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1 Introduction

1.1 Summary

In this paper I make two significant contributions. I develop a new discrete probability distribution —which

I call the “losers distribution”— that has applications in number theory and in multinomial choice modeling.

I also design the “compensated lottery” as a new financial instrument which partially solves the problem of

financial exclusion. I link these two contributions by using the losers distribution to design the compensated

lottery pricing. I show that lotteries with a high probability of winning small prizes can be designed to

play the role of financial instruments. They can be priced to only appeal to people who do not participate

in formal financial markets. This means that the lottery mobilizes new financial resources —the savings of

the poor— and that it does not crowd out formal lending —from the savings of the wealthy. The lottery

I propose offers compensation in the form of a guaranteed prize after a fixed number of trials. The losers

distribution is needed to calculate the ex post income distribution, the number of losers who will have to be

compensated, and the optimal subsidy.

In the next section I propose and develop the losers probability distribution and explore some of its

properties. I also show how it can be calculated directly and recursively and show the relation between the

losers distribution and well know distributions and number series such as the Bose-Einstein statistic, Pascal’s

triangle, Stirling, Bell, and Fubini numbers. In Section 3 I discuss the problem of financial exclusion and

in Section 4 I study the use of lotteries as financial instruments for the poor. I propose the compensated

lottery in section 5 and derive the ticket price and subsidy rates that make it work. Section 6 provides the

conclusions.

2 MODEL

Many events arise that have a finite number of equally probable and mutually exclusive possible outcomes.

Yet even after many trials not every possible outcome is expressed. Some may not occur even if the number

of trials significantly exceeds the number of possible outcomes. One example is the repeated roll of a fair

die. The frequency with which each side shows up after a given number of rolls is tallied. After 10 rolls no

six or no four, or no six and no four turn up. A second example is a game of chance where a group of people

each put some money into a pot. A game takes place and one winner takes the pot. The game is repeated

a pre-determined number of times. Some players may never win, even if the number of games they play is

fairly large. Example three involves a new, multi-unit housing development with identical homes that has

just been put on the market. Prospective buyers are allowed to inspect a home of their choosing. After one
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week, some homes have been seen more than once and some may have not been visited at all.

These relations are all non-injective; more than one element of the domain of die rolls, games, and home

visits can map onto the same outcome element in the codomains. But the more important property for the

purposes of this paper is that the relations are also non-surjective –not every element in the codomain of

outcomes (die-sides, game players, or houses) will necessarily be manifested. For ease of exposition, the set

of outcomes that are not manifested is called “the set of losers”, or just “losers.” The question addressed here

is what is the distribution that characterizes the number of losers when trials are identical and all outcomes

are equally likely?

2.1 Lottery Games

In this section I will introduce the “losers distribution,” a new discrete probability distribution that describes

the probability that after n identical trials there will be l losers and w winners. We have l+w = k —where

k is the number of players –and
k∑
i=1

wi = n.

The expected number of losers is calculated. The paper ends with an application to financial exclusion and

a proposal to extend financing to the poor.

A “lottery game” consists of a set N of identical random draws1 with replacement that has cardinality

n = |N | and elements indexed by i ∈ {1, 2, ..., n}. The elements of N are labeled. To simplify the exposition

and the transition to the application at this end of the paper, I will refer to the domain set of the game as

“lotteries” and the co-domain as “players”. A non-injective, non-surjective relation maps the set of lotteries

to the set of players. Without loss of generality, we can think of lottery draws as occurring sequentially

with the index representing the order in which the lotteries take place. The co-domain consists of a set K

of lottery players with cardinality k = |K|, whose players are indexed by j ∈ {1, 2, ..., k}. The players are

labeled. The sample space of a game is thus kn. For most of the discussion here it will be assumed that

n ≥ k.

Every lottery in an n-game has k outcomes; it assigns a win to a player j and losses to each of the

remaining (k − 1) players. These lottery outcomes can be represented by a kx1 column vector with (k − 1)

zeros for the losers and the number one in position j for the winner. The set of possible win vectors for

a 5-person game are shown in Figure 1. Columns 1 through 5 represent wins by players 1 through 5,

respectively. For instance, the second 5−element column vector –with a 1 as its second element and zeros

1The analysis can be extended to allow for some outcomes to be more likely than others. This context can be handled within
the framework developed here, but for the remainder of this paper it is assumed that all possible outcomes are equally likely,
with probability p = 1

n
. Extending the analysis to contexts with unequal values of p has interesting applications to multinomial

choice modelling —currently a cumbersome set of tools. However this extension is left for later work.
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Figure 1: Possible Win Vectors for a 5−Person Game
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elsewhere –represents the outcome of a 5−person lottery draw where player 2 was the winner and player 1

and players 3 through 5 lost. If the probability of being drawn is not equal for all players, copies of the more

likely columns can be added to this set to reflect the population from which unequal relative frequencies are

drawn. However, for the remainder of this paper I will assume that the probability of winning is 1
n , the same

for all of the players.

Figure 2: A 5-Player, 5-Game Win Matrix
Player 1 and 2 win twice and player 3 wins the last game

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0



The collection of win-vectors from a realized lottery game can be arranged into a “win-matrix”’ to

represent the full set of outcomes from the game. The column sequence represents the order in which wins

took place. Figure 2, illustrates one possible outcome of a 5-player, 5-game lottery in which player 1 won

the first and third draws, player 2 won the second and fourth draws, player 3 won the last draw, but players

4 and 5 each had zero wins.

Each lottery in a game randomly selects one of the columns in Figure 1. The selected column is copied

and then appended from left to right onto a new kxn win-matrix “W”. Once the game concludes, the order

of columns in W records the sequence of outcomes while the sum of each of the k rows gives the final tally of

wins for players 1 through k. Thus post-multiplying W by an nx1 unit vector U , results in a k× 1 column

vector R′ which tallies the wins. The transpose of this vector R = (w1, w2, w3, . . . wk ) is a convenient way

to represent the distribution of winnings from the game.

The Figure 3 illustrates one such tally for a 5−player, 9−lottery game in which player 1 won the first

four times, player two won lotteries 5 and 6, player 3 won the last 3 times. Players 4 and 5 lost every time.

The distribution of winnings from the game can be more conveniently represented by the transpose of

the right hand column vector R = (4, 2, 3, 0, 0, ). Commas have been inserted for clarity. Notice that while

R conveniently tallies the wins, it loses all the information about the sequence of lotteries that produced
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Figure 3: Tallying the wins of a 5-player, 5-fold lottery game (k = 5, n = 9)
W5×9 ×U9×1 = R′5×1


1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0





1
1
1
1
1
1
1
1
1


=


w1

w2

w3

w4

w5

=


4
2
3
0
0



them. In fact the columns in W can be arranged in up to n! different ways to produce the same R vector.

We will return to this fact shortly, with more precision. For now, notice that (4,2,3,0,0) is a partition of

the number 9. In fact, since n and the wi are integers, with wi ≤ n and

k∑
i=1

wi = n,

every R-vector describes a partition of the number n into k parts (counting zeros as parts). Partition

theory typically ignores zeros –in what are called proper partitions –and treats the parts into which a

number is divided as anonymous, indistinguishable, and interchangeable summands. Thus the R-vectors

(4, 2, 3, 0, 0, 0, 0, 0, 0), (4, 2, 3, 0, 0), (0, 2, 3, 4), and (4, 3, 2) result in the same traditional partition of 9 into 3

parts.

So called proper partitions ignore zeros, and are conventionally ordered from their largest to smallest

elements. In other words partition theory is concerned with sums of the form
∑w
i=1 wi = n, where wi ≥ 1,

∀i, and i>j =⇒ wi ≥ wj . For instance (7, 1, 1), (6, 2, 1), (5, 3, 1), (5, 2, 2), (4, 4, 1), (4, 3, 2), and (3, 3, 3) are

the seven proper partitions of the number nine into 3 parts. In standard notation the number of partitions

of n into w parts is written as p(n,w), and the total number of partitions of the number n as p(n), where

p(n)=
∑w
i=1 p(n,w). So, continuing the earlier example, there are 7 distinct partitions of the number 9

into 3 parts —so p(9, 3) = 7— and there are altogether 30 partitions of the number 9: p(9) = 30. The

number of partitions grows very rapidly with n: p(3) = 3, p(9) = 30, p(20) = 627, p(50) = 204, 226, and

p(100) = 190, 569, 292 (sequence A000041).

The theory of partitions is a well-developed subfield of number theory (for instance Andrews, 1984). But

we must modify standard partition notation for our problem, because the arrangements of a partition matter

in a lottery game, as do the zeros! In lottery game score-keeping, every ordering of a given proper partition

represents a different allocation of the total n wins among w winners. For instance, the partition (4, 3, 2)

5



of the number 9 has 3! = 6 versions that represent different allocations of a 4 − 3 − 2 split of wins among

three winners of a nine-lottery game. The number of allocations that are possible grows when losers are also

accounted for.

Consider the case where n = k and every player wins once, that is wi = 1 ∀i ∈ {1, 2, . . . , k}. There are

n! different draw sequences that can result in each player winning once, and yet all of these outcomes would

be represented by the same R-vector of ones. This is because R-vector notation loses information on the

sequence in which wins take place. This is a large number to ignore. Economists will also readily recognize

that the sequence itself matters. If the intervals between lotteries in a game are significant it is not the same

to be the first winner as to be the last one even if the nominal value of the prize is the same. In a 9-player,

9-lottery game there are 9! = 362, 880 different sequences that can lead to each player winning once. If all

players win at least once and n > k, then some of the columns in the win-matrix W must be repeated for

players who won more than once. An example of this can be visualized by ignoring the bottom two rows

of zeros of the W matrix in Figure 3, which then represents a 3-person, 9-fold lottery where nobody lost.

To find the number of unique permutations of W, the n! arrangements of columns must be divided by the

product of the wi! in order to account for identical columns. Thus the number of permutations of W is

n!

w1!, w2!, w3!, ..., wk!
, (1)

which is of course a multinomial coefficient. Multinomial coefficients ignore the l = n − w losers, just as

partition notation ignores zero summands. Since 0! = 1, an arbitrary number of players with zero wins

can be added without changing the numerical value of the multinomial coefficient. So what the coefficient

actually counts is the number different ways that a given distribution of wins —a given R-vector— can be

drawn among the subset of players who win at least once: the winners. This multinomial coefficient is not

the correct basis for calculating the probability that this turns out to be the number of winners.

2.2 THE LOSERS DISTRIBUTION

The discussion to this point has laid out the reasoning and rationale behind each step in the construction of

L(l | n, k) –the frequency with which l losers will arise in a k-player, n-fold lottery game. Since the sample

space is known to be to be kn, it is straightforward to calculate the probability of these events once L(l | n, k)

is know as Pr (l | n, k) = L(l|n,k)
kn . In the example of a 9-player, 9-fold lottery game shown in Appendix Table

A1, we obtain Pr(l = 3 | n = 9, k = 9) =L(3|9,9)
99 ≈ 0.41. The probability that 3 out of 9 players won’t win

anything at all is about 41% .

Definitions: : Let K be a set of players and N be a set of lotteries, with cardinalities k= ‖K‖ and n =
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‖N‖, respectively. Index the elements of K as i ∈ {1, 2, . . . , k} and the elements of N as j ∈ {1, 2, . . . , n}.

A lottery game is a non-surjective, non-injective relation with domain N and codomain K that assigns each

lottery to one player. The assignments are called “wins”. After the game, player i has wi wins, with wi ≥ 0

∀ i and
∑w
i=1 wi = n. Define the player subset W consisting of all players for whom wi ≥ 1. Players in

W ⊆ K are called “winners” and W has cardinality w = ‖W‖. Players with zero wins are “losers” and form

the complement set L with cardinality l =‖L‖, so L ∪ W = K, l + w =n, and 0 ≤l≤ (k − 1) .

The tally of wins is arranged into a win vector R = (w1, w2, . . . , ww). When the losers are ignored and

the R-vector elements are arranged from largest to smallest, they form a proper w-fold partition of n. Let

σn,w designate one such w-fold partition of n and Sn,w the set of all w-fold partitions of n.

As we have seen, traditional partition notation arranges partition summands from largest to smallest, so

that in R = (w1, w2, . . . , ww), i > j implies wi ≥wj . For instance, one of the partitions of 9 into 6 parts

would be written as (2, 2, 2, 1, 1, 1). When n! is divided by the factorials of all elements in a given σn,w,

as in M1= n!∏w
i=1 wi!

, the resulting quotient is the multinomial coefficient which counts the ways in which a

particular σn,w can arise as the win-vector of an n-fold lottery with w players.

There is an alternative partition notation: R=(wr11 , w
r2
2 , . . . w

rm
m ) . In this case the partition has m dis-

tinct parts. Distinct wi are ordered from largest to smallest and the ri coefficients indicate how many times

summand wi is repeated in the partition; these coefficients should not be confused with exponents. Thus

R=(2, 2, 2, 1, 1, 1) can be written more succinctly in this alternative notation as R=
(
23, 13

)
. This nota-

tion allows us to define a second multinomial coefficient as M2 = w!∏m
i=1 ri!

. M2 counts how many different

ways a given R-vector split can be arranged —thus treating the partition (2, 1, 2, 2, 1, 1) as different from

(2, 2, 2, 1, 1, 1) , because it has the same parts, but they are arranged in a different order.

The frequency with which a particular split arises —what in thermodynamics is called the “multiplicity”

of a state —is M1 ×M2 —the product of these two multinomial coefficients.

Freq [R (w1, w2, ..., ww)] = M1 ×M2 =
n!∏w
i=1 wi!

w!∏m
i=1 ri!

. (2)

A result related to (2) is discussed in Faris (2011). Equation (2) gives all of the ways that n labelled

objects can be assigned to w labeled sets in such a manner that none are empty. Kao and Zetterberg

(1957) Theorem 2.2 proves that the number of multinomial coefficients that can be formed from the proper

partitions of n into w parts —designated as Q(n,w) in this paper— is given by

Q(n,w) =
∑

σn,w∈S

n!∏w
i=1 wi!

=

w−1∑
i=0

(−1)
i

(
w

i

)
(w − i)n . (3)
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Q(n,w) counts all of the ways in which n labeled objects can be assigned to w labeled sets, such that no

set is empty. This contrasts with Stirling numbers of the second kind, S(n,w), which count all the ways in

which n labeled objects can be assigned to w unlabeled sets:

S(n,w) =
1

w!

w−1∑
i=0

(−1)
i

(
w

i

)
(w − i)n =

1

w!
Q (n,w) . (4)

Equations (3) and (4) show that Q(n,w) numbers are related to Stirling numbers by a factor of w!.

Appendix Table A2 shows the first 10 rows of S(n,w) and their relation to the Bell numbers. Tables A2

through A4 give examples of the mechanical derivation of the Q numbers for Q(1, 1) through Q(10, 10).

We are now in a position to characterize the probability mass function of the losers distribution.

Theorem 1 Let k, n ∈ Z+ and n ≤ k. The probability of l losers in a k-player, n-fold lottery game is

given by

Pr(l | n, k) =

(
k
l

)∑k−l−1
i=0 (−1)i

(
k−l
i

)
(k − l − i)n

kn
(5)

Proof. Clearly 0 ≤ l ≤ (k − 1), so if there are l losers there are w = k − l winners. Winners distribute

the n wins among themselves in w parts. These parts form a proper partition of n. Letting σn,w represent

one such w-fold proper partition of n and Sn,w represent the set of all proper w-fold partitions of n, from

Kao and Zetterberg (1957) Theorem 2.2, we have that

∑
σn,w∈Sn,w

n!∏w
i=1 wi!

=

w−1∑
i=0

(−1)
i

(
w

i

)
(w − i)n . (6)

Equation (6) gives the frequency with which a w-fold split of the lotteries will occur, with w players and

every player winning at least once —it ignores the possibility that there might be one or more losers. But

given any w-fold split of wins from a k-player, n-lottery game, l zeros can be added to the win-vector R

in
(
w+l
l

)
ways. The frequency with which a w-fold split will occur in a k-person, n-lottery game —and thus

L(l), the frequency with which there will be l losers is therefore

L(l) =

(
k

l

) ∑
σn,w∈S

n!∏w
i=1 wi!

=

(
k

l

)w−1∑
i=0

(−1)i
(
w

i

)
(w − i)n. (7)

Letting w = k-l and dividing the frequency by the sample space gives the probability of l losers Pr(l | n, k)

=
(k
l )

∑k−l−1
i=0 (−1)i(k−l

i )(k−l−i)n

kn , as in Equation 5. �
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Corollary 1: The expected number of losers in a k-player, n-fold, lottery game is given by

l̂ = E(l) =

∑k−1
l=0 lL(l)

kn
. (8)

Corollary 1 is straightforward. Since L(l) is the frequency with which l losers will arise, dividing this

by the sample space kn generates the probability that l losers will arise. The sum in (8) is the probability

weighted, convex combination of all possible values of l .

 

Figure 4: Probability Mass Functions for the Losers Distribution
(For n ∈ {6, 12, 24, 60})

Figure 4 plots losers distribution probability mass functions for lottery games of size n = 6, 12, 24, and

60. The pmf’s are uni-modal and right-skewed. Since the mean converges to about one-third of n and the

upper bound on the number of losers is (n−1), the probability mass function has a long right tail that grows

as n grows.

Table 1 shows the mean, variance, standard deviation, and coefficient of variation for losers distributions
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Table 1: Losers Distribution: Descriptive Statistics for Selected Values of n

n Mean Variance St. Dev. Coeff. of Var. Skewness

1 0.00 0.000 0.00 −− −−
6 2.01 0.605 0.79 0.387 0.778

12 4.22 0.993 1.00 0.236 1.229

24 8.64 2.353 1.53 0.177 1.773

60 21.89 5.852 2.42 0.111 2.551

120 43.96 11.684 3.42 0.078 3.217

500 183.76 48.624 6.97 0.038 4.907

1000 367.70 97.228 9.860 0.027 5.936

with n = k and n ∈ {1, 6, 12, 24, 60, 120, 500, 1000}. The mean rises monotonically with n but the ratio l̂
n

converges asymptotically to the multiplicative inverse of Euler’s number —i.e., to approximately 0.368 (see

Figure 5). Similarly, the variance and standard deviation of the losers distribution also rise, but at a much

slower rate than n. This is shown by the coefficient of variation in Table 1, which falls from 0.387 for n = 6

to 0.027 for n = 1, 000.

The losers distribution is right-skewed and plots in Figure 4 suggest that this asymmetry grows with

the size of a lottery game n. The coefficient of skewness for selected values of n —shown in the right-most

column of Table 1— confirm this impression. Skewness rises monotonically with n, though at a decreasing

rate. When game size doubles from n = 12 to n = 24, the coefficient of skewness rises by more than 44%,

but when game size doubles from 500 to 1, 000, skewness rises by less than 21%.

2.3 Recursive Relations

There is a recursive relation between the Q(n,w).

Theorem 2: Let Q(n,w) indicate the sum of all multinomial coefficients generated by the proper partition

of n into w parts. There exists a recursive relation of the form

Q(n,w) = w{Q[(n− 1), (w − 1)] +Q[(n− 1), w]}. (9)

Proof. From equation (3) we have that the term in brackets in (7) becomes

Q[(n− 1), (w − 1)] +Q[(n− 1), w] =∑w−1
i=0 (−1)

i (w
i

)
(w − i)n−1 +

∑w−2
i=0 (−1)

i (w−1
i

)
(w − 1− i)n−1

The first term can be rewritten to obtain
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(
w
0

)
wn−1 +

∑w−1
i=1 (−1)

i (w
i

)
(w − i)n−1 +

∑w−2
i=0 (−1)

i (w−1
i

)
(w − 1− i)n−1 =

wn−1 +
∑w−1
i=1 (−1)

i (w
i

)
(w − i)n−1 -

∑w−1
i=1 (−1)

i (w−1
i−1
)

(w − i)n−1 .

The sign change for the third term in the last equation comes from changing its limits of summation.

Collecting terms and making use of the Pascal triangle identity
(
w
i

)
=
(
w−1
i

)
+
(
w−1
i−1
)
, this becomes

wn−1 +

w−1∑
i=1

(−1)
i

(
w − 1

i

)
(w − i)n−1

=

w−1∑
i=0

(−1)
i

(
w − 1

i

)
(w − i)n−1

=

w−1∑
i=0

(−1)
i

(
w − 1

i

)
(w − i)n

(w − i)

When this last expression is multiplied by w, we obtain

{Q[(n− 1), (w − 1)] +Q[(n− 1), w]}w = {
∑w−1
i=0 (−1)

i (w−1
i

) (w−i)n
(w−i) }w =∑w−1

i=0 (−1)
i (w

i

)
(w − i)n = Q(n,w),

the desired result. �

Comments. The recursive nature of Q(n,w) lends itself to the construction of a Q-triangle, shown in

Table A4, that is analogous to Pascal’s triangle. Once the values for the nth row are known, nothing else

is needed in order to construct row (n + 1). This can be verified in Appendix Table A4 which provides

Q-triangle values n ≤ 10. Interestingly, the row sums of the Q-triangle form the Fubini numbers —also

known as the ordered Bell numbers (Series A000670).

The Q-triangle can also be derived as a series of Hadamard, or entrywise matrix products. The required

sequence of such lower triangular matrices (with the upper triangles of zeros omitted) appears in Tables A2

through A6. Entries of the matrix in Table A2 are Stirling numbers of the second kind, S(n,w) —series

A008277. They count the ways in which n distinguishable, or “labeled” elements of objects can be assigned

to w indistinguishable, or “unlabeled” sets. Stirling matrix row sums
∑n
w=1 S(n,w) yield the Bell numbers

—series A000110.

Table A3 contains the permutations wi! for wi ≤ n. As Equation (3) makes clear, the Q-Triangle entries

Q(n,w) of Table A4 can be derived as w!S(n,w). So, letting Mi stand for the lower-triangular matrix in

Table “i”, the elements of Table 4 are obtained as M2 �M3 = M4, where � stands for the Hadamard product.

The elements in row n, column w that lie on or below the diagonal of M4 form the Q-triangle, the sum of
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all multinomial coefficients that can be generated from a proper partition of n into w parts. The row sums

of this matrix are given by

T

n∑
w=1

Q(n,w) =

n∑
w=1

w!S(n,w) (10)

and generate the Fubini numbers —series A000670, also known as the ordered Bell numbers. Table A5

lists the left-justified, binomial coefficient values of Pascal’s triangle —omitting the first column of
(
n
0

)
= 1

values. These have rows which sum to Gaussian binomial coefficients. Finally, Table A6, shows the “Losers

distribution” matrix. It consists of a lower-diagonal matrix whose elements are the Hadamard product of

corresponding Q-matrix elements of Table A4 and binomial coefficients from the Pascal triangle (shown in

Table A5): M6 = M4 �M5, or equivalently M6 = M2 �M3 �M5. Note that the rows in every row n of Table

A6 sums to nn, the sample space, proving that this is indeed a probability distribution function.

In the comming sections I develop an application of the losers distribution to an important problem in

development economics, the study of poverty, and the determinants of income distribution.

3 APPLICATION TO FINANCIAL INCLUSION

It is well known that the poor are less likely to participate in formal financial markets (Morduch, 1999). In

times of economic shock or when faced with short-term cash flow problems, the poor typically turn to informal

sources of finance, including friends and family, pawn shops, moneylenders, and loan sharks. This empirical

regularity has spurred the search for mechanisms to bridge this “financial exclusion”. Muhammad Yunus’

work in Bangladesh is one of the earliest and the best known efforts to formally address this unmet demand

of the poor for financial instruments by building social capital among small groups of borrowers. Grameen

Bank’s “micro-finance” scheme met with great early success and acclaim, earned Yunus a Nobel Peace Prize,

and spun off many emulators. The last two decades have seen a surge of creativity and financial resources

invested in developing more structured and less usurious ways for “financial inclusion” in formal credit

markets such as organizing credit cooperatives and rotating savings and credit associations (Armendáriz de

Aghion and Murdoch, 2005).

Sadly, recent assessments have been less sanguine about the mechanisms behind success of Grameen Bank

lending (Jain, 1996), about the long term benefits of micro-lending in general (Banerjee, Duflo, Glennerster,

and Kinnan, 2015 and Banerjee, Karlan, and Zinman, 2015), raised the possibility of market power (Bairagi

et al., 2014), and even cautioned that microfinance coverage expansion may be a primrose path leading to

large scale collapse of the formal banking sector (Polgreen and Vajaj, 2010). The problem is that informal
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lenders who want to lend to the financially exluded poor must ultimately confront the same hurdles that are

faced by formal sector lenders. Informal lenders face the same problems of information asymmetry, absence

of collateral, and lack of experience and reputation which jointly translate into an inability to asses and

charge for differential default risk.

Financial exclusion is not confined to developing countries. It is a concern in well-developed financial

markets too. The creation of the Consumer Financial Protection Bureau (CFPB) through the Dodd–Frank

Wall Street Reform and Consumer Protection Act of 2010 was a formal —if belated— recognition of the

exclusion problem in U.S. financial markets. In 2016, the CFPB conducted a “Financial Wellbeing Survey”,

one of the first of its kind. This 217-question, nationally representative survey of 6,394 adults confirms that

a large segment of the U.S. population is unserved by formal financial markets. About 22% of respondents

saw themselves as financially excluded in that they had applied for credit in the previous year and were

turned down, or did not apply because they thought that they would be turned down. Yet, when asked if

in times of hardship they have friends or family who would lend them money and expect repayment, 39% of

American adults replied “no”. When asked if family or friends would lend them money without expecting

repayment, 68% said “no”. About 4.5% used payday loans, cash advance loans, or pawn shops to obtain

loans. Respondents were asked if they would prefer to receive $816 today or $860 in 3 months. Among the

non-excluded 64.3% preferred to wait for $860 in 3 months, but 60.2% of the financially excluded preferred

$816 today —implying an annual discount rate of 23.3%!2.

A large fraction of the American population is excluded from the formal financial market. In analyzing

the results of a Federal Reserve Board survey of small businesses, Cole and Wolken (1995) find that four in

ten small business owners in the U.S. used their personal credit cards to finance company debt. This prac-

tice was significantly more common among new companies and among companies with African-American

owners. They report that “credit card balances usually carry much higher interest rates than do commercial

loans of comparable size” (637) and require full payment of outstanding balances each month. Campbell

et al. (2011) report that payday loans charge interest in the range of 15 to 30% per week and that the

loans are small —with 80% below $300. Lawrence and Elliehausen (2008) find that payday loan borrowers

tend to be less educated, younger, less likely to own a home, and have poor credit ratings —73% have been

turned down for formal credit within the past 5 years, compared to the national average of 21.8% of all adults.

2These statistics are the author’s calculations, using the CFPB survey data.
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3.1 Financial Self-Exclusion

The reason for exclusion explored in this section is voluntary self-exclusion from formal financial markets.

Voluntary self-exclusion arises when a person is unwilling to participate in the formal financial market —on

the terms that they face. Transactions costs, risk, and asymmetric information create a spread between the

formal market rate of interest that a person is charged for borrowing and the rates she is paid for saving.

Furthermore, this gap varies across the population in a systematic manner. The spread tends to be higher for

people with less wealth, for the young, and for ethnic minorities. A large gap between high interest charged

for borrowing and low interest paid on savings in formal markets makes alternative, informal financial ar-

rangements attractive. These alternatives are not attractive in their own right, they are made attractive in

comparison to the terms that formal markets provide.

Informal lending mechanisms compete with formal ones by finding niches that formal financial institu-

tions do not exploit. Friends and family may have more information about a borrower and can encourage

repayment by resorting to social suasion that is unavailable to banks. Payday lenders are able to loan small

amounts by securing the borrower’s next paycheck —something banks do not traditionally do. Loan sharks

may threaten violence. Pawnshops accept and store high-value, relatively liquid durable goods as collateral

for loans that are a fraction of the expected sale value of these goods. NGO-supported micro finance groups

seek to collect information on the borrowers that is different than what is available to commercial banks and

may try to build social capital that can be used for social suasion.

Such mechanisms notwithstanding, the spread of informal lending mechanisms among the poor is ulti-

mately constrained by the same difficulties that limit formal financing: fixed transactions costs, a lack of a

priori information on creditworthiness, and no collateral in the event of default. Most of the world’s poor

remain financially excluded, awaiting a mechanism that allows them to benefit from pooling their financial

resources in the same way that wealthy people do: “The challenge remains to find ways to deliver small loans

and collect small deposits while not sending fees and interest rates through the roof. And if that objective

cannot be met, the challenge is to develop a framework for thinking about microfinance as a social tool that

might need to rely, to some degree and in some places, on continuing subsidies.” (Armendáriz, 2010, 318)
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4 Lotteries as Financial Instruments for the Poor

In this section I explore using frequent small lotteries with small prizes to bridge the financial gap. I begin

by looking at fair lotteries and hypothetical lottery clubs and end by proposing a compensated lottery that

self-targets the financially excluded population. This is where I make use of the lottery games and losers

distribution developed at the beginning of this paper.

A fair lottery is defined as a lottery where the ticket price is equal to the expected value of the prize.

Letting z be the ticket price, Z the lottery prize and p the probability of winning, a lottery is said to be fair

when

z = E(Lottery) = pZ (11)

When viewed in isolation, widespread participation in games of chance with even odds is difficult to rec-

oncile with rational, fully informed, risk-neutral behavior. The reasoning behind proposing fair lotteries as a

bridge to financial inclusion is based on how formal markets financially exclude the poor. When compared to

financial markets with a very high interest spread, fair lotteries can look like attractive alternative financial

instruments. If individual time preference rates fall between the interest rate spread, a risk-neutral, would-be

borrower will prefer inter-temporal games with a zero expected present value to formal financial markets.

As the interest rate spread widens, more risk-averse borrowers will be attracted. Since lack of collateral,

high information costs, short earnings-histories, ethnic and class discrimination all translate into a higher

rate spread, it is more likely that the poor, the young, and women and minorities who face discrimination

in formal financial institutions will prefer the fair lottery. The attraction is likely to be greatest for recent

migrants, ethnic minorities, and for the young, the groups that account disproportionately for the urban

poor in developed and developing countries alike.

4.1 Fair Lottery Clubs in an Honest World

I begin by ignoring default risk and transactions costs. Everybody is identical and assumed to be honest

and to be able to meet their payment obligations. Consider a financial market in which the interest rate on

savings is zero and where person “i” is charged ri > δ for borrowing, where δ is his time preference rate. In

such a world, a club built around a lottery game can generate significant welfare gains for all but one of its

members —and he will be no worse off. A lottery club is formed at time zero when n people agree to play a

game that has the following rules. The game will consist of n identical fair lotteries spaced over equal time
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intervals of duration t, for a total game duration of T = nt. Before every lottery, each member contributes

$z to create a total prize of $Z = n$z. When the first game takes place at time t = 1, all member names are

placed in a bin and one name is drawn at random. The winner is given the prize of $Z. At time 2t the second

lottery takes place in a manner that is identical to the first one, except that there are now (n− 1) names to

draw from, because the first winner’s name has been removed (no replacement). At time 3t the third lottery is

played with (n−2) member names in the bin. This is repeated n times, until all n participants have “won” $Z.

It is easy to show that any risk-neutral person with a positive discount rate will prefer to join a lottery

club —a priori —to saving in any financial market that has an interest rate split which spans their discount

rate. Similarly, given any degree of risk-aversion, there exists a market interest rate spread such that lottery

club membership will be preferred. Therefore, if (a) people have a positive discount rate, (b) they are

risk-averse, and (c) the formal financial market interest rate split is a decreasing function of wealth, poorer

people will self-select into the lottery clubs. Notice also that a weakly risk-averse person has no incentive

to join a club unless she is financially constrained. What proportion of the population will choose to join a

lottery club depends on the distribution of income, the distribution of risk-aversion, and on the size of the

interest rate split that people face in formal financial markets. A posteriori the first (n− 1) club members

to receive a payout will better off having joined in the lottery game than if they had saved at zero interest

and the nth player will be indifferent. The lottery game therefore generates a Pareto improvement.

Such social gains will be especially large in markets with high rates on borrowing and non-positive in-

terest rates paid on formal savings accounts ––a financial environment that is all too familiar to the poor

throughout the world. The break-even constraint implied by fairness rules out private provision. So –in the

absence of default risk –it can be argued that fair lottery clubs are public goods.

4.2 Fair, Open Lotteries in a Not so Honest World

Default risk creates a fatal problem for lottery clubs. Once a member has received her prize, she will want

to quit. She has no incentive to return to the game and continue making payments. If early winners default,

later prizes will be less than $Z, the odds of winning the lottery will no longer be fair, and the club will fall

apart. This default risk can be overcome —at a cost.

Consider a fair lottery which pays $Z with probability p and charges z per ticket, with z = pZ, as before.

However now allow the lotteries to be open. No club membership is required. Anybody can play and they

can play whenever they want to and for as long as they want to. Identical lotteries are held every t intervals
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of time forever and Z is set to be small –say at some fraction of the local poverty line or at a multiple of

the local minimum monthly wage. The probability of winning, p, is large. For instance t and p can be set

so that t
p is approximately equal to one year. If the lottery is held every week, then p= 1

52 .

The reasoning for lottery clubs carries through to the open lottery. Risk-neutral people will prefer the

open lottery to participation in financial markets if the formal interest rate split spans their time preference

rate and if they are financially constrained. Therefore, the poor will self-select into the market for lottery

tickets. In fact exactly the same number will want to participate in an open lottery as would join lottery

clubs if clubs were offered instead. Also, for any given level of risk aversion, there exists a formal market

interest rate spread such that participation in the open lottery will be preferred. But, because a fair open

lottery can not generate profits, it will have to be publicly provided. Fairness and private provision are not

compatible.

However, —in contrast to the lottery clubs —open fair lotteries will generate Pareto improvements only

in the a priori sense. The utility of people who wish to play will rise when the lottery is made available and

no one’s utility will fall —this is revealed by the decisions to buy tickets.

The ex post situation is more complicated. If a risk-neutral person with a positive time preference rate

plays the lottery every time it is offered for n periods, will he say that he is better off having played? Or

will he say that he wishes he had saved the ticket money instead? His answer will depend on whether, when,

and how many times he won. If he played every period, for n = 1
p times and he won at least once at a time

t∗ < n, he will be better off having played the lottery and will not wish he had saved instead. If he won

more than once he will be happy indeed. If he won only once and his win took place in period n he will be

indifferent. But if he lost n consecutive times, he will wish he had saved his money instead.

Next, consider a situation where the lottery game is offered and a very large number of people choose to

play, i.e. k � n. When the game concludes, set aside all of the people who won only once. From this group

of one-time winners, select one winner from each of the n lotteries in the game. This is now a group of n

people with one winner for each of the n lottery dates. The collective outcome for this subset of players is

exactly the same as for the perfect world lottery club described earlier. Within this group, resources were

pooled and redistributed in a Pareto dominant manner. But, how many similar subsets can be formed out

of the set of people who chose to participate in the open lottery?

Once all such groups have been drawn from the full set of players, the remainder will consist of players
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who won more than once and players who lost every time.3 Though fair a priori, this lottery will result in

a transfer from losers to winners almost surely. Those who win at least once will be glad that they played,

and those who lose every time will wish that they had saved their money instead. This transfer of welfare

among players is at the root of objections to publicly-sponsored lotteries, even if they are fair.

The open lottery generates a potential Pareto improvement overall, but an actual Pareto improvement

only among the subset of winners W. The losers, L, will be strictly worse off ex post. How many losers will

there be? This proportion is stochastic and is in fact the random variable “l” from the losers distribution

developed earlier in this paper and described in Equation (7). Figure 5, below, shows that the proportion

of players who lose converges to 1
e —about 37% —for large values of n and lies between 35 and 36% for

values of n that would be used in practice4.

Can these losers be compensated in some way?

5 The Compensated Lottery Game

Consider a compensated open lottery game. It shares many characteristics with the unsubsidized open

lottery described in the previous section.

1. The compensated lottery game consists of a sequence of n lotteries spaced out in equal intervals of

duration t,

2. Setting time units equal to one (week, month, year...), the game has a total duration of n.

3. Each lottery pays a prize of Z with probability 1
n .

4. The game is open:

(a) anyone can play,

(b) players can play as many times as they wish, and

(c) they have no obligation to join a club or to continue playing.

5. Any player who can prove that she has had n consecutive losses will be paid the prize of Z.

6. Every win resets the clock.

When there is no compensation and the ticket is set to z = pZ, as before, each lottery in a game has

an expected value of zero. So the expected value of the entire game is also zero. This meant that the

3Note that the average number of wins in this group will be one.
4Values in this range are not visible in Figure 5 because of scaling problems
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Figure 5: Expected Share of Losers
(As a share of lottery size ‘n’)

uncompensated lottery instrument would automatically target people who are financially excluded. It also

meant that the uncompensated lottery would be self-financing.

The crucial distinction of the compensated lottery is characteristic 5, the compensation of losers. However

this win guarantee causes the compensated lottery game to have a positive expected value. The act of

compensating losers therefore destroys the ability of the compensated game to automatically target people

who are financially excluded. A compensated lottery game with fair pricing for each lottery will therefore

crowd out formal financial markets and also be expensive to subsidize. The value of the win guarantee must

be priced-in in order to restore automatic targeting —but at what price? The subsidy that is needed will

also depend on how many tickets are sold and how that price is set.

The Price of Financial Exclusion In an economic environment in which there is financial exclusion

the relevant basis for determining the attractiveness and viability of a new financial instrument is not the
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positive or negative expected value of the instrument itself, but how it compares to alternative opportunities

in the formal financial sector.

Consider a formal financial market where the interest rate for loans charged to person “i”, ri = r(Γi), is

based a vector of personal characteristics Γi. Consumption technology is given by C = Yi + αZ, where Yi

is exogenous income per period, Z is an indivisible asset, machine, or production technology which yields a

return of α per period, with 0 ≤ α ≤ 15. If she saves Z
n per period on her own, she has to wait n periods

to obtain Z. If she borrows, she obtains Z immediately but has to pay ri(1+ri)
n

((1+ri)n−1)Z per period —which

is more than Z
n . Since she will own Z after n periods with both methods, consumption in periods t > n

will be identical under both courses of action and she therefore will not involve them in her decision on

whether to take out a commercial loan or self-finance. Define person “i” as “financially excluded” if she

faces a commercial interest rate r(Γi) which is so high that she does not participate in the formal market.

This requires that the present discounted value of the self-financing option exceed the commercial one:

(Y − Z

n
)

n∑
t=1

1

(1 + δ)t
>

(
Y + αZ − ri(1 + ri)

n

((1 + ri)n − 1)
Z

) n∑
t=1

1

(1 + δ)t
, (12)

which simplifies to (
ri(1 + ri)

n

(1 + ri)n − 1

)
−
( 1

n

)
> α; (13)

financial exclusion exists when the additional cost of a commercial loan in each period exceeds the return on

Z.

This means that the price of a compensated lottery ticket can be honed to self-target the financially

excluded population, without drawing resources from existing formal financial markets. It creates a new

financial market among the poor by pooling their resources.

THEOREM 3: The financial exclusion ticket price

Designate re as the commercial interest rate charged on borrowing such that if r(Γi) ≥ re, person “i” is

considered to be financially excluded. With consumption technology C = Y + αZ and discount rate δ,

the compensated lottery ticket price can be set to a value z(re), such that only the financially excluded

population will want to participate. The “financial exclusion ticket price” z(re) is given by

z(re) = Z

( n∑
t=1

re(1+re)
n

(1+re)n−1 − α[1− p(1− p)(t−1)]

(1 + δ)t
∑n
t=1

(1−p)(t−1)

(1+δ)t

)
(14)

5A similar framework is employed in the economics of poverty traps (see Carter and Barrett, 2006 and Barrett and Carter,
2013).
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Proof. The compensated lottery is preferred to a formal sector loan if

n∑
t=1

Y + (pαZ − z)(1− p)t−1

(1 + δ)t
>

n∑
t=1

Y + Z

[
α−

(
r(1+r)n

(1+r)−1

)]
(1 + δ)t

,

which reduces to

n∑
t=1

(
r(1+r)n

(1+r)n−1

)
Z − z(1− p)t−1

(1 + δ)t
>

n∑
t=1

αZ
[
1− p(1− p)t−1

]
(1 + δ)t−1

.

In the formal financial arrangement, a loan makes Z available with certainty at the outset. The date when it

will become available under the compensated lottery is stochastic. So the compensated lottery is preferred to

formal finance when the difference between formal financing costs and expected spending on lottery tickets

is greater than the expected difference in services from Z that will be forgone under lottery game financing

over the duration of the financing period N. The result in equation (14) is obtained when the two terms

in this inequality are set equal and solved for the lottery ticket price z(re). Note that the capital recovery

factor —the term involving r— is strictly increasing in r, so re is the lower bound of the set of commercial

interest rates ri for which the compensated lottery is be preferred to a commercial loan. �

When an open lottery game is not compensated, it is not clear what will happen after a player wins.

He may choose to stop playing, or he might decide to play again. Uncompensated lottery payoffs have no

memory —they are strictly independent from the history of wins. But the compensated game’s rule —the

rule which requires n sequential losses for compensation— links the expected lottery payoffs to a player’s

win history. This linkage removes any behavioral ambiguity. Since the game only lasts for n periods, anyone

who wins at a time t < n is disqualified for compensation. This means that once a person has won, the

expected value of the remaining set of lotteries in the game becomes negative. This is because the price of

each lottery is set at ze > pZ. The personal situation of a winner may signify that Z is not enough, that he

wants to continue playing. However if he does want to continue playing, he will prefere to start a new game

—so that losses qualify for compensation again — rather than continue participating in the game where he

has already won and therefore does not qualify for compensation.

The subsidy thus emerges from the scenario where every player who wins “defaults” after their first

win. Knowing this —together with the financial exclusion ticket price and the expected number of n-times

losers— makes it possible to calculate the expected subsidy. The difference between ticket sale revenues and

prizes paid will depend on the ticket price ze, the total number of players “k”, the duration of each game

“n”, the lottery prize “Z”, the probability of winning any given lottery “p”, on “l”, the number of n-fold

losers who will have to be compensated, and on “α“, the per-period return on Z.

21



Theorem 4: The Subsidy for a Compensated Lottery

Consider an n-fold lottery game that is compensated in the sense that any player who demonstrates n

consecutive losses is awarded the lottery prize Z. This game will require a subsidy s that is given by

s = ZK

{ n∑
t=1

re(1+re)
(1+re)−1 −

[
1− p(1− p)(t−1)

]
α

(1 + δ)t
−

n∑
t=1

(1− p)(t−1)

(1 + δ)t
− l

(1 + δ)n

}
(15)

Proof. The n-lottery game begins with K players purchasing tickets for the round 1 lottery. Of these

pK win and drop out. This generates revenues of z(re)K and pKZ in prize costs. The K(1− p) players left

for the second round generate revenues of z(re)(1− p)K and win prizes worth p(1− p)KZ. This continues

through period n, when (1−p)(n−1)K players generate revenues of z(re)(1−p)(n−1)K and take prizes worth

p(1− p)(n−1)KZ. The difference between revenues and expenses over the entire n periods is therefore

z(re)K

n∑
t=1

(1− p)(t−1)

(1 + δ)t
− pZK

n∑
t=1

(1− p)(t−1)

(1 + δ)t
− lKZ

(1 + δ)n

The first term is revenues. The second term is expenses for prizes paid. The third term, that involves

l , is the expected spending on compensation to loosers in the final period. All three terms are expressed

in present value in order to make them conformable for addition. Substituting for z(re) from equation (14)

and factoring out ZK yields equation (15), the desired result. �

Table 2: Compensated Lottery Game Simulation
(1,000 Players, $1,200 Prize)

Game Ticket Subsidy Total # People
Duration Price per ′000 Savings Receive Prize

(n=months) ze Players Generated Before n

6 $295.15 $12, 332 $1, 200, 000 665

12 $147.28 $31, 888 $1, 200, 000 648

18 $96.27 $50, 125 $1, 200, 000 643

24 $70.48 $67, 223 $1, 200, 000 640

60 $23.90 $149, 511 $1, 200, 000 635

Table 2, above, illustrates how the compensated lottery would work for a monthly lottery that lasts for n

months and pays a $1, 200 prize with probability 1
n . Simulations in the table assume δ = α = re = 10% per

year. Values of n shown range from 6 to 60 months. Since the prize is held fixed in these simulations, the

ticket price z(10%, n) ranges from $23.90 for a monthly lottery that lasts for 5 years to $295.15 for a 6-month

lottery with the same $1,200 prize. In six months, a compensated lottery will generate $1, 200, 000 in savings

among every thousand financially excluded participants in exchange for a subsidy of $12, 332 —about 1%.
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Seen another way, every subsidy dollar spent on the lottery will generate $97.31 in savings among the poor!

Also, 665 people out of every thousand who choose to play the lottery will receive their 1, 200 earlier than

if they had saved the money on their own. This is not a quantity to be ignored and may prove to be the

largest positive net impact of a subsidized, compensated lottery. Table 2 shows that these values range

monotonically with the lottery duration and prop .

 

Figure 6: Revenues & Costs per Dollar of Prize Money (10% Yearly Discount Rate, Time in Months).

The only way to reduce monthly lottery ticket price —while keeping the prize constant and keeping the

lottery attractive to the same group of financially excluded people— is to increase n. This increases its

duration and reduces the probability of winning any one lottery. Though counterintuitive, it turns out that

increasing n makes the lottery more expensive to subsidize —even when the prize money and total number

of players is held constant. Figure 6 shows that costs fall more slowly than revenues, so subsidies must

increase. This need for a higher subsidy at bigger n values is also evident in the Table 2. As game duration

rises, both revenues and costs fall. Discounting reduces both costs and revenues when the game is stretched

out over a longer time. Also, stretching out the duration of the game reduces the probability that a player

will win any given lottery and —for a fixed number of players— this reduces costs because it reduces prize

payouts per period. The longer duration and lower win probability also reduces willingness to pay for the

chance to win a given prize and therefore also lowers the feasible ticket price —and so reduces revenues. But

as n rises, the major difference in the paths of cost and revenues arises from the fact that there are more
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people who need to be compensated. This is because l̂ rises with n and it rises most steeply for the lower

values of n over which most practical lotteries will be organized. The rising proportion of losers only affects

costs, not revenues. Like an externality, this higher cost is not internalized by individual players, and so it

must be born by the group as a whole.

Desirable values of n for the compensated lottery are likely to be quite small —weekly or monthly drawings

for one or two years at most. Administrative costs are likely to be low since there is no roll for collateral,

collections, information asymmetry, or default risk. The biggest advantage of compensated lotteries lays in

the fact that there is no role for gender, racial, and ethnic discrimination in lottery-based financing as long

as anyone can buy a ticket.

5.1 Lotteries Compared to Microfinance

A major consideration in using compensated lotteries as a way to reach the financially disenfranchised

population is likelty to be its cost. The lottery authority could consider controling the amount of the

subsidy by limiting the number of tickets sold. It can also do so by manipulating p, or by requiring proof of

n + ε consecutive losses before a prize is awarded to a loser, with ε ≥ 1. However, it should be understood

that —while values of ε > 0 or p < 1
n lower the expected value of the subsidy— they do so by making

the lottery game more expensive and so partially defeat its purpose of supporting the population that is

financially disenfranchised.

Alternative microfinance mechanisms have mushroomed over the past few decades. If compensated

lotteries are going to be considered, their cost must be compared to the cost of these other efforts to provide

financial markets to the poor. How would a subsidized lottery compare to the typical terms of a micro-loan?

Microfinance has undoubtedly created a source of financing for a very large number of people who can not

participate in formal financial markets —or chose not to participate at the commercial terms they face. By

the end of 2013 there were 3,098 microfinance institutions lending to over 211 million borrowers (Microcredit

Summit Campaign, 2016). Yet these organizations are typically dependent on overt and hidden subsidies,

charge high interest rates, and are plagued by default. Lafourcade et al. (2006) analyzed 163 microfinance

organizations in 11 African countries and found that only 47% earned positive returns –returns are typically

based on calculations that count subsidies as revenue. So “the reality is that much of the microfinance move-

ment continues to take advantage of subsidies” (Armendáriz and Morduch, 2010, p. 318).

In a very thorough recent study Cull, Morduch, and Demirgüç-Kunt (2018) analyze proprietary data
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on 1,335 microfinance institutions that serve over 80 million borrowers globally. They find that “subsidy

remains pervasive,” averages about 13 cents per dollar spent on loans, but that this rate is highly skewed.

Despite having existed for about half a century now, apparently no way has yet been found to fully in-

tegrate microfinance for the poor into formal financial markets. Microfinance markets remain segmented,

with NGO’s accounting for the bulk of the smallest loans, formal banks accounting most larger “microloans”

—median loans 7 times larger than the NGO’s— and non-bank financial institutions (NBFIs) covering the

middle ground. They also find that lending costs are very similar across NGO’s, NBFIs, and formal banks

and that fixed costs dominate the cost of lending. Lending costs are therefore relatively ‘flat’ with respect

to loan size, with the result that cost per loan is higher for the NGO’s because they specialize in granting

smaller loans. The most troubling finding of Cull, Morduch, and Demirgüç-Kunt (2018) is that —-as a result

of higher costs —“the poorest customers in the microcredit sector pay the highest interest rates.” The average

rate charged to the poorest customers ranges from 30 to 40%.

Banerjee, Karlan, and Zinman (2015) review some of the first causal studies of microfinance programs.

They review 7 programs in Bosnia, Ethiopia, India, Mexico, Mongolia, and Morocco and find evidence of

only modest impact. Though explicitly seeking to address financial exclusion, all 7 programs placed severe

restrictions on borrower eligibility and charged high —sometimes exorbitant— interest rates. These include

• Bosnia: limited to microentrepreneurs posessing sufficient collateral, repayment capacity, credit wor-

thiness, business capacity, and credit history; 22% APR interest.

• Ethiopia: limited to microentrepreneurs, joint group liability, proof of poverty status, posessing suffi-

cient collateral, and evidence of a viable business plan; 12% APR interest.

• India: limited to females, requires joint group liability, home ownership, local residence for at least 3

years; 24% APR interest.

• Mexico: limited to female microentrepreneurs with proof of business ownership or significant economic

activity, group liability; 110% APR interest.

• Mongolia: limeted to female microentrepreneurs, group liability; 26.8% APR interest.

• Morocco: limited to microentrepreneurs with proof of economic activity for at least 12 months, group

liability; 14.5% APR interest.

Banerjee, Karlan, and Zinman (2015) report low take-up rates in the 5 studies that used randomized pro-

gram placement. They also find some evidence that pre-microcredit formal and informal financing is crowded
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out by these programs. Both the low take-up and crowding are probably caused by the eligibility restrictions.

In comparison to these experiences the compensated lottery has no eligibility restrictions. It requires

no proof of collateral or experience, age, ethnicity, or gender. The required subsidy is explicit and low in

comparison to the subsidies of most known microcredit organizations. The return on assets that is required

to make the compensated lottery an attractive financial instrument can be set to be much lower than what

is currently the practice in microlending.

6 Conclusions

This paper has developed a new probability distribution, the “Losers Distribution”’ and demonstrated its

application to the problem of financial exclusion.

Can open lotteries do a better job of extending financial inclusion to the poor? The arguments developed

here suggest that they may be able to. They self-target the poor, eliminate the need for screening of any sort,

and create a Pareto improvement in the ex-ante sense that those who choose to participate are by defini-

tion people who prefer a chance at obtaining a lump sum of cash early to the certainty of having to wait for it.

However, even fair open lotteries randomly redistribute resources. They do not generate Pareto improve-

ments in the ex post sense and the pre-lottery distribution of income first order stochastically dominates the

post-lottery distribution and therefore will worsen poverty as defined by a wide class of poverty measures

(Atkinson, 1987).

An open lottery which compensates losers will restore ex-post Pareto dominance defined over the set

of lottery participants. Subsidies per dollar of savings created are estimated to lie in the range of 1% for

6-months to less than 12.5% for 5-year financing appear to be well within the bounds of the subsidies that

are currently sustaining microcredit institutions world-wide. At the same time, compensated lotteries should

do a much better job of reaching the poorest, most financially excluded segments of the population. When

compared to the microcredit initiatives that have been tested over the past fifty years, the administrative

costs of a compensated lottery would likely be far lower, and subsidies far more transparent. Take up rates

should be much higher.

Finally, the transition from a pre to a post-compensated lottery national income distribution satisfies
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the Pigou-Dalton transfer principle if lottery subsidies are financed with revenues raised from an income tax

with a zero rate bracket for people below the poverty line and only the poor self-select into the lottery.

Compensated lotteries are unlikely to replace microfinance and will certainly not replace formal banking,

—they are not intended to. There is a special place for them in financial markets as a the missing link to the

financially excluded poor. Formal financial markets take the pool of money from the more patient subset of

formal market participants —the “savers”— and turn them into the liabilities of another, less patient group

of “borrowers”. Lotteries similarly take a fixed pool of savings from one subset of players and distribute

them among a group of “winners”. After an initial burst from pent-up demand, new financial needs will arise

continuously —just as they do in formal financial markets— creating a more or less steady flow of demand

for lottery tickets. A major difference between these financial instruments will be who chooses to uses them.

If the subsidy is set appropriately, compensated lotteries will not crowd out formal financial markets, they

will mobilize the financial resources of the poor and bring in a new set of customers who have no better

alternative.
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7 APPENDIX

TABLE A1
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Row sums

n↓ /  w→ 1 2 3 4 5 6 7 8 9 10 Bell Numbers 
(Series A000110)

1 1 1
2 1 1 2
3 1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 15 1 203
7 1 63 301 350 140 21 1 877
8 1 127 966 1701 1050 266 28 1 4140
9 1 255 3025 7770 6951 2646 462 36 1 21147
10 1 511 9330 34105 42525 22827 5880 750 45 1 115975

Row sums

n↓ /  w→ 1 2 3 4 5 6 7 8 9 10 Σw!
1 1 1
2 1 2 3
3 1 2 6 9
4 1 2 6 24 33
5 1 2 6 24 120 153
6 1 2 6 24 120 720 873
7 1 2 6 24 120 720 5040 5913
8 1 2 6 24 120 720 5040 40320 46233
9 1 2 6 24 120 720 5040 40320 362880 409113
10 1 2 6 24 120 720 5040 40320 362880 3628800 4037913

Row sums

n↓ /  w→ 1 2 3 4 5 6 7 8 9 10 Fubini Numbers 
(Series A000670)

1 1 1
2 1 2 3
3 1 6 6 13
4 1 14 36 24 75
5 1 30 150 240 120 541
6 1 62 540 1560 1800 720 4683
7 1 126 1806 8400 16800 15120 5040 47293
8 1 254 5796 40824 126000 191520 141120 40320 545835
9 1 510 18150 186480 834120 1905120 2328480 1451520 362880 7087261
10 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800 102247563

Row sums

n↓ /  w→ 1 2 3 4 5 6 7 8 9 10 Gausian Binomial 
Coefficients

1 1 1
2 2 1 3
3 3 3 1 7
4 4 6 4 1 15
5 5 10 10 5 1 31
6 6 15 20 15 6 1 63
7 7 21 35 35 21 7 1 127
8 8 28 56 70 56 28 8 1 255
9 9 36 84 126 126 84 36 9 1 511
10 10 45 120 210 252 210 120 45 10 1 1023

Row sums

n↓ /  w→ 1 2 3 4 5 6 7 8 9 10 kn, the Sample 
Space 

1 1 1
2 2 2 4
3 3 18 6 27
4 4 84 144 24 256
5 5 300 1500 1200 120 3125
6 6 930 10800 23400 10800 720 46656
7 7 2646 63210 294000 352800 105840 5040 823543
8 8 7112 324576 2857680 7056000 5362560 1128960 40320 16777216
9 9 18360 1524600 23496480 105099120 160030080 83825280 13063680 362880 387420489
10 10 45990 6717600 171889200 1285956000 3451442400 3556224000 1360800000 163296000 3628800 10000000000

TABLE A6:   L(n,w), Losers Triangle, Hadamard product: M6=M4 M5

TABLE A3:   Factorials: w! (matrix M3)

TABLE A2:   S(n,w): Stirling Numbers of the second kind (matrix M2)

TABLE A4:   Q(n,w)=w!S(n,w): Q-Triangle of win frequencies with no Losers (matrix M4)

TABLE A5:   Pascal's Triangle of binomial coefficients (zero column excluded) (matrix M5)
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