.

Table 1. Comparison of AES Implementation

Designs Platforms Slices
Max.freq.
(MHz)

Throughput
(Gbps)

Efficiency
(Mbps/slice)

[4] XC3S50-5 184 45.64 0.037 0.2

[13] XC7VX690T 3436 516.8 66.1 19.2

[16] XC6VLX240T 4830 617.63 79 16.36

[19] XC5VLX 5974 622.4 79.7 13.3

[10] XC7V585TFF 1355+80BRAMs 374 47.8 -

This work
XC7K325T 371 414.3 5.3 14.29
XCZU7EG 430 535.3 6.85 15.93

The synthesis results of both the AES and SM4 encryption/decryption ar-
chitectures are compared with previous works in Tables 1 and 2. These tables
report hardware utilization, maximum frequency, throughput, and efficiency.
Since our round-based designs strike a balance between throughput and hardware



12 Y. Xie et al.

Table 2. Comparison of SM4 Implementation

Designs Platforms LUTs FFs Slices
Max.freq.
(MHz)

Throughput
(Gbps)

Efficiency
(Mbps/slice)

Efficiency
(Mbps/LUT+FF)

[20] XC6VLX240T - - 164 253 0.25 1.54 -

[7] EP4SE230F29
687 448 - 210.26 0.82 - 0.72
7667 5438 - 212.13 27.1 - 2.07

[3] XCZU7EV 8655 10071 - 923.36 118.19 - 6.31

This work
XC7K325T 575 816 236 415.3 1.66 7.03 1.19
XCZU7EG 574 816 266 547.3 2.19 8.23 1.58

utilization, we have selected works focusing on throughput maximization and
area minimization for comparison. The proposed AES implementation achieves
a maximum frequency of 414.3 MHz and a throughput of 5.3 Gbps, occupying
371 slices. The corresponding figures for the proposed SM4 implementation are
415.3 MHz, 1.66 Gbps, and 236 slices, respectively. The results show that our
designs surpass existing compact designs of AES and SM4 in both throughput and
efficiency and achieve fair results in efficiency compared to existing high-speed
designs. On the one hand, our designs are lightweight enough to be deployed on
resource-constrained platforms where virtualization techniques are applied. On
the other hand, due to the good throughput/area efficiency of our design, users
can always choose to instantiate multiple modules to achieve higher throughput,
which is essentially equivalent to the unrolled structure.

It is important to note that, despite the lack of full authority in the compara-
tive data due to differences in FPGA platforms and the randomness of synthesis,
placing, and routing optimization algorithms in Vivado, our design successfully
maintains competitive hardware performance while introducing support for par-
allelism of multiple guest tasks. This is reasonable because our designs introduce
relatively little additional control information.

5.2 Multi-Guest Efficiency Improvement

To validate the performance improvement of the proposed design in multi-tasking
virtualization scenarios, we conducted experiments based on the prototype system
described in Section 4, integrated with the Zynq UltraScale+ MPSoC. The results
demonstrate that our design is well-suited for virtualized environments.

Two critical performance metrics in virtualized environments are the average
pending time for each task and context switching rate. We compared these two
metrics between the classic design and the proposed architecture in the experiment.
In the classic design, guest-level parallelism is not exploited, and each guest utilizes
the full resources of a cryptographic hardware instance. However, in our design,
each guest only occupies a single pipeline stage of the instance and is processed
in parallel. To avoid potential unfairness introduced by differences in hardware
utilization and given that most existing works are not open-sourced, we decided
to simulate the classic architecture using our own design with slight modifications.



AES and SM4 Hardware for Virtualization 13

This is possible because the working method of the classic architecture can be
considered a subset of that of our proposed design. There are four AES encryption
modules initialized in the prototype system.

In the application for the experiment, a randomly generated task sequence,
containing tasks belonging to random guests, was read in by the scheduling
function, which allocates cryptographic resources to guest tasks and records
their pending time. A context switch occurs when idle resources exist but no
resources have been occupied by the incoming guest. We fix the total length
of tasks in the task sequence to 4GB, and the length of each task is randomly
determined between 4MB and 64MB. The number of guests is set to 8, 16,
32, and 64. Additionally, two operation modes, CBC and ECB, are tested in
the experiment, representing block-wise parallelism unsupported and block-wise
parallelism supported modes, respectively. We conducted twenty runs for each
setup, and each task sequence is reused for setups with the same guest number
configuration.

0

20

40

60

80

100

120

8 16 32 64

A
ve

ra
ge

 C
on

te
xt

 S
w

itc
he

s

Number of Guests
(b)

Classic Design This Work

0

50

100

150

200

250

300

8 16 32 64

A
ve

ra
ge

 P
en

di
ng

 T
im

e 
(m

s)

Number of Guests
(a)

Classic Design This Work

Fig. 9. Multi-guest performance evaluation in CBC mode in terms of (a) task average
pending time and (b) average context switches.



14 Y. Xie et al.

0

15

30

45

60

75

8 16 32 64

A
ve

ra
ge

 P
en

di
ng

 T
im

e 
(m

s)

Number of Guests
(a)

Classic Design This Work

0

20

40

60

80

100

120

8 16 32 64

A
ve

ra
ge

 C
on

te
xt

 S
w

it
ch

es

Number of Guests
(b)

Classic Design This Work

Fig. 10. Multi-guest performance evaluation in ECB mode in terms of (a) task average
pending time and (b) average context switches.

Fig. 9 and 10 summarize the average task pending time and the count of
context switches for both the classic design and our architecture. The experimental
results show that the proposed design can significantly reduce context switches
when the guest number is within a certain range. When the number of guests is 32
or less, our architecture can reduce context switches by over 50%. This is because
our design contains sixteen independent resources, which is four times that of
the classic one. However, when the number of guests greatly exceeds the number
of resources, our design no longer has a significant advantage, indicating that the
user must instantiate more instances to further reduce context switches. In the
operation mode that does not support block-wise parallelism, our design shows a
clear performance advantage over the classic architecture in terms of pending
time, reducing it by 75%. Classic pipelined designs typically perform poorly in
this situation as they cannot fully utilize all the resources in the pipeline. In
contrast, when operating in a mode that supports block-wise parallelism, both
architectures exhibit similar performance in terms of average pending time. It is
worth noting that in practical applications, the advantages of our design may be



AES and SM4 Hardware for Virtualization 15

more pronounced because, in actual hypervisors or operating systems, context
switches have greater software overhead.

6 Discussion

In multi-tasking virtualized environments, a critical job of the hypervisor/OS is to
schedule tasks coming from different guests with limited hardware resources, where
context switching is inevitable. Frequent context switching could cause a loss in
performance and, for cryptographic hardware, could potentially introduce security
implications since sensitive information, including user keys, is conveyed more
regularly via the bus. Designers of large-scale systems thus generally instantiate
a substantial number of dedicated hardware to meet demand. Our work provides
an alternative optimization perspective, demonstrating that this issue can be
addressed by dividing resources into finer granularity at the hardware level.

The key to our design is increasing the available hardware resources from the
user’s perspective by making the pipeline stages independent. The independent
pipeline stage brings advantages in two ways. First, it offers great flexibility to the
hypervisor/OS level. The hypervisor/OS can apply different scheduling strategies,
such as allowing each guest to occupy at most one resource in situations with a
large number of guests to reduce context switching, or temporarily allowing a
superior user to occupy all the resources of an instance in priority scheduling,
which makes our design equivalent to the classic architecture. Second, it enhances
the hardware utilization rate when the hardware operates in a mode that does
not support block-wise parallelism.

Although the proposed structure is round-based, our design can be easily ap-
plied to an unrolled or partially unrolled structure to obtain a higher throughput,
since the additional control information register in each pipeline stage is not a
significant overhead compared to the 128-bit AES/SM4 state itself. Furthermore,
our design strategy is not limited to specific cryptographic algorithms and can
potentially be applied to more cryptography implementations, as long as it does
not take excessive overhead to maintain the control information for key-related
operations. An interesting example would be Ascon [5], the new lightweight
cryptography standard selected by NIST, which adopts a sponge structure and
only involves key-related operations at its initialization and finalization stage.
This feature makes it natural for Ascon implementation to have independent
pipeline structure.

7 Conclusion

This paper presented optimized hardware implementations for AES and SM4 al-
gorithms, targeting multi-tasking virtualization scenarios. Evaluation on FPGAs
shows that our designs can significantly reduce the average pending time and
context switch demands in virtualized environments compared to classic archi-
tectures, while achieving competitive throughput/area efficiency. A prototype
cryptosystem was further developed to showcase the practicality of our designs,



16 Y. Xie et al.

indicating their scalability and potential applications in various scenarios. By
enhancing hardware utilization rate and decreasing pending time in virtualized
environments, our work demonstrates optimization strategies useful for a wider
range of metrics and applications.

The source codes of the AES and SM4 modules are available on GitHub at
https://github.com/bathtub-01/cluster-AES.

Acknowledgments

The work was supported by the National Natural Science Foundation of China
(No. 62272348). Qin Liu is the corresponding author of this paper.

References

1. Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M.M., Biswas, S., Nour, B., Wang, Y.: A
survey of network virtualization techniques for internet of things using sdn and nfv.
ACM Computing Surveys (CSUR) 53(2) (2020). https://doi.org/10.1145/3379444,
https://doi.org/10.1145/3379444

2. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,
Wawrzynek, J., Asanović, K.: Chisel: Constructing hardware in a scala embedded
language. In: Proceedings of the 49th Annual Design Automation Conference. p.
1216–1225. DAC ’12, Association for Computing Machinery, New York, NY, USA
(2012). https://doi.org/10.1145/2228360.2228584, https://doi.org/10.1145/2228360.
2228584

3. Chen, Y., Song, J., Chen, S., Cao, Y., Ye, J., Li, H., Li, X., Lou, X., Yao, E.:
Exploring the high-throughput and low-delay hardware design of sm4 on fpga.
In: 2022 19th International SoC Design Conference (ISOCC). pp. 211–212 (2022).
https://doi.org/10.1109/ISOCC56007.2022.10031393

4. Chu, J., Benaissa, M.: Low area memory-free fpga implementation of the aes
algorithm. In: 22nd International Conference on Field Programmable Logic and
Applications (FPL). pp. 623–626 (2012). https://doi.org/10.1109/FPL.2012.6339250

5. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1. 2: Lightweight
authenticated encryption and hashing. Journal of Cryptology 34, 1–42 (2021)

6. Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J., Bassham, L.E.,
Roback, E., Dray Jr, J.F.: Advanced encryption standard (aes) (2001).
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197

7. Guan, Z., Li, Y., Shang, T., Liu, J., Sun, M., Li, Y.: Implementation of sm4
on fpga: Trade-off analysis between area and speed. In: 2018 IEEE International
Conference on Intelligence and Safety for Robotics (ISR). pp. 192–197 (2018).
https://doi.org/10.1109/IISR.2018.8535613

8. Gui, C.Y., Zheng, L., He, B., Liu, C., Chen, X.Y., Liao, X.F., Jin, H.: A survey on
graph processing accelerators: Challenges and opportunities. Journal of Computer
Science and Technology 34, 339–371 (2019)

9. Guo, X., El-Hadedy, M., Mosanu, S., Wei, X., Skadron, K., Stan, M.R.: Agile-aes:
Implementation of configurable aes primitive with agile design approach. Integration
85, 87–96 (2022)

https://github.com/bathtub-01/cluster-AES
https://doi.org/10.1145/3379444
https://doi.org/10.1145/3379444
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/ISOCC56007.2022.10031393
https://doi.org/10.1109/FPL.2012.6339250
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1109/IISR.2018.8535613


AES and SM4 Hardware for Virtualization 17

10. Harb, S., Ahmad, M.O., Swamy, M.N.S.: A high-speed fpga implementation of aes
for large scale embedded systems and its applications. In: 2022 13th International
Conference on Information and Communication Systems (ICICS). pp. 59–64 (2022).
https://doi.org/10.1109/ICICS55353.2022.9811140

11. Information technology — Security techniques — Encryption algorithms — Part
3: Block ciphers — Amendment 1: SM4. Standard, ISO/IEC 18033-3:2010/Amd
1:2021 (2021)

12. Kumar, T.M., Reddy, K.S., Rinaldi, S., Parameshachari, B.D., Arunachalam, K.:
A low area high speed fpga implementation of aes architecture for cryptography
application. Electronics 10(16) (2021). https://doi.org/10.3390/electronics10162023,
https://www.mdpi.com/2079-9292/10/16/2023

13. Liu, Q., Xu, Z., Yuan, Y.: A 66.1 gbps single-pipeline aes on fpga. In: 2013 Interna-
tional Conference on Field-Programmable Technology (FPT). pp. 378–381 (2013).
https://doi.org/10.1109/FPT.2013.6718392

14. Mansouri, Y., Babar, M.A.: A review of edge computing: Features and resource
virtualization. Journal of Parallel and Distributed Computing 150, 155–183
(2021). https://doi.org/https://doi.org/10.1016/j.jpdc.2020.12.015, https://www.
sciencedirect.com/science/article/pii/S0743731520304317

15. Maximov, A., Ekdahl, P.: New circuit minimization techniques for smaller and
faster aes sboxes. IACR Transactions on Cryptographic Hardware and Embedded
Systems 2019(4), 91–125 (2019). https://doi.org/10.13154/tches.v2019.i4.91-125,
https://tches.iacr.org/index.php/TCHES/article/view/8346

16. Oukili, S., Bri, S.: High speed efficient advanced encryption standard implementation.
In: 2017 International Symposium on Networks, Computers and Communications
(ISNCC). pp. 1–4 (2017). https://doi.org/10.1109/ISNCC.2017.8071975

17. Peccerillo, B., Mannino, M., Mondelli, A., Bartolini, S.: A sur-
vey on hardware accelerators: Taxonomy, trends, challenges, and
perspectives. Journal of Systems Architecture 129, 102561 (2022).
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102561

18. Rautakoura, A., Hämäläinen, T.: Does soc hardware development become agile by
saying so: A literature review and mapping study. ACM Transactions on Embedded
Computing Systems 22(3) (2023). https://doi.org/10.1145/3578554, https://doi.
org/10.1145/3578554

19. Shahbazi, K., Ko, S.B.: High throughput and area-efficient fpga implementation
of aes for high-traffic applications. IET Computers & Digital Techniques 14(6),
344–352 (2020)

20. Shang, M., Zhang, Q., Liu, Z., Xiang, J., Jing, J.: An ultra-compact hardware
implementation of sms4. In: 2014 IIAI 3rd International Conference on Advanced
Applied Informatics. pp. 86–90 (2014). https://doi.org/10.1109/IIAI-AAI.2014.28

21. Ueno, R., Morioka, S., Miura, N., Matsuda, K., Nagata, M., Bhasin, S., Mathieu,
Y., Graba, T., Danger, J.L., Homma, N.: High throughput/gate aes hardware
architectures based on datapath compression. IEEE Transactions on Computers
69(4), 534–548 (2020). https://doi.org/10.1109/TC.2019.2957355

https://doi.org/10.1109/ICICS55353.2022.9811140
https://doi.org/10.3390/electronics10162023
https://www.mdpi.com/2079-9292/10/16/2023
https://doi.org/10.1109/FPT.2013.6718392
https://doi.org/https://doi.org/10.1016/j.jpdc.2020.12.015
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://www.sciencedirect.com/science/article/pii/S0743731520304317
https://doi.org/10.13154/tches.v2019.i4.91-125
https://tches.iacr.org/index.php/TCHES/article/view/8346
https://doi.org/10.1109/ISNCC.2017.8071975
https://doi.org/https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1145/3578554
https://doi.org/10.1145/3578554
https://doi.org/10.1145/3578554
https://doi.org/10.1109/IIAI-AAI.2014.28
https://doi.org/10.1109/TC.2019.2957355

	A Pipelined AES and SM4 Hardware Implementation for Multi-Tasking Virtualized Environments

