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Abstract. Modern superposition inference systems aim at reducing the
search space by introducing redundancy criteria on clauses and infer-
ences. This paper focuses on reducing the number of superposition in-
ferences with a single clause by blocking inferences into some terms,
provided there were previously made inferences of a certain form per-
formed with predecessors of this clause. Other calculi based on blocking
inferences, for example basic superposition, rely on variable abstraction
or equality constraints to express irreducibility of terms, resulting how-
ever in blocking inferences with all subterms of the respective terms.
Here we introduce reducibility constraints in superposition to enable a
more expressive blocking mechanism for inferences. We show that our
calculus remains (refutationally) complete and present redundancy no-
tions. Our implementation in the theorem prover Vampire demonstrates
a considerable reduction in the size of the search space when using our
new calculus.

Keywords: Saturation · Superposition · Redundancy· Reducibility con-
straints

1 Introduction

Automated reasoners in first-order logic with equality commonly rely on the
superposition calculus [24,5]. This calculus has been extended with various im-
provements in order to reduce the search space. For instance, avoiding superpo-
sition into variables and ordering literals and clauses are common practices in
modern theorem provers [20,28,31].

To reduce generation of redundant clauses in equational reasoning, the “ba-
sicness” restriction [15] was introduced at the term level. This idea aided, for
example, in finding the proof of the Robbins problem [23]. This restriction blocks
superposition (rewriting) inferences into terms resulting from (quantifier) instan-
tiations, considering such terms irreducible in further proof steps. This approach
was further generalised to block superposition into terms above variable positions
in basic superposition/paramodulation [7,25], while preserving refutational com-
pleteness. However, blocking and applying different rewrite steps among equal
terms impacts proof search. In this paper, we propose a number of different
ways to block inferences, so that the resulting calculus remains complete. The
effect of these restrictions resembles some strategies from term rewriting, such
as innermost and outermost strategies.

http://orcid.org/0000-0002-8273-2613
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-7834-1567


2 Márton Hajdu, Laura Kovács, Michael Rawson, and Andrei Voronkov

4 P (g(x, y), f(g(x, b), z))

6 P (g(x, y), f(a, z))5 P (a, f(g(x, b), z)) 7 P (g(x, y), g(x, b))

10 P (a, g(x, b))9 P (a, f(a, z))8 P (a, f(b, z)) 11 P (g(x, y), a)

13 P (a, a)12 P (a, b)

Fig. 1. Possible superposition sequences into 4 .

Motivating example. Consider the following satisfiable set C of clauses:

C =
{

1 g(x, b) ≃ a, 2 f(x, b) ≃ x,
3 g(a, x) ≃ x, 4 P (g(x, y), f(g(x, b), z))

}
where x, y are variables, a, b constants, f, g function symbols, and P is a predicate
symbol. In this paper ≃ denotes equality. Figure 1 shows some derivations of
P (a, a) by consecutively superposing into 4 with 1 and 2 . It also shows a
derivation of P (a, b) by superposing into 4 with 1 , then with 3 and 2 . Note
that Figure 1 contains many redundant clauses. For example, 4 is redundant
w.r.t. 6 and 1 , as it is a logical consequence of (smaller) 6 and 1 . Similarly,
7 is redundant w.r.t. 11 and 1 .

Many derivations of Figure 1 could however be avoided by using a rewrite
order between the inferences. For example, a leftmost-innermost rewrite order on
inferences derives 13 along the path 4 – 5 – 9 – 13 . Whenever we would deviate
from the leftmost-innermost rewrite order when rewriting a term t, we enforce the
order by requiring that any term t′ that is to the left of or inside t is irreducible
in further derivations. In other words, we block further inferences with t′. With
such a restriction, we cannot rewrite g(x, y) in clause 6 , as g(x, y) was to the
left of the previously rewritten term f(g(x, b), z). Hence, when using a leftmost-
innermost rewrite upon in Figure 1, 9 is only generated by the derivation path
4 – 5 – 9 . Similarly, 11 cannot be derived from 7 but can be derived from 6 .

Our contributions. We introduce a new superposition calculus that enables
various ways to block (rewrite) inferences during proof search. Key to our cal-
culus are reducibility constraints to restrict the order of superposition inferences
(Section 3). Our approach supports and generalizes, among others, the leftmost-
innermost rewrite orders mentioned in the motivating example by means of ir-
reducibility constraints, allowing us to reduce the number of generated clauses.
Furthermore, in our motivating example the derivation 5 – 8 – 12 of Figure 1 is
not needed for the following reason. By superposing into 2 with 3 , we derive
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a ≃ b, which makes one of 13 and 12 redundant w.r.t. the other. As 1 was
used to rewrite g(x, b) in Figure 1 and derive 5 , we block superposition into
g(x, b) with all clauses except 1 in further derivations. We express this require-
ment via a one-step reducibility constraint (Definition 1), resulting in the BLINC
– BLocked INference Calculus. As such, BLINC is parameterized by a rewrite
ordering and (ir)reducibility constraints.

We prove3 that our BLINC calculus is refutationally complete, for which we
use a model construction technique (Section 4) with new features introduced to
take care of constraints. We extend our calculus with redundancy elimination
(Section 5). When evaluating the BLINC calculus implemented in the Vampire
theorem prover, our experiments show that reducibility constraints significantly
reduce the search space (Section 6).

2 Preliminaries

We work in standard first-order logic with equality, where equality is denoted
by ≃. We use variables x, y, z, v, w and terms s, t, u, l, r, all possibly with
indices. A term is ground if it contains no variables. A literal is an unordered
pair of terms with polarity, i.e. an equality s ≃ t or a disequality s ̸≃ t. We write
s ▷◁ t for either an equality or a disequality. A clause is a multiset of literals. We
denote clauses by B,C,D and denote by □ the empty clause that is logically
equivalent to ⊥.

An expression E is a term, literal or clause. We will also consider as ex-
pressions constraints and constrained clauses introduced later. An expression is
called ground if it contains no variables. We write E[s] to state that the ex-
pression E contains a distinguished occurrence of the term s at some position.
Further, E[s 7→ t] denotes that this occurrence of s is replaced with t; when s
is clear from the context, we simply write E[t]. We say that t is a subterm of
s[t], denoted by t ⊴ s[t]; and a strict subterm if additionally t ̸= s[t], denoted
by t ◁ s[t]. A substitution σ is a mapping from variables to terms, such that
the set of variables {x | σ(x) ̸= x} is finite. We denote substitutions by θ, σ,
ρ, µ, η. The application of a substitution θ on an expression E is denoted Eθ.
A substitution θ is called grounding for an expression E if Eθ is ground. We
denote the set of grounding substitutions for an expression E by GSubs, that is
GSubs(E) = {θ | Eθ is ground}. We denote the empty substitution by ε.

A substitution θ is more general than a substitution σ if θη = σ for some
substitution η. A substitution θ is a unifier of two terms s and t if sθ = tθ, and
is a most general unifier, denoted mgu(s, t), if for every unifier η of s and t, there
exists a substitution µ s.t. η = θµ. Recall that the most-general unifiers of terms
are idempotent [2].

A binary relation → over the set of terms is a rewrite relation if (i) l →
r ⇒ lθ → rθ and (ii) l → r ⇒ s[l] → s[r] for any term l, r, s and substitution
θ. The reflexive and transitive closure of a relations → is denoted by →∗. We

3 detailed proofs are in the Appendix
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write ← to denote the inverse of →. Two terms are joinable, denoted by s ↓ t, if
s→∗ u←∗ t. A rewrite system R is a set of rewrite rules. A term l is irreducible
in R if there is no r s.t. l → r ∈ R. Joinability w.r.t. R will be denoted by
s ↓R t. A rewrite ordering is a strict rewrite relation. A reduction ordering is
a well-founded rewrite ordering. In this paper we consider reduction orderings
which are total on ground terms, that is they satisfy s▷t⇒ s ≻ t; such orderings
are also called simplification orderings.

We use the standard definition of a bag extension of an ordering [12]. An
ordering ≻ on terms induces an ordering on literals, by identifying s ≃ t with
the multiset {s, t} and s ̸≃ t with the multiset {s, s, t, t}, and using the bag
extension of ≻. We denote this induced ordering on literals also with ≻. Likewise,
the ordering ≻ on literals induces the ordering on clauses by using the bag
extension of ≻. Again, we denote this induced ordering on clauses also with ≻.
The induced relations ≻ on literals and clauses are well-founded (resp. total) if
so is the original relation ≻ on terms. In examples used in this paper, we assume
a KBO simplification ordering with constant weight [18].

Many first-order theorem provers work with clauses [28,31,20]. Let S be a
set of clauses. Often, systems saturate S by computing all logical consequences
of S with respect to a sound inference system I. The process of saturating S is
called saturation. An inference system I is a set of inference rules of the form

C1 . . . Cn

C
,

where C1, . . . , Cn are the premises and C is the conclusion of the inference.
The inference rule is sound if its conclusion is the logical consequence of its
premises, that is C1, . . . , Cn |= C. The inference is reductive w.r.t. an ordering
≻ if C ≻ Ci, for some i = 1, . . . , n. An inference system I is sound if all its
inferences are sound. An inference system I is refutationally complete if for
every unsatisfiable clause set S, there is a derivation of the empty clause in I.
An interpretation I is a model of an expression E if E is true in I. A clause
C that is false in an interpretation I is a counterexample for I. If a clause set
contains a counterexample, then it also contain a minimal counterexample w.r.t.
a simplification ordering ≻ [6].

3 Reducibility Constraints

This section presents a new blocking calculus, called BLINC (BLocked INference
Calculus). This calculus uses specific constraints to block inferences.

Definition 1 (Constraints). Let l be a non-variable term and r a term. We
call the expression l ⇝ r a one-step reducibility constraint, and the expression
↓l an irreducibility constraint. A constraint is one of the two.

Now let us define the semantics of these constraints.
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l ≃ r ∨ C | Π s[u] ▷◁ t ∨D | Γ
(Sup⋑)

(s[r] ▷◁ t ∨ C ∨D)σ | ∆
where

(1) u is not a variable,
(2) σ = mgu(l, u),
(3) tσ ̸⪰ sσ, rσ ̸⪰ lσ,

∗(4) ∆ = Γσ ∪ B⋑(sσ, lσ) ∪ {lσ ⇝ rσ},
∗(5) the conclusion is not blocked,

s ̸≃ t ∨ C | Γ
(EqRes⋑)

Cσ | Γσ
where

(1) σ = mgu(s, t),
∗(2) the conclusion is not blocked,

s ≃ t ∨ u ≃ w ∨ C | Γ
(EqFac⋑)

(s ≃ t ∨ t ̸≃ w ∨ C)σ | Γσ
where

(1) σ = mgu(s, u),
(2) tσ ̸⪰ sσ, wσ ̸⪰ tσ,

∗(3) the conclusion is not blocked.

Fig. 2. The BLINC calculus

Definition 2 (Satisfied Constraints, Violated Constraints). Let R be a
rewrite system. We say that R satisfies l⇝ r if l→ r ∈ R and satisfies ↓l if l is
irreducible in R. We say that R violates a constraint if it does not satisfy it.

An expression C | Γ is a constrained clause, where C is a clause and Γ a finite
set of constraints. We denote constrained clauses C, D, possibly with indices.

Definition 3 (Blocked Constrained Clause, Blocked Inference). Let C =
C | Γ be a constrained clause. We call the constraint l ⇝ r ∈ Γ active in C if
s ≻ l for some term s in C. Likewise, we call ↓l ∈ Γ active in C if s ≻ l for
some term s in C. We call C blocked if either it contains two active constraints
l ⇝ r and l ⇝ r′ such that r and r′ are not unifiable, or it contains two active
constraints l⇝ r and ↓l. An inference is blocked if its conclusion is blocked.

Our superposition calculus BLINC uses constrained clauses and bans inferences
with blocked conclusions. For that, we attach constraints to clauses, as follows.

Definition 4 (S-ordering). An S-ordering is a partial strict well-order ⋑ on
terms, stable under substitutions. For that, we use the function B⋑ defined below
to attach constraints to clauses.

B⋑(s, l) := {↓u | u ⋐ l, u is non-variable and u ⊴ s}

BLINC is shown in Figure 3. We assume a literal selection function satisfying
the standard condition on ≻ and underline selected literals. The next example
illustrates blocked BLINC inferences.

Example 1. We use the order ≻ on terms as the S-ordering. A Sup⋑ inference
of BLINC into 4 with 2 from our motivating example from page 2 results in

f(x, b) ≃ x P (g(x, y), f(g(x, b), z))
.

P (g(x, y), g(x, b)) | {↓b, ↓g(x, y), ↓g(x, b), f(g(x, b), b)⇝ g(x, b)}

Note that the conclusion constrains clause 7 of Figure 1. Now, the superposition
of 1 into g(x, y), and hence clause 11 of Figure 1, is blocked:
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4 P (g(x, y), f(g(x, b), z))

6 P (g(x, y), f(a, z))5 P (a, f(g(x, b), z)) 7 P (g(x, y), g(x, b))

10 P (a, g(x, b))9 P (a, f(a, z))8 P (a, f(b, z)) 11 P (g(x, y), a)

13 P (a, a)12 P (a, b)

Fig. 3. Inferences from Figure 1 with blocked inferences in BLINC removed. Figure 3
illustrates the effectiveness of blocking constraints when compared to Figure 1: we
removed arcs corresponding to inferences blocked when the order ≻ is used as the S-
ordering. Of the 14 original inferences as in Figure 1, only 7 are non-blocked in Figure 3.

g(x, b) ≃ a P (g(x, y), g(x, b)) | {↓g(x, y), ↓g(x, b), f(g(x, b), b)⇝ g(x, b)}
P (a, g(x, b)) | {↓b, ↓g(x, b), f(g(x, b), b)⇝ g(x, b), g(x, b)⇝ a}

Note that the conclusion blocks clause 11 of Figure 1 by the active constraints
↓g(x, b) and g(x, b)⇝ a. Figure 3 shows the modified version of Figure 1, when
using the blocking inferences of BLINC to generate less clauses than in Figure 1.

⊓⊔

Example 2. Consider now a sequence of superposition inferences into 4 by 1

and then by 3 . That is, we consider the derivation 4 – 5 – 8 from Figure 1 as:

g(a, x) ≃ x

g(x, b) ≃ a P (g(x, y), f(g(x, b), z))

P (a, f(g(x, b), z)) | {↓b, g(x, b)⇝ a}
P (a, f(b, z)) | {↓a, ↓b, g(a, b)⇝ a, g(a, b)⇝ b}

The resulting conclusion is constrained and blocked, as we have two active con-
straints g(a, b)⇝ a and g(a, b)⇝ b. As such and as shown in Figure 3, clause 9

(and also clause 12 ) will not be generated by BLINC, in contrast to Figure 1. ⊓⊔

4 Model Construction in BLINC

This section shows completeness of BLINC, with a proof which resembles that of
Duarte and Korovin [13]. We start by adjusting terminology to our setting and
discussing key differences compared to standard completeness proofs.

Definition 5 (Closure). Let C = C | Γ be a constrained clause and θ a sub-
stitution. The pair C · θ is called a closure and is logically equivalent to Cθ. A
closure (C | Γ ) · θ is ground if Cθ | Γθ is ground, in which case we say that θ is
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grounding for C | Γ and call (C | Γ ) · θ a ground instance of C | Γ . Note that a
ground instance of a constrained clause is a closure.

The set of all ground instances of C is denoted C∗. We will denote ground
closures by C,D, maybe with indexes. If N is a set of constrained clauses, then
N∗ is defined as

⋃
C∈N C∗. If C ≻ D, we write C | Γ ≻ D | ∆. Similarly, if

Cθ | Γθ ≻ Dσ | ∆σ, then we write (C | Γ ) · θ ≻ (D | ∆) · σ.

A crucial part in the completeness proof of BLINC is reducing minimal coun-
terexamples to smaller ones. However, due to blocked inference conditions (5) in
Sup⋑, (2) in EqRes⋑, and (3) in EqFac⋑, such a counterexample reduction may
not be possible. We solve this problem in three steps:

1. Given a saturated set of clauses N , we construct a model for a subset of its
closures U(N) ⊆ N∗, namely, for so-called unblocked closures that do not
block any reductive inferences with smaller clauses (Definition 6).

2. We show that if the empty clause □ is not in U(N), then the model satisfies
each closure in U(N) (Theorem 1). That is, we show that counterexamples
in U(N) can be reduced to smaller counterexamples, which are also in U(N).
This avoids the aforementioned problem with blocked inferences.

3. We then show that the model also satisfies all closures in N∗ (Theorem 2).

Definition 6 (Partial/Total Models, Blocked/Productive Closures).
Let N be a set of constrained clauses. We will define, for every closure C ∈ N∗,
the rewrite system RC and refer to all such rewrite systems as partial models.
The definition will be made by induction on the relation ≻ on ground closures.
In parallel to defining RC, we also define the rewrite system

R≺C =
⋃
D≺C

RD.

The partial model RC will either be the same as R≺C, or obtained from R≺C by
adding a single rewrite rule. In the latter case will call the closure C productive.

The reduced closure of a ground closure C ·θ is defined as the closure C ·θ′ such
that for each variable x occurring in C, we have that θ′(x) is the normal form
of θ(x) in R≺C·θ. We call a ground closure reduced if its reduced form coincides
with this closure. Let C · θ be a ground closure and C · θ′ be its reduced form. We
say that C · θ is blocked w.r.t. N if R≺C·θ′ violates some constraint in Γθ′ that
is active in Cθ′. A closure that is not blocked w.r.t. N is called unblocked w.r.t.
N . Let C = (l ≃ r ∨ C ′) | Γ . The closure C · θ is called productive if

(i) C · θ is false in R≺C·θ,

(ii) lθ ≃ rθ is strictly maximal in Cθ,
(iii) lθ ≻ rθ,

(iv) C ′θ is false in R≺C·θ ∪ {lθ → rθ},
(v) lθ is irreducible in R≺C·θ,

(vi) C · θ is unblocked w.r.t N .
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Now we define

RC·θ =

{
R≺C·θ ∪ {lθ → rθ, } if C · θ is productive;
R≺C·θ, otherwise.

R∞ =
⋃

C∈N∗ RC

Finally, we call R∞ the total model and define U(N) as the set of all closures in
N∗ unblocked w.r.t. N . ⊓⊔

This construction has two standard properties that we will use in our proofs:

1. RC |= C if and only if for all D ≻ C we have RD |= C, if and only if R∞ |= C.
2. R∞ is non-overlapping, terminating and hence canonical.

The crucial difference between our model construction and the standard model
construction is the condition on productive closures to be unblocked w.r.t. N .
Let us now define our redundancy notions based on U(N) as follows.

Definition 7 (Redundant Clause/Inference). A constrained clause C is
redundant w.r.t. N if every ground instance of C is either blocked w.r.t. N , or
follows from smaller ground closures in U(N). An inference C1, ..., Cn ⊢ D is
redundant w.r.t. N if for each θ grounding for C1, . . . , Cn and D either

(i) one of C1 · θ, ..., Cn · θ,D · θ is blocked w.r.t. N , or
(ii) D · θ follows from the set of ground closures
{C | C ∈ U(N) and Ci · θ ≻ C for some i}. ⊓⊔

Definition 8 (Saturation up to Redundancy). A set of constrained clauses
N is saturated up to redundancy if, given non-redundant constrained clauses
C1, ..., Cn ∈ N , any BLINC inference C1, ..., Cn ⊢ D is redundant w.r.t. N .

From now on, let N be an arbitrary but fixed set of constrained clauses. We will
formulate a sequence of lemmas used in the completeness proof, whose proofs
are included in the appendix. The following lemma is used to show that unary
inferences with an unblocked premise result in an unblocked conclusion.

Lemma 1. (Unblocking Inferences) Suppose C,D ∈ N and θ and σ are
substitutions irreducible in R≺C·θ and in R≺D·σ, respectively. If C · θ ≻ D · σ,
Γθ ⊇ ∆σ and C · θ is unblocked w.r.t. N , then D · σ is unblocked w.r.t. N .

We next prove that the conclusion of a blocked inference is redundant, that is,
the conditions for blocking inferences in BLINC are correct.

Lemma 2. (Redundancy with Blocked Clauses) Let C be a constrained
clause. If C is blocked, then all ground instances of C are blocked w.r.t. N .

The next lemma resembles the standard lemma on counterexample reduction.

Lemma 3 (Unblocked Sup⋑). Suppose that (a) D = s ▷◁ t ∨ D | Γ is a
constrained clause in N , (b) D · θ a ground closure unblocked w.r.t. N , (c) θ is
irreducible in R≺D·θ, (d) sθ ⪰ tθ, (e) sθ is reducible in R≺D·θ.

Then there exist a constrained clause (l ≃ r ∨C | Π) ∈ N , a Sup⋑-inference
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l ≃ r ∨ C | Π s[u] ▷◁ t ∨D | Γ
(Sup⋑)

(s[r] ▷◁ t ∨ C ∨D)σ | ∆

and a substitution τ such that (i) Dστ = Dθ, (ii) l ≃ r∨C | Π ·στ is productive,
and (s[r] ▷◁ t ∨ C ∨D)σ | ∆ · στ is unblocked w.r.t. N .

We are now ready to show completeness of BLINC, starting with the following.

Theorem 1 (Model of U(N)). Let N be saturated up to redundancy and
□ /∈ N . Then for each C ∈ U(N) we have RC |= C.

When RC |= C, we will simply say that C is true. Note that this implies that
RD |= C for all D ⪰ C, and also R∞ |= C. We say that C is false if it not true.

Proof. Here, we only prove a few representative cases and refer to the Appendix
for complete argumentation. Assume, by contradiction, that U(N) contains a
ground closure C such that RC ̸|= C. Since ≻ is well-founded, then N∗ contains
a minimal non-blocked closure C · θ such that RC·θ ̸|= C · θ.

Case 1. C is redundant w.r.t. N . The closure C · θ is non-blocked, so it follows
from smaller closures C1, . . . , Cn in U(N). Then there is some Ci which is false
too, and we are done. ⊓⊔
Case 2. C contains a variable x such that xθ is reducible in R≺C·θ. The reduced
closure C ·θ′ of C ·θ is unblocked w.r.t. N , so C ·θ′ ∈ U(N). Since xθ ≻ xθ′ and for
all variables y different from x we have yθ ⪰ yθ′, we have C · θ ≻ C · θ′, then C · θ′
is true. Since yθ = yθ′ is true in R∞ for all variables y, we also have that C · θ′ is
equivalent to C · θ in R∞, hence C · θ is true and we obtain a contradiction. ⊓⊔
Case 3. There is a reductive inference C1, . . . , Cn ⊢ D with C1, . . . , Cn ∈ N which
is redundant w.r.t. N such that (a) {C1 · θ, . . . , Cn · θ} ⊆ U(N), (b) D · θ is
unblocked w.r.t. N , (c) C · θ = max{C1 · θ, . . . , Cn · θ}, and (d) D · θ |= C · θ.
D · θ is implied by ground closures in U(N) smaller than C · θ. These ground
closures are then true in RC·θ, so D ·θ is true, and hence C ·θ is also true in RC·θ,
contradiction. ⊓⊔
Case 4. None of the previous cases apply, and a negative literal s ̸≃ t is selected
in C, i.e. C = s ̸≃ t∨C | Γ . C · θ is false in RC·θ, so sθ ↓RC·θ tθ. W.l.o.g., assume
sθ ⪰ tθ.
Subcase 4.1. sθ = tθ, where s and t are unifiable. Consider the EqRes⋑ inference

s ̸≃ t ∨ C | Γ
Cσ | Γσ

where σ = mgu(s, t). Take any ground instance D · ρ = (Cσ | Γσ) · ρ such that
σρ = θ; by the idempotence of σ, we have D · ρ = D · θ. Clearly, C · θ ≻ D · θ and
D · θ implies C · θ. As C · θ ≻ D · θ and Γσρ = Γσθ = Γθ, Lemma 1 implies that
D · θ is unblocked w.r.t. N . By Case 1, D is not redundant, hence D ∈ N . But
then D · θ is a false closure in U(N), which is strictly smaller than C · θ, so we
obtain a contradiction. ⊓⊔
Subcase 4.2. sθ ≻ tθ. By conditions on the literal selection, we assume that
sθ ≻ tθ is maximal in C. By Lemma 3, there is a Sup⋑ inference into sθ with a
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ground closure such that the result C′ · θ is unblocked w.r.t. N . This closure is
of the form D · θ = (l ≃ r ∨D | Π) · θ and we have the following Sup⋑ inference

l ≃ r ∨D | Π s[l′] ̸≃ t ∨ C | Γ
(s[r] ̸≃ t ∨ C ∨D)σ | ∆

where σ = mgu(l, l′). Note that C′ = s[r] ̸≃ t ∨ C ∨D and C′ · ρ = C′ · θ. Then,
C · θ ≻ C′ · θ and D · θ and C′ · θ imply C · θ. Since C′ · θ is unblocked w.r.t.
N , using Lemma 2, we get that C′ is not blocked w.r.t. N , and condition (5) of
Sup⋑ is satisfied. Similar to Case 4.1, we have that the conclusion is a smaller
false unblocked closure, so we obtain a contradiction. ⊓⊔

Next we show that for a saturated set of clausesN , if R∞ is a model for U(N),
then it is also a model of N∗, that is, R∞ satisfies also all blocked closures in
N∗. This follows from the next theorem.

Theorem 2 (Model of N∗). Let N be a saturated set of clauses. Every blocked
closure C · θ ∈ N∗ follows from U(N).

Using Theorems 1–2, we obtain completeness of BLINC.

Corollary 1 (Completeness of BLINC). Let N be saturated up to redun-
dancy. If N does not contain □, then N is satisfiable.

We conclude with a remark on constraint inheritance in BLINC. Note that in
the Sup⋑ inference rule of Figure 3, constraints are inherited only from the
right premise. It is possible to block more inferences without losing refutational
completeness of BLINC, by allowing constraint inheritance from the left premise
in the Sup⋑ rule as well. However, we cannot propagate constraints that are non-
active in the left premise, as they may become active in the conclusion, making
the inference blocked. This effect is illustrated in the following example.

Example 3. Consider a superposition into 1 with 3

g(x, b) ≃ a g(a, x) ≃ x

a ≃ b | {↓a, ↓b, g(a, b)⇝ a}
If b ≻ a, then ↓a is the only active constraint in the conclusion. Consider a
superposition with 4 where constraints are inherited from both premises:

a ≃ b | {↓a, ↓b, g(a, b)⇝ a} P (g(x, y), f(g(x, b), z))

P (g(x, y), f(g(x, a), z)) | {↓a, ↓b, g(a, b) ≃ a, b⇝ a}
In the conclusion, ↓b and b⇝ a are both active, which blocks the inference. ⊓⊔

5 Redundancy Detection in BLINC

In this section we discuss redundancy detection in BLINC. We give sufficient
conditions for a clause to be redundant when inferences of a specific form are
applied. As usual, we call a simplifying inference, or simplification, any inference
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such that one of the premises becomes redundant after the conclusion is added
to the current set of clauses. Inference rules whose instances are simplifications
are called simplification rules. When we display a simplification rule, we will
denote clauses that become redundant by drawing a line through them.

Definition 7 gives rise to two kinds of simplification rules: (i) based on block-
ing and (ii) when one of the premises C · θ follows from smaller constrained
clauses. The following definition captures the first kind of redundancy.

Definition 9 (Closure/Clause Blocked Relative To Closure/Clause).
A ground closure C is blocked relative to a ground closure D if for every set of
constrained clauses N , if D is blocked w.r.t. N∗, then C is blocked w.r.t. N∗

too. A constrained clause C is blocked relative to a constrained clause D, if every
ground instance of C is blocked relative to some ground instance of D.

This notion will be used for defining simplification rules. We will next present
sufficient conditions for checking that a constrained clause is blocked relative to
another constrained clause. For example, each ground closure of a clause C | ∅ is
unblocked w.r.t. any set N , hence everything is blocked relative to that ground
closure. Further, each ground closure with a reducible substitution is blocked
relative to its reduced closure.

Definition 10 (Well-Behaved Constrained Clause). Let C = C | Γ be a
constrained clause. We say that C is well-behaved if (i) all constraints in Γ are
active in C, and for each γ ∈ Γ , (ii) if γ = ↓l, then ↓u ∈ Γ for all u ◁ l, and (iii)
if γ = l⇝ r, then ↓u ∈ Γ for all u ◁ l and l contains all variables of r.

Example 4. The clause P (a, f(b, z)) | {↓a, g(a, b) ⇝ a} is not well-behaved but
P (a, f(b, z)) | {↓a, ↓b, g(a, b) ⇝ a} is. The clause a ≃ b | {↓a, ↓b, g(a, b) ⇝ a} is
not well-behaved since it contains constraints not active in the clause. ⊓⊔

Lemma 4. (Relatively Blocked Well-Behavedness) Let C = C | Γ and
D = D | ∆ be well-behaved constrained clauses, and σ a substitution. Then C is
blocked relative to D if C ≻ Dσ and Γ ⊇ ∆σ.

In the sequel, we assume that each constrained clause is well-behaved. We next
adjust two standard simplifications within superposition [14], namely demodula-
tion in Theorem 3 and subsumption in Theorem 4. Our analogue of demodulation
is the following special case of Sup⋑ in BLINC:

l ≃ r | ∆ �����C[lσ] | Γ
(Dem⋑)

C[rσ] | Γ
where

(1) lσ ≻ rσ,
(2) C[lσ] ≻ (l ≃ r)σ,
(3) ∆σ ⊆ Γ .

Theorem 3. (BLINC Demodulation) Dem⋑ is a simplification rule. That is,
C[lσ] | Γ is redundant w.r.t. any constrained clause set that contains l ≃ r | ∆
and C[rσ] | Γ .



12 Márton Hajdu, Laura Kovács, Michael Rawson, and Andrei Voronkov

In addition to simplification rules, we will also consider deletion rules. These
rules delete a (redundant) constrained clause from N provided that N contains
another constrained clause or set of constrained clauses. The below deletion rule
is our analogue of subsumption:

D | ∆ �
��C | Γ

(Subs⋑) where
(1) Dσ ⊊ C,

for some substitution σ.
(2) ∆σ ⊆ Γ ,

Theorem 4. (BLINC Subsumption) Subs⋑ is a deletion rule. That is, C | Γ
is redundant w.r.t. any constrained clause set that contains D | ∆.

We also introduce two deletion rules based on properties of the constraints of
a clause. Namely, in Theorem 5 we introduce a deletion rule resembling “basic
blocking” [24], whereas Theorem 6 exploits deletion based on rewrite orders.
Consider therefore the following rule:

l ≃ r | ∆ ���C | Γ
(Block⋑) where

(1) C ≻ (l ≃ r)σ and lσ ≻ rσ,
(2) ∆σ ⊆ Γ ,
(3) either (i) ↓lσ ∈ Γ
or (ii) lσ ⇝ r′ ∈ Γ and r′ ≻ rσ.

Theorem 5. (BLINC Blocking) Block⋑ is a deletion rule. That is, C | Γ is
redundant w.r.t. any constrained clause that contains l ≃ r | ∆.

Our last deletion inference relies on the fact that all rewrite rules in any partial
model have to be oriented left-to-right according to ≻. That is,

((((((((
C | Γ ∪ {l⇝ r}

(Orient⋑) where
(1) r ≻ l,
(2) C ≻ (l ≃ r).

Theorem 6. (BLINC Orientation) Orient⋑ is a deletion rule. That is, C |
Γ ∪ {l⇝ r} is redundant w.r.t. any constrained clause set.

We illustrate the above simplification and deletion rules with the following ex-
ample.

Example 5. Consider the following well-behaved constrained clauses:

(1) P (g(a, x), b) | {↓b, f(x, b)⇝ b}, (2) P (g(y, z), w) | {f(z, w)⇝ b}
(3) g(a, z) ≃ b | {↓b}, (4) f(x, y) ≃ a | ∅

By Theorem 4, clause (2) subsumes clause (1). By Theorem 3, clause (1) can
be simplified with clause (3) into P (b, b) | {↓b, f(x, b) ⇝ a}. Finally, assuming
b ≻ a, clauses (1) and (2) are redundant w.r.t. clause (4) by Theorem 5. ⊓⊔

Remark 1. (Simplification Heuristics via Unblocking) We note that fur-
ther simplifications (and heuristics) can be implemented by removing constraints
from constrained clauses. This process of removing constraints is captured via
the following rule:
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Variant
UEQ PEQ

Solved Uniques Solved Uniques

baseline 778 15 1276 34

blinc1 316 0 411 0

blinc2 327 0 425 0

blinc3 610 0 809 0

blinc4 775 13 1270 28

Fig. 4. Experimental comparison using variants BLINC in Vampire, using 1455 UEQ
problems and 2422 PEQ problems.

�
��C | Γ

(Unblock)
C | ∆

where ∆ ⊂ Γ .

Clearly, Unblock is a simplification rule, as removing constraints from a con-
strained clause preserves completeness in BLINC.

We conclude this section by noting that Theorems 3–6 can be adjusted and
combined using the ground redundancy of Definition 7. This results in stronger
redundancy detection, as the following example illustrates.

Example 6. Consider the following Sup⋑ inference:

g(f(v, w), a) ≃ g(w, a) | ∅ f(g(f(x, y), z), f(y, x)) ≃ z | ∅
σ =

v 7→ x,
w 7→ y,
z 7→ a

 ,
f(g(y, a), f(y, x)) ≃ a | ∆

where ∆ = {↓f(x, y), ↓f(y, x), ↓a, g(f(x, y), a)⇝ g(y, a)}. Note that the conclu-
sion is a well-behaved constrained clause. The conclusion cannot be simplified
by clauses

(1) f(x, y) ≃ f(y, x) and (2) f(x, x) ≃ x,

using any of Theorems 3–6. However, using similar conditions as in the Block⋑
deletion rule, we can do the following. Let θ be a substitution that makes the
conclusion ground. By a comparative case distinction on xθ and yθ,

(i) if xθ ≻ yθ, then using clause (1), by ↓f(x, y) ∈ ∆ and f(x, y)θ ≻ f(y, x)θ;
(ii) if xθ = yθ, then using clause (2) by ↓f(x, y) ∈ ∆ (or ↓f(y, x) ∈ ∆),

f(x, y)θ = f(x, x)θ ≻ xθ (or f(y, x)θ = f(x, x)θ ≻ xθ); and
(iii) if xθ ≺ yθ, then using clause (1) again, by ↓f(y, x) ∈ ∆ and f(y, x)θ ≻

f(x, y)θ;

we conclude that the ground closure (f(g(y, a), f(y, x)) ≃ a | ∆) · θ is redundant
in all cases, hence the conclusion is redundant w.r.t. clauses (1) and (2). ⊓⊔

6 Evaluation

We implemented4 BLINC in Vampire [20], together with the simplification rules
of Section 5. We have also implemented a redundancy check called orderedness

4 https://github.com/vprover/vampire/commit/9c42b448996947e8

https://github.com/vprover/vampire/commit/9c42b448996947e8
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that eagerly checks if the result of a superposition can be deleted. We experi-
mented with several variants of BLINC with redundancy elimination, using differ-
ent heuristics for removing constraints from clauses via Unblock: (i) blinc1 does
not use Unblock; (ii) blinc2 uses Unblock to remove constraints inherited from
premises, hence only conclusions of Sup⋑ will contain constraints; (iii) blinc3
uses Unblock occasionally on the clause that would simplify the most clauses in
the search space when unconstrained; (iv) blinc4 uses Unblock on all clauses at
activation. We compare these to standard superposition (baseline).

All our experiments use aDiscount saturation loop [11] and a Knuth-Bendix
ordering, with a timeout of 100 seconds and without AVATAR [30]. We used
benchmarks from TPTP version 8.1.2 [29], in particular all benchmarks from
the unit equality (UEQ) and pure equality (PEQ) divisions.

Our experimental results are summarized in Figure 4. The results show that
blinc1 performs poorly compared to baseline, blinc3 and blinc4, and that
blinc2 performs only slightly better than blinc1. The variant blinc3 performs
much better than blinc1 and blinc2 but it is still does not solve any new prob-
lems. The variant blinc4 performs however similarly well to the state-of-the-art
baseline, while solving also different, 13 unique, benchmarks. Our preliminary
results are therefore encouraging for complementing state-of-the-art superposi-
tion proving with BLINC reasoning, possibly in a portfolio solver.

We also analysed the impact of BLINC variants on skipping superposition
inferences during proof search. Figure 6 shows the distribution of benchmarks
by percentage of skipped superposition inferences among all superposition in-
ferences during our runs for blinc variants. blinc1 skips more than half of
superposition inferences in a significant number of benchmarks, while the least
restrictive blinc4 still reduces the number of superposition inferences by a sig-
nificant amount in most benchmarks.

7 Related work

The basicness restriction [26,15] was extended to first-order logic, for example,
in basic superposition [25] and basic paramodulation [7]. The former uses ground
unification, the latter closures and variable abstraction to capture irreducibility
constraints. In basic paramodulation, redex orderings are used similarly to S-
orderings in our framework. BLINC expresses more fine-grained blocking, for
example, distinguishing between different superpositions on the same term.

Several critical pair criteria in completion-based theorem proving use irre-
ducibility notions. Blocking [4] is similar to basicness, while compositeness [4,16]
forbids any superpositions into terms with reducible subterms. General superpo-
sition [32,33] avoids superpositions when more general ones or ones symmetric
in variables have been performed. Our BLINC framework handles all such restric-
tions. These criteria are instances of the connectedness criterion [3], which has
been also explored in ground joinability [1], ground reducibility [21] and ground
connectedness [13].
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Fig. 5. Distribution of UEQ (top) and PEQ (bottom) benchmarks by ratio of skipped
superpositions to all superpositions, showing also average (avg) and median (mdn).
For example, using blinc1, on average 30.2%, resp. 26.0% of superpositions can be
skipped in UEQ, resp. PEQ benchmarks.

More general irreducibility constraints were considered in completion [22] and
in superposition [17], the latter using a semantic tree method for completeness.
Ordering constraints [9,10,19] and unification constraints [8,27] have also been
considered, usually moving them to the calculus level. Extending and generaliz-
ing our BLINC framework with such constraints is a future challenge.

8 Conclusions

We introduce reducibility constraints to block inferences during superposition
reasoning. Our resulting BLINC calculus is refutationally complete and is ex-
tended with redundancy elimination, allowing us to maintain efficient reasoning
when compared to state-of-the-art superposition proving. Integrating our ap-
proach with further inference-blocking constraints, such as blocking more gen-
eral or outermost superpositions, is an interesting line for future work. Adapting
our framework to domain-specific inference rules, e.g. in linear arithmetic or
higher-order superposition, is another line for future work.

Other interesting directions are (i) the use of a stronger semantics of con-
straints, as in Definition 10 and (ii) a “hybrid calculus”, improving on blinc3,
where we still use constraints for blocking generating inferences but relax them
whenever they prevent us from applying a simplification or a deletion rule.
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Appendix

Proofs

Lemma 5. If RC |= C, then for all D ≻ C we have RD |= C.

Proof. If a positive literal s ≃ t of C is true in R≺C, then s ↓R≺C t. Since no
rules are ever removed during the model construction, then s ↓RC t, s ↓R≺D t and
s ↓R∞ t. If a negative literal s ̸≃ t of C is true in R≺C, then s ̸↓R≺C t. Consider
a productive closure D ≻ C, producing a rule l → r. By the productive closure
definition in Definition 6, l is the maximal term in D. If l→ r reduces a subterm
of s ̸≃ t, it means that D ≺ C, contradiction. This also implies s ̸↓R∞ t. ⊓⊔

Lemma 6. If C · θ = (l ≃ r ∨ C ′ | Γ ) · θ is productive, then R≺D·σ ̸|= C ′θ for
any D · σ ≻ C · θ, and R∞ ̸|= C ′θ.

Proof. All literals in C ′θ are false in R≺C·θ by Definition 6. For all negative
literals (s ̸≃ t)θ in C ′θ, if they are false then sθ ↓R≺C·θ tθ. Since no rules are ever
removed during the model construction then sθ ↓R≺D·σ tθ and sθ ↓R∞ tθ. For
all positive literals (s ≃ t)θ in C ′θ, if they are false in R≺C·θ then sθ ̸↓R≺C·θ tθ.
By Definition 6, we have lθ ⪰ sθ and lθ ⪰ tθ. Any closure D · σ that produces a
rule l′σ → r′σ which reduces sθ or tθ must have either have l′σ ≺ lθ, in which
case either D · σ ≺ C · θ, or l′σ = lθ, in which case whichever clause is bigger
would not be productive due to Definition 6. ⊓⊔

Lemma 7. R∞ is non-overlapping, terminating and hence canonical.

Proof. R∞ is terminating since l ≻ r by construction for all rules l → r ∈ R∞.
Assume R∞ is overlapping, meaning there are two different rules l → r and
l′ → r′ such that w.l.o.g. l ⊴ l′. This means that when generating the rule
l′ → r′, l′ is reducible by l → r (since it was generated by a smaller closure).
But then l′ → r′ is not generated by definition of productive closure. Hence, R∞
is non-overlapping. ⊓⊔

Lemma 8. Let l be a term and C and D two clauses. If C ≻ D and s ̸≻ l for
all terms in C, then s ̸≻ l for all terms in D as well.

Proof. It follows from the bag extension definition of ≻ for terms. ⊓⊔

Lemma 1. (Unblocking Inferences) Suppose C,D ∈ N and θ and σ are
substitutions irreducible in R≺C·θ and in R≺D·σ, respectively. If C · θ ≻ D · σ,
Γθ ⊇ ∆σ and C · θ is unblocked w.r.t. N , then D · σ is unblocked w.r.t. N .

Proof. Let us assume contrary to the claim that the above conditions hold but
D · σ is blocked w.r.t. N . We consider the following two cases.

(i) There is an irreducibility constraint ↓l ∈ ∆σ which is active in D · σ and
not satisfied by R≺D·σ. By Lemma 8 and C · θ ≻ D · σ, it is also active
in C · θ. Moreover, we have that l is reducible in R≺D·σ, which implies by
R≺D·σ ⊆ R≺C·θ that l is also reducible in R≺C·θ. Hence, C ·θ is blocked w.r.t.
N , contradiction.
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(ii) There is a one-step reducibility constraint l ⇝ r ∈ Γ which is active in
D · σ and not satisfied by R≺D·σ. By Lemma 8 and C · θ ≻ D · σ, it is also
active in C · θ. Moreover, we have l → r /∈ R≺D·σ. If l → r /∈ R≺C·θ, the
constraint is not satisfied by R≺C·θ either, hence C · θ is blocked w.r.t. N ,
contradiction. Otherwise, there is a closure C′ · σ which produced l → r s.t.
C ·θ ≻ C′ ·ρ ⪰ D·σ and by definition of productive clause, the maximal term
in C′σ is l. But then s ≻ l cannot be the case for any s occurring in Dσ, so
the constraint is not active in Dσ, contradiction. ⊓⊔

Lemma 2. (Redundancy with Blocked Clauses) Let C be a constrained
clause. If C is blocked, then all ground instances of C are blocked w.r.t. N .

Proof. Let C = C | Γ be a blocked constrained clause and assume to the contrary
that C ·θ is unblocked w.r.t. some constrained clause set N . The first case is when
Γ contains two constraints l ⇝ r and l ⇝ r′ active in C such that r and r′ are
not unifiable. Then, s ≻ l for some s in C implies sθ ≻ lθ for some sθ occurring
in Cθ, and there are lθ → rθ, lθ → r′θ ∈ R≺C·θ since C · θ is unblocked w.r.t. N .
Since r and r′ are not unifiable, we get rθ ̸= r′θ, so one of the rules is reducible by
the other, which contradicts this rule being produced by Definition 6. Otherwise,
Γ contains two constraints l ⇝ r and ↓l active in C. Again, s ≻ l for some s in
C implies sθ ≻ lθ and sθ is in Cθ. We also have that lθ → rθ ∈ R≺C·θ and lθ is
also irreducible in R≺C·θ, which is a contradiction. ⊓⊔

Lemma 3 (Unblocked Sup⋑). Suppose that (a) D = s ▷◁ t ∨D | Γ is a con-
strained clause in N , (b) D · θ a ground closure unblocked w.r.t. N , (c) θ is
irreducible in R≺D·θ, (d) sθ ⪰ tθ, (e) sθ is reducible in R≺D·θ.

Then there exist a constrained clause (l ≃ r ∨C | Π) ∈ N , a Sup⋑-inference

l ≃ r ∨ C | Π s[u] ▷◁ t ∨D | Γ
(Sup⋑)

(s[r] ▷◁ t ∨ C ∨D)σ | ∆

and a substitution τ such that (i) Dστ = Dθ, (ii) l ≃ r∨C | Π ·στ is productive,
and (s[r] ▷◁ t ∨ C ∨D)σ | ∆ · στ is unblocked w.r.t. N .

Proof. Consider the following set:

Λ :=
{
l′θ | l′ ⊴ s non-variable and l′θ → rθ ∈ R≺D·θ

}
The set Λ cannot be empty, as it would contradict either that D · θ is unblocked
w.r.t. N and θ irreducible in R≺D·θ, or that sθ is reducible in R≺D·θ. Hence,
Λ is non-empty, and by well-foundedness of ⋑, there is (at least) one smallest
element l′θ in Λ w.r.t. ⋑, corresponding to some rule l′θ → rθ ∈ R≺D·θ. There
is a clause (l ≃ r ∨ C | Π) ∈ N such that the ground closure (l ≃ r ∨ C | Π) · θ
is productive and produces l′θ → rθ. Moreover, there is a Sup⋑ inference

l ≃ r ∨ C | Π s[l′] ▷◁ t ∨D | Γ
(s[r] ̸≃ t ∨ C ∨D)σ | ∆
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where σ = mgu(l′, l) and ∆ = Γσ ∪ B⋑(sσ, lσ) ∪ {lσ ⇝ rσ}. Let us denote
the clause (s[r] ̸≃ t ∨ C ∨ D)σ | ∆ by D′. Take the instance D′ · ρ = ((s[r] ̸≃
t∨C∨D)σ | ∆)·ρ where θ = σρ. By idempotence of σ we have D′ ·ρ = D′ ·θ. Now
assume contrary to the claim that D′ · θ is blocked w.r.t. N , that is, either there
is a variable x s.t. xσθ is reducible in R≺D′·θ, or R≺D′·θ violates some constraint
in ∆θ that is active in D′ · θ. In the first case, xθ is reducible, contradicting that
both premises are unblocked w.r.t. N (since x is in one of the premises). We
note here that (l ≃ r∨C | Π) · θ cannot contain any reducible terms at or below
variable positions either, otherwise it would follow from a smaller closure in N∗

and would not be productive. Otherwise, R≺D′·θ violates some constraint in ∆θ
that is active in D′ · θ. We distinguish the following three cases:

(i) R≺D′·θ violates a constraint in Γσθ. This case is similar to Lemma 1.
(ii) If R≺D′·θ violates a constraint in B⋑(sσ, lσ)θ, then by definition of B⋑, there

is a non-variable uσ in sσ, s.t. lσ ⋑ uσ and ↓uσθ ∈ B⋑(sσ, lσ)θ s.t. uσθ is
reducible in R≺D′·θ. If u is a variable, we get that uσθ is reducible in R≺D′·θ,
and D · θ is blocked w.r.t. N , contradiction. It is straightforward to prove
that D · θ ≻ D′ · θ (see, for example, Subcases 4.2 and 5.2 in Theorem 1). By
D·θ ≻ D′ ·θ, we have R≺D·θ ⊇ R≺D′·θ, hence uσθ is also reducible in R≺D·θ.
Hence, due to u not being a variable, uθ ⇝ wθ ∈ Λ for some w. But then,
by stability of ⋑ under substitutions, lσ ⋑ uσ implies lσθ ⋑ uσθ implies
lθ ⋑ uθ, hence l′θ is not smallest w.r.t. ⋑ in Λ, contradiction.

(iii) If R≺D′·θ violates {lσ ⇝ rσ}θ, then it violates lσθ ⇝ rσθ, which means
lσθ → rσθ /∈ R≺D′·θ. By construction of Λ, we have lσθ → rσθ = lθ → rθ ∈
R≺D·θ, and as noted earlier, this rule is produced by (l ≃ r∨D′)·θ. Moreover,
we have (l ≃ r∨D′) · θ ≻ D′ · θ. But then, by definition of productive clause,
lθ is the maximal term in (l ≃ r ∨ D′) · θ, which means s ≻ lθ cannot be
the case for any term s occurring in D′θ, hence l ⇝ r is not active in D′θ,
contradiction.

We have covered all cases, which proves the claim. ⊓⊔

Theorem 1 (Model of U(N)). Let N be saturated up to redundancy and □ /∈
N . Then for each C ∈ U(N) we have RC |= C.

Proof. Assume, by contradiction, that □ /∈ N and U(N) contains a ground
closure C such that RC ̸|= C. Since ≻ is well-founded, then N∗ contains a
minimal non-blocked closure C ·θ such that RC·θ ̸|= C ·θ. By induction hypothesis
all closures D ·σ ∈ U(N) such that D ·σ ≺ C · θ have RD·σ |= D ·σ, then we have
R≺C·θ |= D · σ (and RC·θ |= D · σ). Consider the following cases.

Case 1. C is redundant w.r.t. N .

Proof. By definition, C · θ follows from smaller closures in U(N). But if C · θ is
the minimal closure which is false in RC·θ, then all smaller D ·σ ∈ U(N) are true
in RD·σ, which (as noted above) means that all smaller D · σ ∈ U(N) are true
in RC·θ, which means C · θ is true in RC·θ, contradiction. ⊓⊔

Case 2. C contains a variable x such that xθ is reducible in R≺C·θ.
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Proof. Then, the reduced closure C·θ′ of C·θ is unblocked w.r.t.N and C·θ′ ̸= C·θ.
Then C · θ ≻ C · θ′, and therefore C · θ′ is true in RC·θ. Since xθ ↓RC·θ t, then C · θ
is also true in RC·θ, contradiction. ⊓⊔
Case 3. There is a reductive inference C1, . . . , Cn ⊢ D with C1, . . . , Cn ∈ N
which is redundant w.r.t. N such that (a) {C1 · θ, . . . , Cn · θ} ⊆ U(N), (b) D · θ
is unblocked w.r.t. N , (c) C · θ = max{C1 · θ, . . . , Cn · θ}, and (d) D · θ |= C · θ.
Proof. Then D · θ is implied by closures in U(N) smaller than C · θ (since C · θ ∈
U(N), see Definition 7). But since those closures are true in RC·θ, then D · θ is
true, and since D · θ implies C · θ, then C · θ is true in RC·θ, contradiction. ⊓⊔
Case 4. None of the previous cases apply, and C contains a negative literal which
is selected in the clause, i.e., C · θ = (s ̸≃ t ∨ C | Γ ) · θ with s ̸≃ t selected in C.
Proof. Then either sθ ̸↓RC·θ tθ and C·θ is true and we are done or else sθ ↓RC·θ tθ.
By Definition 6(i) and (iv), C · θ is only productive if (s ̸≃ t) · θ is false in R≺C·θ
and RC·θ, so sθ ↓R≺C·θ tθ iff sθ ↓RC·θ tθ. W.l.o.g., let us assume sθ ⪰ tθ.

Subcase 4.1. sθ = tθ.

Proof. Then s and t are unifiable and there is an equality resolution inference

s ̸≃ t ∨ C | Γ
σ = mgu(s, t)

Cσ | Γσ

with premise in N . Take the instance D · ρ = (Cσ | Γσ) · ρ of the conclusion
such that σρ = θ; it always exists since σ = mgu(s, t). Also, since the mgu is
idempotent [2] then σθ = σ(σρ) = σρ = θ, so Cσ · ρ = Cσ · θ and Γσθ = Γθ.
Showing that C · θ ≻ D · θ follows from the multiset of Cσθ being a strict
submultiset of Cθ. If Cσ · ρ is true in R≺C·θ then (s ̸≃ t ∨ C) · σρ must also be
true. Recall that Case 3 does not apply. But we have shown that this inference
is reductive, with C ∈ N , C · θ trivially maximal in {C · θ}, C · θ ∈ U(N) and that
D · θ implies C · θ. Moreover, by C · θ ≻ D · θ and Γσρ = Γσθ = Γθ, Lemma 1
applies and D · θ is also unblocked w.r.t. N . Also, using the contraposition of
Lemma 2, we get that the conclusion is not blocked, and condition (2) of EqRes⋑
is satisfied. So for Case 3 not to apply the inference must be non-redundant. Also
since Case 1 does not apply then the premise is not redundant. This means that
the set is not saturated, which is a contradiction. ⊓⊔
Subcase 4.2. sθ ≻ tθ

Proof. Then (recall that sθ ↓R≺C·θ tθ) sθ must be reducible by some rule in
R≺C·θ. Let us say that this rule is lθ → rθ, produced by a closure D · θ ∈ U(N)
smaller than C ·θ. Case 2 does not apply, hence lθ is not under a variable position
in sθ. The closure D · θ must be of the form (l ≃ r ∨D) · θ, with lθ ≃ rθ strictly
maximal in Dθ, and Dθ false in RD·θ. Also note that D cannot be redundant, or
else D · θ would follow from smaller closures in U(N), but those closures (which
are smaller than D · θ and therefore smaller than C · θ) would be true, so D · θ
would be also true in R≺D·θ, so by Definition 6 it would not be productive. Then
lθ = l′θ for some subterm l′ of s, meaning l is unifiable with l′, meaning there
exists a superposition inference
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l ≃ r ∨D | Π s[l′] ̸≃ t ∨ C | Γ
(s[r] ̸≃ t ∨ C ∨D)σ | ∆

where σ = mgu(l, l′) and∆ = Γσ∪B⋑(sσ, lσ)∪{lσ ⇝ rσ}. Consider the instance
(s[r] ̸≃ t∨C∨D)σ ·ρ with σρ = θ, and call this instance C ·θ. Showing that C ·θ ≻
C′ ·θ amounts to showing (s[l′] ̸≃ t∨C)θ ≻ (s[r] ̸≃ t∨C∨D)θ, which means (after
removing common elements from multisets), comparing {{s[l′]θ, s[l′]θ, tθ, tθ}}
with the multiset induced by (s[r] ̸≃ t ∨D)θ. This follows from (i) s[l′]θ ≻ s[r]θ
due to lθ ≻ rθ, and (ii) {{s[l′]θ, s[l′]θ, tθ, tθ}} greater than the multiset induced
by Lθ for all Lθ ∈ Dθ due to sθ ⪰ lθ ≻ rθ and (l ≃ r)θ being maximal in Dθ.

Note also that C · θ is maximal in {C · θ,D · θ} and by Lemma 3, we can
select D · θ s.t. C′ · θ is unblocked w.r.t. N . Since C′ · θ is unblocked w.r.t. N ,
using the contraposition of Lemma 2, we get that the conclusion is not blocked,
and condition (5) of the Sup⋑ is satisfied. Also, since D · θ is false in R≺C·θ (by
Lemma 6) and (s[r] ̸≃ t) ·θ is false in R≺C·θ (since (s ̸≃ t) ·θ is in the false closure
C ·θ, l′θ ↓R≺C·θ rθ, and the rewrite system is confluent), then in order for C′ ·θ to
be true in RC·θ it must be the case that Cσρ is true in R≺C·θ. But if the latter
is true then C · θ is true, in R≺C·θ. In other words C′ · θ implies C · θ. Therefore
again, since Case 1 and Case 3 do not apply, we conclude that the inference is
non-redundant with non-redundant premises, so the set is not saturated, which
is a contradiction. ⊓⊔

Case 5. None of the previous cases apply, so all selected literals in C are positive,
i.e., C · θ = (s ≃ t ∨ C | Γ ) · θ with s ≃ t selected in C.

Proof. Then, since if the selection function does not select a negative literal then
it must select all maximal ones, w.l.o.g. one (and only one) of the selected literals
s ≃ t maximal in C must have sθ ≃ tθ maximal in Cθ. Then if either C · θ is
true in R≺C·θ, or RC·θ = R≺C·θ ∪ {sθ → tθ}, or sθ = tθ, then C · θ is true in RC·θ
and we are done. Otherwise, C · θ is not productive, C · θ is false in R≺C·θ, and
w.l.o.g. sθ ≻ tθ.

Subcase 5.1. sθ ≃ tθ maximal but not strictly maximal in Cθ.

Proof. If this is the case, then there is at least one other maximal positive literal
in the clause. Let C ·θ = (s ≃ t∨s′ ≃ t′∨C ′ | Γ ) ·θ, where sθ = s′θ and tθ = t′θ.
Therefore s and s′ are unifiable and there is an equality factoring inference:

s ≃ t ∨ s′ ≃ t′ ∨ C ′ | Γ
σ = mgu(s, s′)

(s ≃ t ∨ t ̸≃ t′ ∨ C ′)σ | Γσ

Take the instance of the conclusion C′ · ρ = ((s ≃ t ∨ t ̸≃ t′ ∨C ′)σ | Γσ) · ρ with
σρ = θ. Showing that C · θ ≻ C′ · ρ and that C′ · ρ implies C · θ is straightforward
based on [13]. Hence, the inference is reductive and from Γσρ = Γθ, by Lemma 1,
we have that R≺C′·ρ satisfies Γθ = Γσρ, hence C′ ·ρ is unblocked w.r.t. N , which
by Lemma 2 also means that the conclusion is not blocked, satisfying condition
(3) of EqFac⋑. Hence, we get a contradiction similarly to Subcase 4.1. ⊓⊔

Subcase 5.2. sθ ≃ tθ strictly maximal in Cθ, and sθ reducible (in R≺C·θ).
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Proof. This is similar to Subcase 4.2. If sθ is reducible, by Lemma 3, we have
that there is a superposition which results in an unblocked closure C · θ w.r.t.
N . Let the reducing rule be lθ → rθ, then (since C · θ is not productive) this is
produced by some closure D · θ smaller than C · θ, with D · θ = (l ≃ r ∨D) · θ,
with lθ ≃ rθ maximal in Dθ, D not redundant, and with D · θ false in R≺D·θ.
Then there is a superposition inference

l ≃ r ∨D s[l′] ≃ t ∨ C | Γ
(s[r] ≃ t ∨ C ∨D)σ | ∆

where σ = mgu(l′, l) and ∆ = Γσ ∪ B(sσ, lσ) ∪ {lσ ⇝ rσ}. Again taking the
instance C′ · ρ = ((s[r] ≃ t ∨ C ∨D)σ | Γσ ∪ B(sσ, lσ)) · ρ with σρ = θ, we have
C′ ·ρ = C′ · θ and showing that C′ · θ is smaller than C · θ is straightforward based
on [13]. Furthermore since D · θ and Cθ are false in R≺C·θ, then C′ · θ is true
in R≺C·θ iff (s[r] ≃ t)σ · θ is. But since also l′θ ↓R≺C·θ rθ, then (s[r] ≃ t)σ · θ
implies (s[l′] ≃ t)σ · θ. So again by Lemma 3, C′ · θ is unblocked w.r.t. N , and by
Lemma 2 the conclusion is not blocked, satisfying condition (5) of Sup⋑. Also,
C′ · θ implies C · θ. Again this means we have a contradiction. ⊓⊔
Subcase 5.3. sθ ≃ tθ strictly maximal in Cθ, and sθ irreducible (in R≺C·θ).

Proof. Since C · θ is not productive, and at the same time all criteria in Defini-
tion 6 except (iv) are satisfied, it must be that condition (iv) is not, that is Cθ
must be true in RC·θ = R≺C·θ ∪ {sθ → tθ}. Then this must mean we can write
Cθ = (s′ ≃ t′ ∨ C ′)θ, where the latter literal is the one that becomes true with
the addition of {sθ → tθ}, whereas without that rule it was false.

But this means that s′θ ↓R≺C·θ t′θ such that any rewrite proof needs at least
one step where sθ → tθ is used, since sθ is irreducible by R≺C·θ. W.l.o.g. say
s′θ ≻ t′θ. Since {sθ, tθ} ≻ {s′θ, t′θ}, sθ ≻ tθ, and s′θ ≻ t′θ, then sθ ⪰ s′θ ≻ t′θ,
which implies t′θ ̸⊵ sθ, which implies sθ → tθ cannot be used to reduce t′θ, and
similarly, nor to reduce s′θ if sθ ≻ s′θ. Thus the only way it can reduce s′θ or
t′θ is if sθ = s′θ. This means there is an equality factoring inference:

s′ ≃ t′ ∨ s ≃ t ∨ C ′ | Γ
σ = mgu(s, s′)

(s′ ≃ t′ ∨ t ̸≃ t′ ∨ C ′)σ | Γσ,

Taking θ = σρ, we see that the instance of the conclusion (s′ ≃ t′∨t ̸≃ t′∨C ′)σ ·ρ
is smaller than the instance of the premise (s′ ≃ t′∨ s ≃ t∨C ′) ·σρ (see Subcase
5.1).

But we have said that s′θ ↓R≺C·θ t′θ, where the first rewrite step had to take
place by rewriting s′θ = sθ → tθ, and the rest of the rewrite proof then had to
use only rules from R≺C·θ. In other words, this means tθ ↓R≺C·θ t′θ. As such, the
literal (t ̸≃ t′) ·θ is false in R≺C·θ, and so the conclusion is true in R≺C·θ iff rest of
the closure is true in R≺C·θ. But if the rest of the closure (s

′ ≃ t′∨C ′)σ ·ρ is true
then so is C ·θ, so that instance of the conclusion implies C ·θ. The inference being
reductive and σρ = θ, by Lemma 1 we also have that instance of the conclusion
is unblocked w.r.t. N . Hence, by Lemma 2, condition (3) of EqFac⋑ is satisfied.
Once again, this leads to a contradiction since none of Cases 1 and 3 apply and
therefore the set must not be saturated. ⊓⊔
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Definition 11. Given a saturated set of clauses N and a constrained clause
C ∈ N . Let C · θ be a ground closure where θ is irreducible w.r.t. R≺C·θ. We
define the blocked depth of C · θ as:

bd(C · θ) :=


0 if C · θ is unblocked w.r.t. N ,

1 + max1≤i≤n(bd(Ci · θ)) if there is a BLINC inference

C1, ..., Cn ⊢ C s.t. C1, ..., Cn ∈ N

Lemma 9. Given a saturated set of clauses N , every closure C · θ ∈ N∗ with
irreducible θ follows from some closures D1 · θ, ...,Dn · θ ∈ U(N).

Proof. By induction on bd(C·θ). If bd(C·θ) = 0, C·θ ∈ U(N) trivially follows from
itself. Otherwise, C · θ is blocked w.r.t. N but θ is irreducible in R≺C·θ, so there
must be a BLINC inference C1, ..., Cn ⊢ C with C1, ..., Cn ∈ N . By definition of
blocked depth, for all Ci, bd(Ci ·θ) < bd(C ·θ), hence by induction hypothesis, they
are all implied by some closures Di1 · θ, ...,Dimi

· θ ∈ U(N) for 1 ≤ i ≤ n. Since
these inferences are sound, we have that C·θ also follows fromD11·θ, ...,Dnmn

·θ |=
C · θ. ⊓⊔

Theorem 2 (Model of N∗). Let N be a saturated set of clauses. Every blocked
closure C · θ ∈ N∗ follows from U(N).

Proof. By Lemma 9, we only have to consider C · θ with reducible θ in R≺C·θ.
In this case, we have x1, ..., xn s.t. xiθ = si →+

R∞
ti for all i and some normal

form ti. Let us consider θ′ := (θ \ {xi 7→ si | i}) ∪ {xi 7→ ti | i} which is now
irreducible. From Lemma 9, we get that C · θ′ follows from closures in U(N) and
by xiθ ↓R∞ ti for each i, C · θ also follows from these closures in U(N). ⊓⊔

Lemma 10. Let C = C | Γ and D = D | ∆ be well-behaved constrained clauses,
and σ a substitution s.t. C ≻ Dσ and ∆σ ⊆ Γ . Each ground closure C · θ is
blocked relative to the ground closure D · σθ.

Proof. Take a substitution θ s.t. Cθ is ground. By C ≻ Dσ, then Dσθ is also
ground. Let C · θ′ be the reduced closure of C · θ, and let D · ρ be the reduced
closure of D · σθ′. We show that C · θ is blocked relative to D · ρ. Let N be a set
of constrained clauses. Assume contrary to the claim that C · θ and hence also
C · θ′ is unblocked w.r.t. N , while D · ρ and hence D · σθ′ are blocked w.r.t. N .
Note that we have C · θ ⪰ C · θ′ ≻ D · σθ′ ⪰ D · ρ. We consider two cases.

Case 1. There is ↓lρ ∈ ∆ρ which is active in Dρ and lρ is reducible in R≺D·ρ.

Proof. Then, by ∆σ ⊆ Γ , we have ↓l′θ′ ∈ Γθ′ s.t. l′ = lσ and either the con-
straint is not active in C · θ′ or l′θ′ is irreducible in R≺C·θ′ . If l′θ′ = lρ, then
by C · θ′ ≻ D · ρ and R≺C·θ′ ⊇ R≺D·ρ, we have that ↓l′θ′ is active in C · θ′ and
reducible in R≺C·θ′ , hence C · θ′ is blocked w.r.t. N , contradiction.

Otherwise, l′θ′ ̸= lρ and there is u′ ⊴ l′ s.t. u′θ′ is reducible in R≺D·σθ′ . By
well-behavedness of C and due to ↓l′ ∈ Γ , in all cases we have u′θ′ ∈ Γθ′. Since
↓l is active in D by well-behavedness of D, we have s ≻ lσ = l′ ⪰ u′ for some s
in Dσ and C ≻ Dσ, which implies ↓u′θ′ is also active in C · θ′ and u′θ′ reducible
in R≺C·θ′ , hence C · θ′ is blocked w.r.t. N , contradiction.
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Case 2. There is lρ⇝ rρ ∈ ∆ρ such that it is active in Dρ and lρ→ rρ /∈ R≺D·ρ.

Proof. Then by ∆σ ⊆ Γ , we have l′θ′ ⇝ r′θ′ ∈ Γθ′ s.t. l′ = lσ and either
the constraint is not active in C · θ′ or l′θ′ → r′θ′ ∈ R≺C·θ′ . If l′θ′ = lρ, then
by C · θ′ ≻ D · ρ, we have that l′θ′ ⇝ r′θ′ is active in C · θ′. Then it must be
that l′θ′ → r′θ′ ∈ R≺C·θ′ . By the well-behavedness condition that l′ contains all
variables of r′ and l contains all variables of r, we must have r′θ′ = rρ as well.
Then, there is a closure C′ ·σ which produced l′θ′ → r′θ′ s.t. C ·θ′ ≻ C′ ·η ⪰ D ·ρ
and by definition of productive clause, the maximal term in C′η is l′θ′. But then
s ≻ l′θ′ cannot be the case for any s occurring in Dρ, so the constraint is not
active in Dρ, contradiction.

Otherwise, l′θ′ ̸= lρ and there is u′ ⊴ l′ s.t. u′θ′ is reducible in R≺D·σθ′ .
Note that u′ ̸= l′ as that would mean that l is a variable which by definition
cannot happen (see Definition 1). So u′ ◁ l′, and by well-behavedness of C, we
have u′θ′ ∈ Γθ′. Since ↓l is active in D by well-behavedness of D, we have
s ≻ lσ = l′ ⪰ u′ for some s in Dσ and C ≻ Dσ, which implies ↓u′θ′ is also
active in C · θ′ and u′θ′ reducible in R≺C·θ′ , and again, C · θ′ is blocked w.r.t. N ,
contradiction.

The above cases have shown that C · θ′ is blocked relative to D · ρ which implies
that C · θ is also blocked relative to D · ρ. Finally, we argue that C · θ is blocked
relative to D · σθ. If D · ρ is the reduced closure of D · σθ, we get the claim by
definition. Otherwise, there is some rule l → r ∈ R≺C·θ \ R≺D·σθ which reduces
xσθ for some variable x in D. This rule is produced by a closure greater than
D · σθ, which means that xσθ has to be the greatest term in D · θ. By well-
behavedness of D, then it cannot be constrained, as that would mean x ≻ s for
some non-variable term s in D (see Definition 1). Then, D·σθ is unblocked w.r.t.
N and C · θ is trivially blocked relative to it. ⊓⊔

Lemma 4. (Relatively Blocked Well-Behavedness) Let C = C | Γ and
D = D | ∆ be well-behaved constrained clauses, and σ a substitution. Then C is
blocked relative to D if C ≻ Dσ and Γ ⊇ ∆σ.

Proof. It follows from Lemma 10. ⊓⊔

Theorem 3. (BLINC Demodulation) Dem⋑ is a simplification rule. That is,
C[lσ] | Γ is redundant w.r.t. any constrained clause set that contains l ≃ r | ∆
and C[rσ] | Γ .

Proof. We present the rule again here for clarity:

l ≃ r | ∆ �����C[lσ] | Γ
(Dem⋑)

C[rσ] | Γ
where

(1) lσ ≻ rσ,
(2) C[lσ] ≻ (l ≃ r)σ,
(3) ∆σ ⊆ Γ .

Let C = C[lσ] | Γ and D = C[rσ] | Γ and let N be a set of constrained clauses
s.t. (l ≃ r | ∆) and D are in N . Take a grounding substitution θ. If C · θ is
blocked w.r.t. N , we are done. Otherwise, take the reduced closure C · θ′ of C · θ.
By Lemma 10, C · θ′ is blocked relative to the closure (l ≃ r | ∆) · σθ′ which
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is then also unblocked w.r.t. N and hence is in U(N). Moreover, this closure
together with the instance D · θ′ imply C · θ′. Moreover, C · θ′ ≻ (l ≃ r | ∆) · σθ′
follows from C ≻ (l ≃ r)σ and C · θ′ ≻ D · θ′ follows from the monotonicity of
≻. Lemma 1 also applies due to C · θ′ ≻ D · θ′ and θ′ being irreducible, hence
R≺D·θ′ satisfies Γθ′, and hence D · θ′ is unblocked w.r.t. N and is in U(N) as
well. Consequently, C · θ′ and hence also C · θ follow from smaller closures in
U(N). Hence C is redundant w.r.t. N . ⊓⊔

Theorem 4. (BLINC Subsumption) Subs⋑ is a deletion rule. That is, C | Γ
is redundant w.r.t. any constrained clause set that contains D | ∆.

Proof. We present the rule here again for clarity:

D | ∆ �
��C | Γ

(Subs⋑) where
(1) Dσ ⊊ C,

for some substitution σ.
(2) ∆σ ⊆ Γ ,

Let C = C | Γ and D = D | ∆ and let N be a set of constrained clauses s.t.
D | ∆ ∈ N . Take a grounding substitution θ. If C · θ is blocked w.r.t. N , we are
done. Otherwise, take the reduced closure C · θ′ of C · θ. By condition (1), we
have Cθ′ ≻ Dσθ′ and hence Lemma 10 implies C · θ′ is blocked relative to the
closure D · σθ′, so D · σθ′ is also unblocked w.r.t. N and is in U(N). Moreover,
D · σθ′ then implies C · θ′, hence C · θ′ and also C · θ follow from smaller closures
in U(N). Hence C is redundant w.r.t. N . ⊓⊔

Theorem 5. (BLINC Blocking) Block⋑ is a deletion rule. That is, C | Γ is
redundant w.r.t. any constrained clause that contains l ≃ r | ∆.

Proof. We present the rule here again for clarity:

l ≃ r | ∆ ���C | Γ
(Block⋑) where

(1) C ≻ (l ≃ r)σ and lσ ≻ rσ,
(2) ∆σ ⊆ Γ ,
(3) either (i) ↓lσ ∈ Γ
or (ii) lσ ⇝ r′ ∈ Γ and r′ ≻ rσ.

Let C = C | Γ and let N be a set of constrained clauses s.t. (l ≃ r | ∆) ∈ N . Take
a grounding substitution θ. If C · θ is blocked w.r.t. N , we are done. Otherwise,
take the reduced closure C · θ′ of C · θ. By Lemma 4, C · θ′ is blocked relative to
the closure (l ≃ r | ∆) · σθ′, which is also unblocked w.r.t. N . We consider the
following two cases:

Case 1. lσθ′ is irreducible in R≺(l≃r|∆)·σθ′ .

Proof. By lσ ≻ rσ, (l ≃ r | ∆) · σθ′ is also productive, and by C ≻ (l ≃ r)σ we
have lσθ′ → rσθ′ ∈ R≺C·θ′ .

(i) If ↓lσ ∈ Γ , then ↓lσθ′ ∈ Γθ′, and by C ≻ (l ≃ r)σ, we have Cθ′ ≻ (l ≃
r)σθ′, which implies s ≻ l for some s in Cθ′ and ↓lσθ′ is active in Cθ′.
Hence, R≺C·θ′ ⊇ R≺(l≃r|∆)·σθ′ violates ↓lσθ′, so C · θ′ is blocked w.r.t. N ,
contradiction.
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(ii) If lσ ⇝ r′ ∈ Γ with r′ ≻ rσ, then lσθ′ ⇝ r′θ′ ∈ Γθ′, and by C ≻ (l ≃ r)σ,
we have Cθ′ ≻ (l ≃ r)σθ′, which implies s ≻ l for some s in Cθ′ and
lσθ′ ⇝ r′θ′ is active in Cθ′. Hence, by r′ ̸= rσ, R≺C·θ′ ⊇ R≺(l≃r|∆)·σθ′

violates lσθ′ ⇝ r′θ′, so C · θ′ is blocked w.r.t. N , contradiction.

Case 2. lσθ′ is reducible by some u→ w ∈ R≺(l≃r|∆)·σθ′ .

Proof. Then, there is some non-variable u′ ⊴ lσ s.t. u′θ′ = u (at or below
a variable position contradicts θ′ being irreducible). If u′ ̸= lσ, then by well-
behavedness, since u′ is non-variable, ↓u′ ∈ Γ . Then, by Cθ′ ≻ (l ≃ r)σθ′, there
is s ≻ lσθ′ ≻ u′θ′ for some s in Cθ′ and ↓u′θ′ is active in Cθ′. Hence R≺C·θ′ ⊇
R≺(l≃r|∆)·σθ′ violates Γθ′, contradiction. Otherwise, u′ = lσ. If ↓lσ ∈ Γ , we get
a contradiction similarly as in Case 1(i) above. If lσ ⇝ r′ ∈ Γ with r′ ≻ rσ,
then lσθ′ ⇝ r′θ′ ∈ Γθ′, and this constraint is active in Cθ′ for similar reasons
as in Case 1(ii). Now, assume lσθ′ → r′θ′ ∈ R≺C·θ′ . This can only happen if
r′θ′ = w. But then, by r′ ≻ rσ, we have r′θ′ ≻ rσθ′, which implies that the
closure producing lσθ′ → r′θ′ is greater than (l ≃ r) · σθ′, contradiction. ⊓⊔

Theorem 6. (BLINC Orientation) Orient⋑ is a deletion rule. That is, C |
Γ ∪ {l⇝ r} is redundant w.r.t. any constrained clause set.

Proof. We present the rule here again for clarity:

((((((((
C | Γ ∪ {l⇝ r}

(Ord⋑) where
(1) r ≻ l,
(2) C ≻ (l ≃ r).

Take a grounding substitution θ and let N be a set of constrained clauses. We
argue that (C | Γ ) · θ is blocked w.r.t. N . We have Cθ ≻ (l ≃ r)θ from C ≻ (l ≃
r), so in order for the instance to be unblocked w.r.t. N , it must be the case
that lθ → rθ ∈ R≺(C|Γ )·θ. This cannot be the case by Definition 6 and rθ ≻ lθ,
so the instance is blocked w.r.t. N . ⊓⊔
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