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Abstract—Brain Computer Interfaces (BCI) can be used not 
only to monitor users, recognizing their mental state and the 
activities they perform, but also to make decisions or control their 
environment. Hence, BCI could improve the health and the 
independence of users, for example those with low mobility 
disabilities. In this work, we use a low-cost and low-invasive BCI 
headband to detect Electroencephalography (EEG) motor 
imagery. In particular, we propose a deep learning classifier based 
on Convolutional Neural Networks (CNN) and Long Short-Term 
Memory (LSTM) in order to detect EEG motor imagery for left 
and right hands. Our results report a 98,2% accuracy in the 
correct classification. Additionally, we discuss the influence of 
using raw data over using the data split in frequency bands in the 
model proposed. We also discuss the influence of certain frequency 
bands activity over other frequency bands in the task proposed. 
These results represent a promising discovery in order to 
democratize users’ independence by the adoption of low-cost and 
low-invasive technologies in combination with deep learning. 

Keywords—Neural networks, deep learning, EEG signals, motor 
imagery, BCI, user’s interaction 

I. INTRODUCTION 
Health care professionals are beginning to use wearable 

devices for patient monitoring and clinical practice, which can 
be combined with machine learning algorithms to analyze the 
collected data and consequently predict, prevent or design an 
intervention plan [1]. Wearables with different kinds of built-in 
sensors (mechanical, physiological, bioimpedance and 
biochemical) can measure the physical and mental state of the 
individuals. They can also act in wider domains as input or 
output devices to allow users to interact with the environment. 
For example, some wearable devices such as smart glasses and 
vibration bracelets (sometimes in combination with other static 
sensors in the environment, e.g. camera, presence, etc.) provide 
feedback about users’ interactions or guidelines in performance 
during activities of daily living (ADLs) such as cooking, 
shopping, etc. Some commercial wearables could replace or be 
equivalent to expensive medical devices in particular cases. This 
kind of devices leads to new possibilities in research; their main 
benefits are that they can be used outside, anytime and 
anywhere, not only in clinical environments. They can gather 

big quantities of data in an objective and precise way. One of the 
areas of healthcare in which wearables are applied is the 
evaluation and intervention in healthy ageing. There are a lot of 
research projects on evaluation or intervention systems that use 
wearable devices, for example, to help the elderly living 
independently, increasing their autonomy and improving their 
life quality [2], [3].  

In our previous work [4], we explored the wearable 
capabilities collecting data by proposing an solution-oriented 
system/software architecture that provide suitable support for 
machine learning models in order to predict the frailty status of 
older adults. In this paper, the aim in the healthy aging domain 
is to explore the potential of the commercial Brain Computer 
Interfaces (BCI) devices, specifically the wearable and low-cost 
Muse headband, made by InteraXon [5]. The built-in Muse 
headband sensors record Electroencephalography (EEG) signals 
through four channels located around the head of a person. 
These positions follow the 10/20 international system standards 
[6]. Regular BCI devices, used at hospitals, have up to 256 
channels, which need to be in direct contact to the head skin at 
different locations and which involves expensive machinery and 
cables paired to the head of the user. None of the projects found 
and reviewed in healthy aging uses headbands despite their 
potential. The low-cost and low-intrusive headbands could 
replace regular EEG machinery for some tasks, especially in 
combination with machine learning techniques, which could 
learn different states of the mind. 

Headbands can collect some EEG signals of the brain 
activity of the users that can be used to evaluate their mind state, 
to make decisions or to control their environment. Furthermore, 
different analyses of data from headbands can discover patterns 
or anomalies of the user’s behavior. Even in the absence of 
movement, the headband can measure thinking activity, such as 
motor imagery or goal-oriented thinking, which can be used to 
interact with a computer system. For example, if the user is 
thinking on pressing a bottom of a PC scream, the headband 
could detect such thinking and an app analyzing the headband 
signals could eventually press the bottom. 

In this paper we explore, as a first approximation, the 
possibilities that the Muse headband offers. Specifically, we 



propose a deep learning model to detect left and right hands 
motor imagery using Muse headband. The potential of this 
research is that once we classify left and right hands motor 
imagery, we could combine this information with other sensors 
to inform about users’ activities and health status, and even to 
recommend interventions to improve the independent life. 

The rest of the paper is organized as follows. Section 2 
reviews the state of the art concerning BCI devices and machine 
learning algorithms applied to motor imagery. Section 3 
introduces the used material and methods, and also presents the 
deep learning proposal for classifying two motor imagery tasks: 
left- and right-hand movement imagery. The results or our 
experiments can be found in Section 4. And the last section 
summarizes the conclusions and future work. 

II. BACKGROUND 
In recent years deep learning is gaining momentum. An 

enormous amount of papers using deep learning have been 
published in different areas [7]–[10]. Health is one of such fields 
[10] and even deep learning is commonly used to analyse EEG 
signals [11]. However, most of the research uses high accurate 
and expensive devices, which are quite intrusive, as the users 
need to stick sensors all over his/her head, connected with cables 
to expensive machines [11]. Only a few researchers have 
experimented with low-price, and low-intrusive EEG devices, 
such as headbands [11]. For example, Bird et al. [12] have used 
Long Short-Term Memory (LSTM), that is a type of Recurrent 
Neural Network (RNN), to learn the attentional emotion and 
sentiment of one user while providing visual stimuli.   

Muse headband has been used to test the precision in 
identifying users and a range of similar activities (listening to 
music, reading, playing computer games, relaxing and watching 
movies) in the experiment of Wiechert et al. [13]. Four people 
performed each of these activities ten times while wearing the 
headband, registering the five waves (alpha, beta, theta, delta 
and gamma) of each one of the four locations every 0,1 seconds. 
The dataset with the streams of data was analysed exploring four 
different classifiers: Decision tree, Random Forest, Support 
Vector Machines and Neural Networks. The three last classifiers 
reach better accuracy to predict persons (95%-100%), but the 
first classifier did not perform well (only 65% of accuracy). 
Regarding the prediction of activities, the classifiers were less 
accurate, being SVM the best classifier with a 75% accuracy. 

For motion intentions, there are also some research works 
that use headbands. For example, a headband with 16 sensors, 
EMOTIV, was tested in 26 children [14]. The aim of this work 
was to explore two strategies to control the movement of objects 
(a real remote-control car and a computer cursor). The first 
strategy is the motor imagery, thinking about what hand should 
be moved to do the task of moving the object. The second one is 
the goal-oriented strategy, imaging the desired effect, which 
reach better performance. The data obtained in the experiment 
was analyzed with Cohen’s kappa. The results show worst 
performance in children than on other relevant adult studies, 
which normally reach around 70% accuracy. 

There are also some research works on motion intention that 
apply machine learning techniques and EEG signals. For 
example, Chen et al. [15], use LSTM to learn human intentions 

to move hands, feet and eyes. However, they used high-cost and 
intrusive EEG devices. A few works have attempted to use 
headbands to learn the motion intentions of the users. For 
example, Rodriguez et al. [16] have applied Convolutional 
Neural Networks (CNN) and LSTM layers to learn the motion 
intention (hand and foot, relaxation state and mathematical 
activity) of one user with an accuracy of 80%. Another work 
[17], used Support Vector Machines (SVM), a traditional 
machine learning algorithm, for predicting left and right hands 
motor imagery getting an accuracy of 95,1%. This study 
included only one user and hence, they need to train the model 
for every new user. Furthermore, during long periods of times, 
between 3 and 7 seconds of signal recording, the accuracy was 
close to 95,1%, which could produce a model overfitting. 

Our proposal improves the accuracy of these results ([16], 
[17]) in a similar experiment, discriminating between left and 
right hands motor imagery. We also increase the sample size 
over the previous works and control the overfit of the model. 

III. METHODS 
This section describes how to acquire EEG signals, to 

process them and to create a deep learning model for classifying 
two imagery motions: left- and right-hands movement 
intentions. 

A. EEG signals acquisition 
We used Muse headband version 2 by InteraXon [5], a 

wearable device with 4 electrodes (channels) to detect brain 
signals in a low-invasive way. Muse records EEG using 4 gold-
plated cup bipolar electrodes, located on the sensorimotor brain 
cortex area. The location of the electrodes follows the 10/20 
international standard presented in Fig. 1. These dry electrodes 
(or channels) are TP9 (left ear), AF7 (left forehead), AF8 (right 
forehead), TP10 (right ear) and Fpz, which is just the reference 
electrode, but it is not used to capture brain signals. Additionaly, 
we used Mind Monitor [18], which is a mobile application (app), 
for recording the signals in real time. We did not use InteraXon 
software, because they discontinued its Software Development 
Kits (SDK), preventing software developers or researchers to 
create their custom Apps. 

In the headband, each channel captures a raw EEG signal, 
measured in microvolts (μV). Thus, in total we have four raw 
EEG signal data. These raw data are ranging from 0 to 1682μV 
approximately. In addition, the Mind Monitor app supports 

Fig. 1. Muse electrodes position [5]   



collecting the values of the five brain wave types. Mind Monitor 
processes automatically the raw data to obtain the brain waves 
at different frequency bands, using the logarithm of the Power 
Spectral Density (PSD) of the raw EEG data coming from each 
channel. Therefore, five brain frequency ranges are recorded. In 
ascending order this frequency bands are: (1) delta (< 4Hz, 
appears for continuous-attention tasks), (2) theta (between 4 and 
7 Hz, spikes when repressing a response or action), (3) alpha 
(between 8 and 15 Hz, measures relax or closing eyes), (4) beta 
(between 16 and 31 Hz, reflects active thinking, focus, high alert 
or anxiety), and (5) gamma (> 32Hz, displays during cross-
modal sensory processing). Besides the EEG signals, Muse also 
has accelerometer, heart rate, breath and muscle movement 
sensors, allowing to record blinking and jaw clenching. Some of 
these sensors are neither supported for developers nor by the 
Mind-monitor app.  

B. Trial protocol 
We performed different EEG recording sessions with 4 

healthy users aging from 33-55 (3 females; 1 male). We carry 
out recordings for detecting two different tasks: motor imagery 
for left and right hands with the eyeballs rotated in the respective 
direction, imaging to pick up a bottle, but avoiding to touch it, 
or to move the hand, or to blink eyes (See Fig. 2). According to 
Li et al. [17] the movement of eyeballs has influence on brain 
waves recorded by F7 and F8 electrodes (in our case AF7 and 
AF8, because these are the closest signals available in Muse). 

Each recording takes 20 seconds of duration and they were 
repeated 20 times for each task. Thus, we labelled these 
recordings depending on the tasks: 0 for motor imagery for left 
hand; and, 1 for the right hand. These sessions took place in a 
silent and distraction-free environment. 

C. Deep Learning 
Deep Learning (DL), have been traditionally used for 

computer vision, speech recognition or natural language 
processing, and have been extended recently to several fields 
(LeCun et al., 2015). Also, in EEG signals deep learning have 
been successfully used in the last years [11]. 

DL, applies multiple iterative non-linear transformations of 
data, simulating the connections of the neurons in a brain. The 
parameters of the transformations are refined iteratively by 

minimizing a cost function (i.e. minimizing the error between 
the predicted and the real signal). DL means several layers of 
neural networks. However, there is not a consensus on how 
many layers make it deep. In practice, several deep learning 
approaches use just three layers. In a neural network we have 
one input layer, one output layer and one or more hidden layers 
(see Fig. 3). 

The hidden layers of a Deep Neural Network could be fully 
connected (FC, a.k.a. dense layer), recurrent neural network 
(RNN) or convolutional neural network (CNN). In a FC, all 
neurons received as input all the weighted outputs of the 
preceding layer. Generally, it is followed by a non-linear 
activation function. In an RNN one neuron receives the 
preceding output of the previous layers and its own output of the 
previous values.  

In particular, one of the most used layers in an RNN is the 
Long Short-Term Memory (LSTM). In LSTM the previous 
values are remembered over an arbitrary period of time, which 
makes these layers suitable for time series where the lags 
between events are uncertain. Moreover, the commonly input of 
an LSTM is a triplet consisting in: (samples, timesteps, features). 
The first value is the number of observations, the second value 
is the timesteps defined in (Equation 1), and the third value of 
the triplet is the number of features.  
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In a CNN, the outputs are convoluted, and one neuron only 
takes a subset of output signals (the closest outputs) of the 
previous layers (depending on the convolution of said outputs). 
CNN layers detect better the spatial component of the data and 
RNN detect better the temporal component of the data [11]. 

D. Signal Processing 
We Bluetooth paired Muse headband to a mobile phone, 

through Mind-monitor App in order to collect EEG signals, raw 
data and brain waves derived from that. The raw EEG data 
consist in 4 signals coming from the 4 channels TP9, AF7, AF8, 
TP10 (See Fig. 4). The brain waves are derived from the raw 
EEG signals per each channel, consisting in the following wave 
types: alpha, beta, theta, delta and gamma waves. A user’s 

Fig. 2. A user during a recording session Fig. 3. Neural network with only one hidden layer [19]  



recording sample is shown in Fig. 5 for left- and right-hand 
motor imagery through these four channels, split by each type of 
wave. We found that raw EEG data do not report good results, 
and for that reason we only considered the brain waves data. 

Therefore, we have a total amount of 20 brain wave signals 
(called features). All of these signals were recorded at the default 
sampling rate of 250Hz using 50% overlap between consecutive 
windows, and tested with several windows sizes (0.1s, 0.25s, 
0.5s, 1s, 1.5s, 2s, 2.5s, 3s, 3.5s, 4s, 4.5s and 5s) in order to get 
the best performance (as in our previous work [20]). We did not 
choose a window size higher than 5 seconds in order to get an 
accurate model close to a real time performance. In this way, the 
lower window size, the better. Thus, we have different number 
of timesteps and samples depending on the different window 
sizes tested.  

Table 1 shows the triplet corresponding to the different 
window sizes configurations: the total number of samples, 
timesteps and features. It is common to split the sample size in 
these partitions of 80%-20%, 66%-33%, or 90%-10% to train 
and validate the accuracy of the deep learning model. 90%-10% 
is normally used for a small sample size. We split in 90% for 
training and 10% for validating the sample size, because the total 
number of our available samples is small (corresponding to 4 
users).  

TABLE I.  MODEL INPUT CONFIGURATIONS FOR EVERY WINDOW SIZE  
Window 

size Input Triplet 

0.1s (64058, 25, 20) 

0.25s (24653, 62, 20) 

0.5s (12181, 125, 20) 

1s (5940, 250, 20) 

1.5s (3856, 375, 20) 

2s (2846, 500, 20) 

2.5s (2229, 625, 20) 

Window 
size Input Triplet 

3s (1808, 750, 20) 

3.5s (1511, 875, 20) 

4s (1307, 1000, 20) 

4.5s (1097, 1125, 20) 

5s (992, 1250, 20) 

 

E. Architecture Proposal 
In this work, we propose a deep learning architecture based 

on CNN and LSTM layers presented in Fig. 6. Also, we tune the 
parameters of the layers (e.g. neurons) until we get the best 
performance, trying to reduce the values at the minimum in 

Fig. 4. Sample of raw EEG signal data through the four Muse channels 

Fig. 5. Sample of a user’s EEG signal for the five waves by channel 
(Top) Brain waves for Left-hand motor imagery. (Bottom) Right-hand. 

 



order to have a low computational model in terms of 
computational cost. The detailed description of architecture is 
the following: 

• The input layer. This layer is three-dimensional 
following this triplet (samples: None, timesteps: 875, 
features: 20), explained in the previous subsection 
“Signal Processing”. These 875 timesteps correspond to 
the 3.5 seconds window size that reported the best 
performance presented in the Results section. 

• A CNN layer with 32 filters of size 1. 

• A LSTM layer with 32 neurons with 0.2 dropout and 
0,001 regularizer, in order to prevent overfitting [21].  

The implementation of the signal processing and the deep 
learning model architecture were coded with Python and Keras 
library [22]. In Keras, the samples value of the triplet is 
commonly set as “None” in the model architecture, because we 
do not know a priori the total amount of samples to use in the 
training phase. It means that the algorithm will accept any 
number of samples. Afterwards, when we train the model, we 
specify the samples split for training and validation. 

IV. RESULTS 
We tested the deep learning architecture proposed with the 

different window size configurations. Table 2 presents the 
results obtained for all of them. The metrics used to evaluate the 
model were accuracy (Equation 2) and loss.  Loss value in Keras 
is like the Mean Squared Error (MSE). Thus, the lower the loss 
value, the closer our predictions are to the true labels.  

 4%22)+3	/2)$"+3"%#&
5%3-0	/2)$"+3"%#&

 (2)	

The best configuration was achieved with 3.5 seconds 
window size, 98,2% accuracy and 0.084 loss in the training 
phase, while 95,4% accuracy and 0.146 loss in the validation 

phase. Fig. 7 and Fig. 8 show the evolution of the accuracy and 
loss respectively through 200 epochs. And both of them indicate 
that our model is not overfitted, because the validation group 
follows the trend of the training accuracy and loss.  

These results greatly improve the accuracy of similar 
previous works such as the experiments performed by 
Rodriguez et al. [16], that reaches 80% accuracy. Our proposal 
overcomes the accuracy of [16] by 18%, and the previous work 
of Li et al. [17] with 95.1% accuracy, and our proposal 
overcomes it by 3,1%. We also take recordings of a higher 
number of users than they take (four versus one). We used five 
types of waves per channel (20 features) instead of raw data used 
in [16] or the gamma waves of AF7 and AF8 channels used in 
[17]. We also avoided model overfitting using dropout layers 
and regularizers. Moreover, we tested different window sizes to 
find the best configuration, and we validated the model in each 
epoch. 

TABLE II.  MODEL PERFORMANCE FOR DIFFERENT WINDOW SIZE 
CONFIGURATIONS 

Window 
size Train Loss Train 

Accuracy 
Validation 

Loss 
Validation 
Accuracy 

0.1s 0.09087219 0.97503989 0.24303960 0.93849515 

0.25s 0.08922394 0.97642761 0.15163553 0.95093268 

0.5s 0.07919682 0.97910964 0.21780399 0.93437242 

1s 0.08892093 0.97381222 0.27917766 0.89225590 

1.5s 0.09659558 0.97233426 0.32148947 0.92487049 

2s 0.08924546 0.97969543 0.24674581 0.94385963 

2.5s 0.08574009 0.97507476 0.21241018 0.95067262 

3s 0.07641593 0.98033189 0.13620870 0.96132594 

3.5s 0.08427640 0.98233997 0.14661604 0.95394736 

4s 0.07614856 0.98044216 0.13160587 0.96183204 

4.5s 0.08577207 0.97264438 0.16191065 0.94545453 

5s 0.11385067 0.97533631 0.21145251 0.92000001 

Fig. 6. Evolution of training and validation accuracies over 200 epochs 
Fig. 7. Model Architecture Proposal 



 

We confirmed the influence of the brain waves captured by 
the channels AF7 and AF8 [17], while a user is imagining its 
hand moving to pick up a bottle with his eyeballs rotated in the 
same direction. As can be seen in Fig. 8 and Fig. 9 we can detect 
some activity in these waves. Fig. 8 presents the gamma signal 
through AF7 and AF8 of a user. In this case only with these 
signals we could detect the user motor imagery. However, Fig. 
9 shows that this situation is not generalized in all cases. In Fig. 
9 another user has gamma activity, but it is not straightforward 
to detect which hand the user is thinking to move only with these 
signals. To evaluate this assertion, we train and validate our deep 
learning architecture only with these 2 features (gamma AF7 and 
gamma AF8) instead of the 20 selected, and the accuracy was 
very low, close to 2%. Although Li et al. [17] use only the 
gamma waves for their one user study, we demonstrated that this 
behavior could not be generalized, and we need to include in our 
study the 5 types of waves and use deep learning to detect the 
motor imagery. 

Additionally, the four users reported a good usability of the 
system during the experiment. They felt very good wearing the 

 
Fig. 9. User sample EEG signal for gamma wave and channels AF7 and AF8 
(Top) Brain waves for Left-hand motor imagery. (Bottom) Right-hand. 

 

Fig. 8. Evolution of training and validation losses over 200 epochs 

Fig. 10. Another user sample EEG signal for gamma wave and channels AF7 
and AF8 

(Top) Brain waves for Left-hand motor imagery. (Bottom) Right-hand. 

 

 



headband because it is comfortable, data were collected in a 
transparent way for them, and it is low-invasive. 

V. CONCLUSIONS 
In this work, the results showed that motor imagery 

classification, with low-cost and low-intrusive headband, for left 
and right hands is feasible and accurate. The proposed deep 
learning model architecture, based on a CNN layer and a LSTM 
layer, ensure a correct classification in 98% of cases. Moreover, 
we found that the 5 types of waves (alpha, beta, theta, delta and 
gamma) through TP9, TP10, AF7 and AF8 channels are needed 
for an accurate classification. Besides, we have observed that the 
raw data is not enough to ensure the accuracy of the results.  

This proposal has the potential of increasing people 
independence, allowing them to interact with computer systems 
and applications without using their bodies, but just thinking or 
imagining the movement.  

For the future work, we need to explore the possibilities of 
predicting motor imagery in real time. This is not an irrelevant 
task, as in real life we have to offer an immediate response, and 
3.5 seconds windows, which reported as the best accuracy in our 
experiments, could slow down the user experience. In addition, 
we will work on detection of different motor-imagery, such as 
feet, and to increase the sample size by recruiting more users. 

The properties of Muse headband such as low-cost and low-
invasiveness contribute to democratize the adoption of these 
BCI wearable technologies in the health domain. In this line, 
other of our objectives are also the recognition of activities, 
mental state and emotions of the users while they are performing 
daily life activities and the relationship with their health status. 
The headband will be part of our system based on microservices 
and cloud, which includes other wearable sensors and 
applications to monitor and intervene in the healthcare of the 
elderly. 
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APPENDIX A. LIST OF ACRONYM 
 

ADLs   Activities of daily living 
AFX     Position of an electrode in BCI, with number X  
API      Application Programming Interface 
BCI      Brain Computer Interfaces 
CNN    Convolutional Neural Network 
DL       Deep Learning 
EEG     Electroencephalography 
Fpz       Reference electrode in BCI 
LSTM  Long Short-Term Memory 
MSE    Mean Squared error 
NN       Neural Network 

RNN    Recurrent Neural Network 
SDK     Software Development Kits 
SVM     Support Vector Machines 
TPX     Position of an electrode in BCI, with number X 
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