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Abstract— Advances in both computing power and novel 
Bayesian inference algorithms have enabled Bayesian Networks 
(BN) to be applied for decision-support in healthcare and other 
domains. This work presents CardiPro, a flexible, online 
application for interfacing with non-trivial causal BN models. 
Designed especially to make BN use easy for less-technical users 
like patients and clinicians, CardiPro provides near real-time 
probabilistic computation. CardiPro was developed as part of 
the PamBayesian research project (www.pambayesian.org) and 
represents the first of a new generation of online BN-based 
applications that may benefit adoption of AI-based clinical 
decision-support. 
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I. INTRODUCTION 
Prior to the 1990’s and outside of a small group of 

dedicated theorists and statisticians, Bayesian methods 
remained largely ignored [1]. It is only since and arising out 
of the development of novel inference algorithms [2, 3] for 
Bayesian networks  (BNs) and computer processors capable 
of mathematically intense calculation that near real-time 
complicated Bayesian computation has become possible for a 
large class of significantly complex problems [1, 4]. With the 
computational frontier attained, there is a growing movement 
toward bringing Bayesian prediction onto the domain of 
online and mobile electronic health (mHealth) applications. 
Issues of complexity, inconvenience, user unfriendliness and 
the processor-intensive requirements of BNs have made 
mobilising them difficult, with those online BN solutions that 
are observed either presenting as an HTML-veneer that does 
little to mitigate these issues, or limited to very simplistic 
single-layer models only capable of computing a single child 
node, as shown in [5]. We believe that to be effective, any 
approach to real-time online Bayesian computation should 
seek to be computationally lightweight, capable of on-the-fly 
prediction, and accessible to patient and clinician alike using 
existing common consumer technology. This paper proposes 
an approach, a practical architecture and functional design for 
developing online Bayesian-based eHealth applications. It 
goes on to present CardiPro, an application designed as part of 

the EPSRC-funded PamBayesian Project [6] that 
demonstrates and evaluates our approach using two Bayesian 
models: (1) a simple model for diagnosis of Angina, and (2) a 
more complex trauma care model for assessing patient 
condition and coagulopathy. 

II. FUNDAMENTAL CONCEPTS, TERMS AND MOTIVATION 
This section considers the fundamental questions a reader 

might be expected to ask of the theoretical background behind 
this work and the solution proposed. It provides background, 
and in some cases motivation, for each of the highlighted 
questions. 

Why Bayesian? 
Absent of theorem, formula, and in many cases even the 

Bayesian name, hypothesis evaluation through Bayesian 
reasoning has long been taught to medical students [7]. The 
classical approach to clinical evaluation and medical 
reasoning is naturally Bayesian [8]. The process of differential 
diagnosis sees new knowledge considered as a modifier that 
updates the clinician’s prior belief, which itself was based on 
assessment of previous knowledge regarding whether the 
patient has the target disease [8, 9]. Rather than observing new 
information in isolation, or as absolute, the Bayesian asks: 
Given my prior belief and these symptoms and test results, 
what is the probability that the person actually has the 
disease? [8, 9]. 

Why Computerised Clinical Decision Support? 
The quantity of literature proposing novel computer-based 

clinical decision support system (CDSS) solutions has 
continued to grow in recent years [10, 11]. At the same time, 
the number of mobile health (mHealth) apps being proposed 
as CDSS has also increased [12]. Computerised CDSS can 
improve the overall practice of medicine and patient outcomes 
[13, 14]. At their most basic, computerised CDSS support 
evidence-based decision-making by healthcare professionals 
[13]. When developed in furtherance of a Learning Health 
System (LHS), they go beyond evidence-based medicine 
(EBM) and advance the practice of precision medicine [15]. 



Why Online? 
Increasing patient participation and engagement in 

monitoring their own health and healthcare is a national goal 
[16]. Patient engagement has been described as the 
blockbuster drug of the century: capable of reducing hospital 
and clinician resource use and significantly reducing the 
impact of chronic disease and therefore improving quality of 
life [17]. While patient engagement is described in terms of 
participation in the care process, patient empowerment goes 
further to elevate the patient’s power in their relationship with 
the healthcare professional [18]. Engagement is necessary to 
enable empowerment, and it is through empowerment that the 
patient can attain sufficient power to properly engage in self-
care [18]. Availability and use of online eHealth applications 
significantly increases patient empowerment, promotes 
collaboration and as a result of their interaction with these 
tools, patients are more likely to make positive health choices 
[19, 20]. Computerised CDSS are more successful when they 
involve both clinician and patient, most likely resulting from 
empowerment of patients as active participants in their own 
medical care [14]. 

III. THE CHALLENGE OF A REALTIME ONLINE BAYESIAN 
SOLUTION 

Traditionally, the focus of BN tools has been on helping 
modellers  design BNs through a graphical interface and 
performing efficient inference. These tools never really 
focused on the concept of making it easy to deploy BNs for 
the general user. However, recently, several commercial and 
other BN tool developers have proposed web-based solutions 
with varying levels of complexity, functionality and 
efficiency. These include:  

• ShinyBN by Chen et al [15]  This requires several partner 
applications to function. It adds a Web interface layer to 
the process of creating BNs and all input requires 
uploading or declaring a carefully structured table of data 
for the entire model.  

• BN Webserver (BNW) by Ziebarth et al [16]. This 
focuses on learning BN models from data and also using 
the resulting BN models for predictive tasks.  

• Bayesian Net BBToolbox In 2001 the developers of 
(BNT) and OpenBayes set themselves a goal for a future 
version that could support online inference and learning 
[17]. The latest online BNT application layer still performs 
these as offline or batch processed tasks. [18]  

• Genie and SMILE: Jognsawat et al [5] proposed a model 
using GeNIe as the base upon which they layer their own 
tool, SMILE, for online real-time computation. Their 
approach works with simplistic single-layer models where 
a number of single parent nodes all feed into a single 
discrete child node.  

• Netica-Web: This allows deployment of BNs as an online 
question-answer system.  

• BayesiaLab WebSimulator. This allows publication of 
interactive models online [19].  

• AgenaRisk: The current enterprise version provides some 
support for web-deployment. 

The work reported in this paper provides a new approach 
to BN web deployment that supports complex models with 
near real-time computation, enables non-specialist users both 
to easily deploy and use the models, and requires only one 
partner application (AgenaRisk). 

Recommendations for consideration by those seeking to 
develop truly online Bayesian approaches arise out of the 
work of Martinez-Perez et al [12] who identify that: (1) 
images are useful and as such, CDSS should avoid using text-
only or data-focused interfaces; (2) the time a user requires to 
interact with the CDSS is a key factor: that to reduce it the 
CDSS should be integrated with the EHR; (3) there is a need 
to use incremental forms to reduce the amount of manual input 
for the user; (4) more interaction with the user is important and 
interactivity with smartphones is one way to achieve this; (5) 
developers should develop mHealth apps for underexplored 
medical conditions that have fewer of these type of CDSS 
apps. This paper subscribes to these recommendations. 

IV. APPROACH AND DESIGN: OVERVIEW OF THE PROPOSED 
SOLUTION 

This section presents the architectural and functional 
design that would address the challenges presented in the 
previous section and that is evaluated through the CardiPro 
system. The section also presents the algorithms used to 
achieve the major functionality of the system. 

A. Solution Architecture 
Figure 1 provides an overview of the proposed solution 

architecture for CardiPro. The rest of this subsection describes 
the core components of this architecture, namely, the 

 
Fig. 1. Overview of the Solution Architecture 



CardiPro system, the AgenaRisk Cloud API (AgenaAPI), and 
the Client. 

The CardiPro System: Consists of the front- and back-end 
systems necessary to host and support the CardiPro solution. 
Our design for the CardiPro solution presents with five tiers 
represented as layers within Figure 1.  These layers are as 
follows: 

1. Application Layer containing the CardiPro 
application server which hosts the CardiPro 
Service which performs all of the processing and 
logical functions of the overall solution. 

2. Database Layer where information is stored to 
and retrieved from. All logic functions and 
computational processes within the overall 
solution generate data that is recorded against the 
relevant anonymous patient in the CardiPro 
database, while all user authentication, access 
and activities are reported in the audit database. 

3. Integration Layer that computes a reduced 
calculation request that includes either a full or 
partial patient record in a predefined JSON 
format which is passed by the API Connector to 
the AgenaAPI. It also receives the computed 
probabilities response from AgenaRisk. 

4. Client Layer which presents the user interface for 
CardiPro to user devices, allowing clinicians 
researchers and patients to provide data to and 
interact with the complete solution stack. 

5. Communication Layer which transmits alerts via 
email to clinicians and patients where a 
prediction falls outside a clinician-defined 
threshold. 

The AgenaRisk Cloud API: The AgenaRisk component 
consists of two tiers provided by AgenaRisk Ltd. The 
AgenaRisk layers fall outside of CardiPro and are accessed 
over a secure internet connection, represented in the layers on 

the far right of Figure 1. The AgenaRisk Cloud API Layer 
receives requests for Bayesian computations from CardiPro, 
and returns the calculated probabilities. The Computation 
Layer incorporates the AgenaRisk Bayesian processing 
engine that performs the actual computational reasoning. 

The Client: Given that the system is intended for use by 
patients and clinicians and as a mobile eHealth service, the 
CardiPro solution has been designed to be accessed over the 
internet by most common client devices. The CardiPro web 
application in the Client Layer provides access to all functions 
equally, whether the user connects using a tablet or full 
computer system. It should be noted that a progressive web 
app (PWA) presentation layer for smartphones is also under 
development. 

B. Functional Topology 
Figure 2 describes the functional topology for the 

complete CardiPro solution. Interfaces to endpoint services 
exist at each point where information must be passed between 
layers.  

V. EVALUATION OF APPROACH AND DESIGN: PROTOTYPE 
SYSTEM AND CASE STUDIES 

This section evaluates the approach, architectural and 
functional designs presented in the previous section. 
Validation is achieved by implementing the designs to create 
a prototype system, the CardiPro solution, and evaluating this 
solution by testing it through implementing two medically-
focused case studies: one evaluating the severity of angina 
symptoms, and another that predicts acute traumatic 
coagulopathy (ATC) in the care of trauma patients. 

A. Prototype Implementation 
Figure 3 provides an overview of the Infrastructure 

Architecture that was implemented for the as-built prototype. 
The infrastructure is divided into three zones: (i) the CardiPro 
Solution; (ii) the AgenaRisk Service; and (iii) Users. 

The CardiPro Solution: The infrastructure consists of the 
front and back-end systems necessary to host and publish the 

 
Fig. 2. CardiPro Functional Topology 



CardiPro solution. Authentication, Access and Auditing 
(AAA) servers manage user- and machine-level 
authentication and access control, and maintains access and 
usage logs. Users interact with CardiPro through the front-end 
servers, which present the HTTPS/CSS/JSON application to 
the internet. Bayesian models may be declared and configured 
in CardiPro, followed by the creation of patients and recording 
of relevant observations regarding the patient’s history, risk 
factors and symptomatology. Bayesian computations are 
referred via the load balancers to a server hosting the 
AgenaRisk Cloud API for calculation, and the resulting 
probabilities are returned and presented as updated data 
visualisations (graphs) for the user. All interactions and data 
are stored in servers running an industry-standard SQL 
database platform. These databases separately store: (i) the 
Bayesian models; (ii) anonymous patient records; (iii) a 
complete history of all computations requested, and 
predictions returned for each patient; and (iv) log-shipped 
systems and security audit logs. 

While the entire CardiPro solution is lightweight enough 
that it could be run on a single dedicated host server, our test 
implementation ran it on an existing server farm with 
established web, data and security services provided by 
clustered or load-balanced teams of host servers with shared 
access to redundant Storage Attached Network (SAN) disk 
arrays. 

B. Case Studies 
Two case studies were implemented to test and evaluate 

the CardiPro solution. 

Case Study 1: Angina 

Angina is one of the most common symptoms of coronary 
artery disease (CAD) and a leading cause of death globally 
[20, 21]. Around half of all people diagnosed with CAD have 
angina, with 10-year mortality rates post-diagnosis for higher-
risk patients at around 9% [21]. Initially intended as a testing 
and training model for the CardiPro solution, the angina BN 

 
Fig. 3. Overview of the CardiPro Infrastructure Architecture 

 
Fig. 4. The BN Prototype Model for Angina 



model shown in Figure 4 was developed in AgenaRisk 
Desktop with minimal input from clinicians, whose input was 
limited to validating that the model structure and 
computational output reflected a basic but credible level of 
application of existing clinical knowledge. 

The angina model was exported from AgenaRisk Desktop 
in JSON format and a project was created in the CardiPro 
application website. This three-step process entailed: (1) 
uploading the AgenaRisk JSON file; (2) identifying some of 
the input and output nodes, which is shown in Figure 5; and 
(3) setting any threshold output or alert values - in this case, 
the threshold trigger value for the Send Alert node, which is 
shown in Figure 6. 

 
Fig. 5.   Declaring the Angina model in CardiPro 

 

 
Fig. 6.   Customising a node value: Configuring the Send Alert threshold 

The process of using CardiPro to make predictions entails 
creating a patient in the application and providing 
observations regarding the risk factors, signs and symptoms of 
that patient. Just like AgenaRisk, CardiPro can use pre-
defined Boolean, labelled and ranked nodes, while also being 
capable of handling nodes that accept continuous variables 
including point-in-time measurements of the patient’s heart 
rate and heart rate variability. As an observation is entered in 
the CardiPro app, the values of any output nodes are re-
calculated in a near real-time computational process that 

represents the updating of prior belief based on the addition of 
new information. The output nodes, represented as graphs as 
seen on the right in Figure 7, are observed by the user to 
update, while at the same time any diagnostic or treatment 
threshold alert defined by the clinician is evaluated and, where 
necessary, an alert is triggered. Alerts can take the form of an 
email to the clinician and/or patient or may in future result in 
an audible or visual alert to the patient via the PWA version 
of the app on their smartphone. 
 

 
Fig. 7.   Example patient inputs and predictions 

Case Study 2: Acute Traumatic Coagulopathy 

While the previous model was intended only to test the 
prototype application, the acute traumatic coagulopathy 
(ATC) model was used to validate the CardiPro solution’s 
operation and accuracy. The development and validation 
processes for the ATC model shown in Figure 8 are discussed 
in Yet et al [22] and Perkins [23]: suffice to say that it 
represents a clinically supported and validated model that 
makes sound predictions. The clinical benefit and impact of 
this model are evident in that more recently it was one of three 
BN models from the same team that were collectively 
awarded a significant research grant from the United States 
(US) military to further development of AI solutions using this 
model for supporting treatment of injured front-line soldiers 
[24]. The same three-step process described for creating the 
angina model was used to upload and define the ATC model 
in CardiPro. 

C. Evaluation 
What we seek to test is the near real-time claim attached 

in this work to CardiPro through demonstration that the 
solution consistently provides responses to the user in an 
acceptable timescale, consistent with the spirit of that claim. 



We also test prediction consistency to demonstrate that even 
though there is significant difference in the method of 
performing computation and acquiring responses, the 
probabilities returned by CardiPro are consistent and accurate 
to those achieved directly using AgenaRisk.  

Three scenarios were devised which are described in 
Table 1. The first scenario presents with a low number of 
observations regarding a patient in a potentially serious 
condition. The second scenario describes a patient presenting 
with the same number of observations, and values that would 
be considerably less concerning. The third and final scenario 
has a higher number of observations that cumulatively 
describe a patient in critical condition. For each scenario, these 
identical observations were entered as observations against 
the BN in both applications and, along with the time taken to 
perform the Bayesian computation, the predictions for each 
output node were recorded in Table 2. 

TABLE I.  ATC TRAUMA SCENARIOS 

Scenario Node Observation 

1 

Energy High 

Mechanism Blunt  

GCS 3 

Heart Rate 137 

2 

Energy Low 

Mechanism Blunt  

GCS 15 

Heart Rate 87 

3 

Energy High 

Mechanism Blunt 

pH 7.0 

Lactate 6.5 

FAST Yes 

Temperature <34 

All applications used in the tests computed consistent 
results with AgenaRisk desktop.  

TABLE II.  TEST RESULTS 

Scenario ATC 
(Coag) Death Duration 

(s) 

1 Yes: 
0.33553 

Dead: 
0.40597 0.486 

2 Yes: 
0.03167 

Dead: 
0.03588 1.009 

3 Yes: 
0.76399 

Dead: 
0.53733 0.778 

 

VI. DISCUSSION 
CardiPro has a number of key functionalities that arise 

from its flexibility. CardiPro is not limited to running only a 
single model. Any number of models can be presented to and 
used within the CardiPro application. CardiPro is not limited 
to a single output node, nor to simple two-layer BNs. Nodes 
can also easily be re-defined as input or output within the web-
based application and CardiPro can utilise preferred three-
layer causal models. Unlike some applications that can only 
accept one, or limited, observations contemporaneously, 
CardiPro accepts any number of observations to update prior 
probabilities when computing the model. Finally, the BN 
model is completely abstracted and transparent to the 
CardiPro interface: the CardiPro user interface is tailored for 
users who have no knowledge of BNs or Bayesian modelling. 

The test results demonstrate that CardiPro: (1) capably 
performs Bayesian computation and returns results in near 
real-time; (2) achieves an identical level of accuracy; and (3) 
is unique in that it flexibly and efficiently performs online 
inference using three-layer Bayesian networks while also 
presenting a user-friendly interface. 

Benefits from health information technologies (HIT) like 
CDSS are widely suggested in literature, and while many 
patients could benefit from their self-management potential 
the single largest remaining issue preventing successful 
implementation is a lack of adoption [25 - 28]. For HIT like 
CardiPro, that are intended for use by both clinician and 

 
Fig. 8.   The ATC BN Structure [29] 



patient, the adoption barrier becomes amplified. This is 
because these HIT bring together two user groups with 
disparate roles, motives, needs and expectations and the 
adoption barrier must be overcome simultaneously for both if 
the new technology is to succeed [29, 30]. 

Information security and personal privacy: These issues 
can be the main barrier to adoption of HIT, and especially 
mHealth apps [28]. It is usual for mHealth apps to transmit 
user data outside the app, most often to the app vendor’s 
systems for the purpose of enabling functionality or 
computation [31, 32]. Recent studies also found alarmingly 
high rates of mHealth user data being shared with third parties 
[31, 32]. While this is usually in an anonymised and/or 
disaggregated state, it is recognised that a higher risk to 
privacy arises when these third parties repackage and on-
share the data with fourth parties who may recombine data 
from multiple third parties, enabling them to rebuild complete 
or near-complete copies of patient records [31, 33]. Dramatic 
headlines like NHS-approved health apps leaking private data 
[34], Data sharing by popular health apps found to be 
‘routine’ [33] and Some apps are sharing your sensitive 
medical data [35] draw public attention to this issue, which 
significantly impacts on patients’ ongoing willingness to share 
health information with mHealth apps [36]. 

The approach in CardiPro involved a deliberate decision 
to avoid dependence on third parties that seek shared data, and 
to avoid technologies in our development stack that were 
known at the time of development to collect usage, or 
telemetric, data. All potential patient users of CardiPro will be 
identified to the application by the clinician using a generated 
study-ID, with any linking table to identify the real patient 
maintained in the clinician’s secure hospital or clinic 
computer. Patient devices transmit physiometric data (such as 
heartbeat and temperature) and observations (patient 
symptoms) using a SHA-based hash that the clinician inserts 
into the PWA app on the smart device on installation to 
identify which study-ID the data from that device relates to. 
Neither the study-ID or hash are required across the 
AgenaRisk API when recomputing Bayesian probabilities. IP 
addresses and device IDs are also not collected. Thus 
CardiPro, the app developers and the research team are never 
aware of who the real patient is. 

Age and cultural differences: Age persists as a significant 
barrier to computer use [37]. Applications developed for the 
general population are not always suitable for elderly users 
without some modification to account for age-related sensory 
changes in vision and hearing, physical ability, memory and 
cognition [37, 38]. Users report greater willingness to engage 
with apps that provide simple and straight-forward 
educational materials and self-care recommendations, 
something many apps lack [39, 28]. Also, the ethnic/racial 
digital divide means that disparities exist because patients 
from non-English speaking cultures often lack basic education 
and self-awareness of their medical condition [39, 40]. These 
barriers make engagement with mHealth apps even more 
difficult for older peoples from immigrant populations. 

While the CardiPro prototype presents with a vanilla 
interface rendered using React, it is customisable for different 
audiences using cascading style sheet (CSS) templates. In 
future versions we will integrate knowledge obtained by the 
human-computer-interface (HCI) researchers on 
PamBayesian. They have been working with patients in 
patient-public-involvement (PPI) groups to develop complex 

avatar patients and an understanding of patient interface needs 
that will allow us to create customised CSS interfaces for 
different patient groups. 

VII. SUMMARY AND CONCLUSION 
This paper has presented CardiPro, the first of a new 

generation of online Bayesian network-based applications 
developed for the PamBayesian research project. CardiPro is 
capable of hosting complex three-layer BNs and accepting 
input in the form of observations such as signs and symptoms, 
and supporting clinical and patient self-management decision-
making in near real-time. Engineered to overcome the 
limitations observed of other BN-based mHealth apps, 
CardiPro is flexible, accurate and can be adapted to support 
any number of acute and chronic conditions and user types. 
Future work will include development of customised 
interfaces for different patient groups, and development of 
processes that can integrate and perform contemporaneous 
decision-making from a number of medical BNs in order to 
identify health impacts and interactions, and support patients 
with comorbid conditions. 
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