
EasyChair Preprint

№ 773

LHF: A New Archive based Approach to

Accelerate Massive Small Files Access

Performance in HDFS

Wenjun Tao, Yanlong Zhai and Jude Tchaye-Kondi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 7, 2019

LHF: A New Archive based Approach to Accelerate

Massive Small Files Access Performance in HDFS

Wenjun Tao

School of Computer Science and

Technology

Beijing Institute of Technology

Beijing, China

2120161049@bit.edu.cn

Yanlong Zhai

School of Computer Science and

Technology

Beijing Institute of Technology

Beijing, China

ylzhai@bit.edu.cn

Jude Tchaye-Kondi

School of Computer Science and

Technology

Beijing Institute of Technology

Beijing, China

tchaye59@yahoo.fr

Abstract—As one of the most popular open source projects,

Hadoop is considered nowadays as the de-facto framework for

managing and analyzing huge amounts of data. HDFS (Hadoop

Distributed File System) is one of the core components in

Hadoop framework to store big data, especially semi-

structured and unstructured data. HDFS provides high

scalability and reliability when handling large files across

thousands of machines. But the performance will be severely

degraded while dealing with massive small files. Although some

effort was spent to investigate this well-known issue, existing

approaches, such as HAR, SequenceFile, and MapFile, are

limited in their ability to reduce the memory consumption of

the NameNode and optimize the access performance in the

meantime. In this paper, we presented LHF, a solution to

handle massive small files in HDFS by merging small files into

big files and building a linear hashing based extendable index

to speed up the process of locating a small file. The advantages

of our approach are (1) it significantly reduces the size of the

metadata, (2) it does not require sorting the files at the client

side, (3) it supports appending more small files to the merged

file afterwards and (4) it achieves good access performance. A

series of experiments were performed to demonstrate the

effectiveness and efficiency of LHF as well, which takes less

time while accessing files compared with other methods.

Keywords—HDFS, massive small files, linear hashing

I. INTRODUCTION

In the contemporary era of ABC (AI, Big Data, cloud
computing), a huge amount of data is being generated and
this data has to be stored, processed and analyzed. As a
widely used cloud storage platform, Hadoop has the feature
of open source, low-cost, high-fault tolerance and scalability.
Hadoop distributed file system (HDFS) [1] is the storage
system of Hadoop with a master-slave architecture. HDFS is
used by lot of running cloud service as file systems on their
clusters and has been extensively utilized to support cloud
applications. With the need of computing high availability,
high scalability and high-capacity storage, cloud computing
[2] is the ideal solution for big data analysis and processing.
HDFS is designed for managing large files such as huge
machine learning data sets, big video files, etc., therefore,
when accessing and storing a large number of small files,
HDFS will confront several problems. But there are many
big data applications generate massive small files, such as
social networking, online learning, e-commerce, Internet of
Things, healthcare [3], in which the amount of data generated
is enormous but the file size is usually from 10KB to 10MB.

Practically, the production of small files has become
increasingly common and the amount of data is too large to
be stored and processed by using local file system in many
applications. Moreover, small files have to be processed

along with big files. It is necessary to investigate the small
files problem in big data storage system. Generally, files
whose size is smaller than HDFS block size can be thought
as small files. There are various reasons resulting in the
Hadoop small files problem [4]. As we know, HDFS consists
of one NameNode as the master and a group of DataNodes
as slaves. NameNode is responsible for managing the
metadata of the whole file system. So the first problem of
storing massive small files is the huge memory consumption
of NameNode. Because every data block, file, and directory
in HDFS needs some space to store the metadata in the
NameNode memory. For example, each file requires 150
bytes of memory for storing its metadata. For the same
physical storage to store one big file or one million small
files, small files need one million times additional memory
space to store the metadata. We can reduce the NameNode
memory consumption by reducing the number of small files
on Hadoop cluster. Secondly, the existence of a large number
of small files will deteriorate the performance of MapReduce
processing as a huge number of small files results in a large
volume of random disk I/O. Sequential disk I/O is one of the
key factors for HDFS to get high throughput. It takes less
time to read the data from one big file sequentially than
randomly read many small files.

Presently there is no existing standard and generic file
systems that is specifically designed for storing, handling and
analyzing small files. Facebook [5] stores more than 60
billion images. Facing the performance problem, Facebook
designed their own distributed file system called Haystack to
optimize the storing and processing of large number of small
images. Taobao is one of the largest e-commerce
corporations, storing more than 20 billion images, with an
average size of only 15KB. They built the TFS file system,
an optimized open source framework for managing massive
small files. All of their work serves their specific need for
images. Most of the distributed file systems are designed
primarily for large files, such as Lustre, GlusterFS, GPFS,
ISILON, GFS, and HDFS. The metadata management, data
layout and most of the features of these file systems are
designed for managing large files, which makes the
performance getting worse rapidly when managing small
files, sometimes the system cannot even work when the
number of small files is too large. Moreover, among the
existing solutions, Hadoop is prime big data analytics
platform at present. It is the leading platform regarding
performance, reliability, scalability. A detailed discussion
and comparison of our LHF with some related works are
presented in Section III.

In this paper, we firstly analyze, compare and contrast
various solutions available for solving Hadoop small files
problem, including solution provided by Hadoop and others

which target various aspects of small files problem. We
proposed a method named LHF (Linear Hashing File) which
introduces the linear hashing [6] concepts to construct small
files' index information and does not require small files to be
sorted in advance. Our LHF not only improves the file
accessing performance without altering the HDFS
architecture but also allows additional files to be added to the

existing archive which is the limitation of HAR [7] and

MapFile's [8]. The LHF solution specifies the files into three
categories according to the file size and designs two types of
index structure for small files. When building the archive file,
the content of the small files will be merged into some data
part files, whereas the meta-information will be built into the
index files following the principles of linear hashing. The
index is composed of multiple hash buckets, which will
dynamically increase when appending more files to the
archive. With this hashing based index design, the
complexity of locating any of the buckets is O(1). The offset
information of each specific file inside the merged data file is
automatically sorted and stored in hash buckets. Every hash
bucket is stored as a separate file in HDFS and will be loaded
into the DataNode's main memory to accelerate the access
performance. We have implemented and evaluated LHF on
Hadoop cluster and find out that the proposed solution is
superior in accessing time and supports appending additional
files to the archive as well.

The rest of this paper is organized as follows: The
background of this research is firstly discussed in Section II.
The related work is introduced in Section III. Section IV
presents the detail design of our proposed method. The
experimental results of evaluating the approach are
summarized in Section V. Section VI concludes this paper.

II. BACKGROUND

In this section, we will discuss about the architecture of
HDFS, the problems associated with processing, storing and
accessing small files and the concept of the linear hashing.

A. HDFS

HDFS with a master/slave architecture is a Hadoop file
system that transfers large files into smaller blocks and
distributes these blocks to different nodes named DataNodes.
Excessive copies of each block are maintained in HDFS for
fault tolerance. NameNode maintains a database containing a
mapping from logical files to physical blocks in the
DataNodes. Block replication is also managed by the
NameNode. The NameNode handles the management of the
file system namespace, metadata, and requests from clients
to access data. DataNodes provide blocking and serving IO
requests for the clients. They also create, delete, and replicate
data blocks upon getting command from the NameNode.

B. Problems of managing small files in HDFS

1) NameNodes memory consumption: The metadata of

the file system will be loaded in the main memory of the

NameNode. In general, the metadata of a file consumes

approximately 150 bytes of main memory [9]. For each

block that has three replicas by default, its metadata will

consume approximately 368 bytes main memory. With 24

million files stored on HDFS, the NameNode will need

16GB of memory to store the metadata. So storing massive

small files will consume huge memory of the NameNode

and lead to performance decline for the cluster.

2) The MapReduce performance problem: Processing a

large number of small files will reduce the performance of

MapReduce jobs. This is mainly because accessing a large

number of small files will generate numerous random disk

IO, which is extremely slow compared with accessing one

large file with the same size sequentially.

3) High storing time: Storing a big file to HDFS takes

less time than storing many small files of the same size. This

is because, for storing one file, it has to go through the

process of creating files, allocate metadata and data block,

writing data, making replicas and closing files. For instance,

storing 550,000 small files with the size approximately from

1KB to 10KB to HDFS takes about 7.7 hours [10].

4) NameNode performance degradation: When the

client needs to access the file, it first needs to obtain the

metadata of the file from the NameNode, and then read the

file content according to the acquired metadata to the

corresponding DataNode. For small files, the time spent on

access is mainly in the management of metadata and disk

addressing, while data transfer takes less time. Accessing a

large number of small files, HDFS clients need to interact

with the NameNode frequently, so the performance of the

NameNode will be seriously degraded especially facing

concurrent file access requests.

C. Linear hashing

Linear hashing [6] is one type of dynamic hashing that
support dynamically expand the hash table by adding one
bucket at a time. This single-bucket expansion can efficiently
control the collision chain. The cost of a hash table extension
does not happen all at once, but throughout each hash table
insert operation. It consists of a hash function h, data buckets,
a bucket array a, and meta-information. The data bucket is
made up of data blocks, and meta-information includes the
hash level i, the number of data buckets n, the number of
records r, and a fixed fraction p is the least upper bound of r /
n. A data block in a data bucket stores the data. The
addresses of data buckets are kept in a bucket array whose

size is n. In general, the hash function h is modulo by 2
i
. In

the process of data access, the hash function h calculates the
hash value of the target data v, and a[v] keeps the address of
the data bucket storing the target data. When v is bigger than
n - 1, a[v] does not exist. In this case, v - i - 1 is used for the
hash value. Then search this data bucket for retrieval.

III. RELATED WORK

To solve the small files problem, we merge small files
and store the larger file after merging on HDFS. Some of the
solutions for solving small file problem of HDFS are
discussed as below.

Hadoop Archive or HAR [7] [11] is a file archiving tool
that efficiently puts small files into HDFS blocks. It can
package multiple small files into one HAR file, which allows
the file to be transparent while reducing the use of
NameNode memory. In addition, HAR has some drawbacks:
First, once created, archives cannot be changed. To add or
remove files inside, you must recreate the archive. Second,
when accessing the HAR file, it requires 2 index-file read

operations as well as one data-file read operation which are
less efficient than reading files from HDFS.

NHAR [12] redesign the indexing structure to improve
the metadata mainframe of HDFS and the accessing
performance without altering the HDFS architecture. With
new design, NHAR enables to allow additional files to be
appended to the existing archive. In order to improve the
access performance, NHAR model uses a single-level index.
NHAR uses index information to create a hash table instead
of master-index approach. These information is divided into
multiple index files. It allows users to append additional files
to the existing NHAR file. The adding process involves three
steps: archiving the new small files, merging index files and
moving the new part file.

SequenceFile [13] which stores the data in the form of
binary key-value pairs is used as a storage container for
small files. In this data structure, file name is stored as the
key and file content is stored as the value. It supports
compression and decompression both at record level and
block level. SequenceFile also presents several disadvantages.
For a particular key, it does not have a mechanism for update
and delete operation; it only supports the append method;
and secondly, this approach has low access efficiency as it
takes quite a long time to make a Sequence file. If a user
needs to look up for a particular key, it is required to read the
Sequence File from the beginning of this SequenceFile.

A MapFile [8] which is composed of two files, an index
file and a data file, is a sorted Sequence File. It maintains the
index file to store keys location information to allow lookup
of the data file by key. The key-value pairs are sorted by key
and stored as records in the data file. MapFile facilitates to
look up for the key without having to read the full file.
However, it cannot provide flexible APIs for applications as
only append method is supported for a particular key. In
other words, not every key can be appended to a created
MapFile because it must keep all the keys in order.
Furthermore, while reading a file from MapFile, we need to
search the index file, address the disk once and scan with 128
entries at most by default. The less key stored for the same
small file set, the more entries are required to be scanned and
compared with the target key.

CombineFileInputFormat [14] is also a method provided
by Hadoop, however, it is MapReduce API to input small
files. Chen, J., Wang, D. proposed an improved HDFS [15]
whose structure consisted of two parts: client component
which merges small files into a big file and data node
component which satisfies the cache resource management.
Gurav, Y.B. [16][17] proposed Extended Hadoop Distributed
File System (EHDFS) which has been designed and
implemented in such a way that a large number of small files
can be merged into a single combined file and it also
provides a framework for prefetching metadata for a
specified number of files. Yanfeng Lyu proposed an
optimized strategy for small files storing and accessing in

HDFS [18]. In their work, their method considers the size of

small files when merging files into combine file, and
generates a map record for each small file. Meanwhile, they
apply prefetching and caching mechanism to enhance the
access efficiency. Z. Gao proposed an effective merge
strategy based hierarchy for improving small file problem on
HDFS [19], which makes a radix sort on files set and merges
these files orderly. Weipeng Jing [20] and his team aim to

correct the problems of IoT and CPS because of small files
problem.

Most of the existing solutions do not perform well in
accessing small files inside the merged files. Many methods,
such as HAR [7] or MapFile [8] provided by hadoop, require
small files to be ordered in advance. HAR does not support
the append operation and MapFile only supports the append
operation for particular keys theoretically. Although NHAR
supports append operations, it is not flexible enough. The
number of index files in NHAR is fixed. At the beginning,
the number of small files is small. Number of index files of
NHAR is set to a small digital and we create the NHAR file.
However, if we constantly append additional small files to a
NHAR file, each index file of NHAR will increase sharply
and deteriorate the performance of reading files. Some other
methods may change the architecture of HDFS, or rely on
another system such as HBase [21], or propose a completely
different approach [22].

In addition, most of the existing methods do not focus on
the small files of relatively small sizes, such as only a few,
tens or hundreds of bytes. To access these files, those
methods need to read the index first and then read the data,
although the size of the index information is similar to the
file size, which may waste some time. As a result, we
reclassified the files and changed the way we read ultra-small
files for performance improvement.

The method we proposed supports the appending
operation, and does not require small files to be sorted in
advance and has high reading efficiency.

IV. PROPOSED WORK

The basic idea of the proposed approach includes two
steps: (1) merging small files into large files to reduce
quantity of files and optimize the NameNode memory
consumption, (2) storing these small files metadata in our
index system based on linear hashing principle thus allow us
extending the function of file management such as append
additional files to the existing archive file, delete files from
the archive file, etc.

A. Overview

In this paper, we proposed a new way to deal with a huge
number of small files. To solve the small files problem, we
merge them into large files on HDFS and use the linear
hashing principle to organize these files index information in
several small index files. When searching for a small file
inside the archive file, instead of browsing the entire archive
file from beginning to end just as the Sequence File does, we
firstly retrieve the information from the index file that allows
us to access the file position in the archive file directly. We
improve the index information lookup by splitting total small
files’ index into several pieces, limiting the capacity of each
piece and allowing to have a direct access to the index file
piece containing the information during index record lookup.

As showed in Fig. 1, File Filtering Criteria module
classifies files into three categories according to the file size:
large files, common small files, and ultra-small files.
Large files are directly uploaded to HDFS. Common small
files and ultra-small files are sent to the File Merging module
to build the merged file, and then the merged files and index
files are uploaded to HDFS. The general process of
uploading files to HDFS is presented in Algorithm 1.

Fig. 1. Architecture of our LHF.

Algorithm 1: File Processing Algorithm

1 begin
2 Initialize File set (FS) and create a new combined file or

open an existing combined file.
3 for each file Fi in FS do

4 if(Fi ∈ FS and Fi is a big file) then

5 Upload the file to HDFS directly.
6 else
7 Merge the file using the File Merging Strategy module.
8 end
9 end
10 Close the combined file.
11 end

B. Design

In our proposed LHF, we firstly classify files based on
the file size. The File Filtering Criteria module will classify
files into three categories:

 Large files: whose size are larger than the HDFS
default block size (128 MB). They will be uploaded
to HDFS directly.

 Ultra-small files: whose size are smaller than
predefined value, in our case 1 KB. They will be
processed by the File Merging module and stored in
the index file directly.

 Common small files: whose size are between the

predefined value and the default HDFS block size.

They will be processed by the File Merging module
and merged into big data part files.

Fig. 2. Our proposed LHF technique.

Fig. 2 shows the proposed structure of the archive file.
The archive file consists of two parts, the Index Part and the
Data Part. The Data Part stores the content of common small
files, the Index Part stores the ultra-small files’ content and
the index information of all files in this archive.

1) Merging of small files
Common small files and ultra-small files are handled

differently in the File Merging module. In case of common
small file, the file content is appended to the data part and
information like their size, the location of the small file in the
data part file and so on are used to build an index record that
is inserted to the index part. In case of ultra-small file, we
directly write the contents of the file to the appropriate
bucket of the index part using linear hashing algorithm. The
merging process of our LHF is described in Fig. 3.

Fig. 3. The merging process of LHF.

The Data Part consists of a sequence of part-* files.
During the merging process if the remaining space of the
part file is smaller than the small file's size, we create a new
part file to continue writing new small files’ content. As a
result, a small file's content is in only one data part file.
Algorithm 2 describes the process of file merging. Since
common small files and ultra-small files are handled
differently, their information stored in linear hashing also
different. The index information whose format is described
in Fig. 4 which includes the full file name, the file identifier
which indicates that the file is a common small file, the part
file where this small file is located, the starting offset of this
small file's content in the part file and the small file's length
in the merged file is temporarily stored in the client's linear
hashing, and the ultra-small files' content is also stored in
the client's same linear hashing in the format described in
Fig. 5 which includes the full file name, the file identifier
which indicates that the file is an ultra-small file or common
small file.

Fig. 4. Common small file's index information.

Fig. 5. Ultra small file's index information.

To increase the access performance, the LHF use single
index level instead of using master-index approach as in
HAR. LHF organizes Index Part as linear hashing where the
index records are split into several index files that represent
the hashing buckets. Each bucket is stored as a HDFS file
and the name of the bucket file is specified as the bucket
label for easy locating. As the number of records in the
index files increases, the buckets are split according to the
linear hashing split policy. After all the files are merged, the
contents of each bucket in the linear hashing are sorted by
file name, and then written to HDFS.

Algorithm 2: File Merging Algorithm

1 begin
2 initiate the linear hashing0 with two buckets whose

labels are “0” and “1”
3 create Data Part file part-0
4 for each small file do
4 if it is a common small file then
5 if small file’s size+part-n file’s size>fixed size then
6 nn+1
7 create file part-n
8 end
9 write the small file’s content to part-n and record

the starting offset, small file’s length and Data
Part file’s name in the given format to the linear
hashing0

10 else if it is ultra-small file then
11 write the content of the ultra-small in the given

format to linear hashing0
12 end
13 end
14 sort each bucket and store the linear hashing0 to

HDFS
15 end

The linear hashing we used to store index records is
described as follows, and we define some parameters like:

 n: the number of buckets, the buckets are numbered
from 0 to n-1.

 level: the number of bits used in the file name hash
value to decide in which bucket to store it
information’s. It is also the number of bits necessary
to represent n-1.

 ɣ: defined as the total number of records in all
buckets

 α: the average capacity defined for each bucket

 Load Factor (LF): the fill rate of all index files and
is calculated using (1).

*n
LF (1)

 The split policy: It is the policy that we define that

will allow us to create a new bucket by calling the
split operation when the available buckets are getting
filled. In our experiment, the split policy is verified
when the Load Factor is greater than 75%
(LF>75%).

To insert a small file index record, we need to calculate
in which bucket the insertion must be done. To do so, from
the file name we calculate a unique number using a hash
function, and we get the bucket position by considering the
last level bits of the binary representation of this unique
number.

The split operations are done in round-robin. They serve
to extend the number of index files when existing index files
are reaching their maximum capacity. At each record
insertion in a bucket, we check if split policy is verified
(LF> 75%) if yes, we call the split operation. During the
split operation, a new bucket is created and data from the
corresponding bucket in level-1 are redistributed into the
new bucket. Because HDFS is used to store files, the split
operation is performed by using Algorithm 3.

In Fig. 6, we have an example where we have 2 buckets
and a new bucket is created during the split operation. In
this example, we have in total 3 buckets (0, 1, 2) then n = 3;
level = 2(because last bucket label is 2 = 10 in binary, we
need two bits to represent 2). The actual level is 2 to find the
corresponding bucket at level-1 position, we just take the
corresponding binary representation of the new bucket
position without the first bit. The new bucket position is 2
(10 in binary) of the corresponding bucket at level-1 is at
position 0 (2=10 in binary without the first bit).

Fig. 6. Example of split operation

Algorithm 3: Index File Splitting Algorithm

/*This is executed at client side.*/

1 begin
4 Calculate Load Factor(LF) using (1)
5 if (LF > 75%) then
6 label1 Calculate the next label in the index files

sequence (last index file label+1)
7 label2 Get the label given by label1 without the first bit
8 Create two files (file1 & file2)
9 Initialize Index records(R) from index with label2
10 for each record r in R do

11 αCalculate r label using linear hashing
calculation

12 if(α == label1) then
13 Add r to file1

14 else if(α == label2)then
15 Add r to file2
16 end
17 end
18 Rename file2 to label1 and upload it to HDFS

19 Overwrite label2 index file with file1 content

20 end

21 end

2) Accessing small files
To access a file in the merged file, which is illustrated in

Fig. 7 and algorithm 4, our archiving program use a hash
function to calculate the linear hash code from this file's full
name. With Linear Hashing Calculation module, we locate
the index file containing the information of this file by
considering the bucket with a label equal to the last level
bits of the binary representation of the calculated code. Then
we lookup the file information in the index file using a
binary search method. With the acquired information, our
program will extract the file identifier to determine if this
file is a common small file or an ultra-small file. If it is a
common small file, locate the data part file and seek the data
part file to the starting position and then read file's data. If it
is an ultra-small we get the file content within the
information obtained directly.

Fig. 7. Accessing a file in our LHF.

Algorithm 4: File Accessing Algorithm

1 begin
2 input small file name name0
3 hashCode0 linearHashingCaculation(name0)
4 indexFile0 getIndexFile(hashCode0)
5 indexInformationbinarysearch(indexFile0,name0)
6 fileIdentifierextract(indexInformation)
7 if(fileIdentifier==”1”) then
8 locate the data part file and read the small file’s

content with starting offset and this small file’s
length

9 else if(fileIdentifier==”0”) then
10 get the ultra-small file’s content from

indexInformation
11 end
12 end

To further improve the performance of accessing files in
the merged file, we can prefetch the Index Part files to the
DataNode memory.

3) Appending small files
The process of appending small files is similar to

merging small files. Certainly, there are some differences.
We ought to read all the Index Part files on HDFS to build a
linear hashing in the client's memory. During the appending
process, common small files' content has to be written into
the last created part file that is smaller than the defined
maximum size value, otherwise, written into a new part file.

Fig. 8 describes the splitting process of the bucket while
appending files.

Fig. 8. The splitting process of the bucket while appending files.

V. EXPERIMENTAL EVALUATION

In this section, we present experimental results of our
LHF comparing to native HDFS, HAR and MapFile.

A. Experimental environment

The experiment environment is built on a cluster of 4
nodes. One node serves as NameNode and the other 3 nodes
act as DataNodes. Each of them has Intel(R) Core(TM) i5-
2400 CPU @ 3.10GHz processors and 4 GB memory. The
operating system is Centos 6.6, the jdk version is 1.8.0 and
the Hadoop version is 2.6.5. The number of replicas is set to
3 and HDFS block size is 128MB. The files we use in the
experiments include text files, web page files and images. To
test the performance of LHF comprehensively, we utilized
different kinds of file sets to do the experiments. First kind of

file set is text file sets, which contain 20,000, 40,000，
60,000 and 80,000 files respectively. The total size of file set
is up to 288MB and file sizes range from 250B to 160KB
which means many ultra-small files in this data set. The
second type of file set is about 4.5GB and contains about
20,000 files whose size range from 20KB to 30MB, which
means all files are common small files in this data set. All the
small files are collected from the internet. It is mentioned
that our method concentrates on how to store and access
small files on HDFS and certain features of the data for
evaluation will not make a difference to the evaluation
results, unlike Machine Learning Algorithms.

B. Experiments and Analysis

Our experiments evaluate the LHF performance by five
parameters: memory usage of NameNode, I/O throughput,
creation time of the merged file, reading performance and
time to append files to an existing archive file. We set the
size of the bucket to 10 thousand.

To evaluate the performance of accessing small files, we
performed read operations directly from HDFS, HAR,
MapFile and our LHF on first file sets and MapFile and our
LHF on the second file sets which are repeated 5 times.

For the first file sets, we read part of the file sets and the
whole file sets. When reading part of the file sets, each time
is tested with the same 2000, 4000, 6000, 8000, 10000
random files with different method respectively. The result
is shown in the following figures.

Fig. 9. Performance of accessing files from 20,000 files.

Fig. 10. Performance of accessing files from 40,000 files.

Fig. 11. Performance of accessing files from 60,000 files.

Fig. 12. Performance of accessing files from 80,000 files.

In all the above figures, our LHF almost provided the
best performance and HAR performed the worst. The only
set of data in Fig. 12 shows that reading 2000 files from
HDFS directly performed better than our LHF. This may be
because reading index part files ahead needs some time.

Fig. 13. Performance of accessing all files in file sets.

When reading all the files in the merged file, MapFile
has two ways to read the file sets--random reading and
sequential reading. From Fig. 13, our LHF still performed
best and sequential reading of MapFile also provides good
performance.

We also calculated the throughput rate of reading entire
file sets depicted in Fig. 14 from the reading time and the
merged file's size.

Fig. 14. Throughput of accessing files.

In Fig. 15, we evaluated the time spent on creating an
archive file to store the file sets. Our LHF costs more time
slightly. And appending 20 thousand, 40 thousand, 60
thousand to the archive file which contains 20,000 files cost
89096, 144761, 203941 milliseconds respectively.

Fig. 15. The performance of creating merged or uploading files.

We also evaluated the memory usage in NameNode of

storing small file. We measured memory usage as showed

Fig. 16.

Fig. 16. Memory usage of NameNode.

As expected, LHF, MapFile and HAR provide much
better efficiency of storing small files than the original
HDFS. Comparing to MapFile and HAR, our LHF
consumes more memory slightly. This is owing to each
bucket in linear hashing needs a file to store.

Fig. 17. The performance of accessing files in second file set.

To avoid the coincidence that our LHF provides good
performance tested by only the first kind of file sets, we
further use the second kind of file set in which files size
range from 20KB to 30MB so there are no ultra-small files.
The reading performance is shown in Fig. 17.

From the figure, we can see that our LHF still works
better than all the other solutions.

VI. CONCLUSION

In our method, small files problem of HDFS is solved
and the files to be merged do not need to be sorted, which
makes appending additional files to existing merged file
possible. For random file access, you can use the file name
to locate the bucket file in the index, which only need one
time hash computation; when reading the file content, read
the corresponding content according to the index
information to the specified location of the specified file,
without having to find the corresponding content in the data
file like MapFile. Compared to HAR and MapFile, both
appending function and the performance of random access
are advantages of our approach.

Compared with multiple merged files, appending
additional files to the existing merged file can make full use
of the data block, avoiding the case that a small number of
files also occupying a merged file and corresponding index
file, to some extent alleviate the memory pressure of the
NameNode. At the same time, there is no need to care about
which merged file the small file is in, which is easy to
access. In addition, due to the number of records in the
index file is always within a certain range, there is no need
to worry about the performance degradation of the index
information as the number of additional files increases.
Certainly, when to start a new file is up to the user and a
little overhead such as a little longer merging time and the
use of memory while appending files to existing merged file
is needed.

In the near future, we will study the maximum number
of elements store in each bucket of the linear hashing to get
the best reading performance. And we will also improve
prefetching and caching mechanisms.

ACKNOWLEDGMENT

This work is supported by the National Nature Science
Foundation of China (Grant No. 61602037).

REFERENCES

[1] Hdfs architecture guide. [Online].
Available:https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/HdfsDesign.html.

[2] P. Mell and T. Grance, “A nist definition of cloud computing,
national institute of standards and technology. nist sp 800-145,” 2009.

[3] B. Dong, Q. Zheng, M. Qiao, J. Shu, and J. Yang, “Bluesky cloud
framework: an e-learning framework embracing cloud computing,” in
IEEE International Conference on Cloud Computing. Springer, 2009,
pp. 577–582.

[4] The small files problem. [Online].
Available:http://blog.cloudera.com/blog/2009/02/the-small-files-
problem/.

[5] Tim Kraska, “Finding the Needle in the Big Data Systems Haystack,”
IEEE Internet Computing 17(1), pp.84-86, 2013.

[6] W. Litwin, "Linear hashing: new tool for file and table addressing,"
Proc. Intle. Conf. on Very Large Databases, pp.212-233.

[7] HAR.[Online].Available:https://hadoop.apache.org/docs/current/hado
op-archives/HadoopArchives.html.

[8] MapFile.[Online].Available:http://hadoop.apache.org/docs/r2.7.1/api/
org/apache/hadoop/io/MapFile.html.

[9] Divyashikha Sethia, Shalini Sheoran and Huzur Saran, “Optimized
MapFile based Storage of Small files in Hadoop,” CCGrid, 2017,
pp.906-912.

[10] X. Liu, J. Han, Y. Zhong, C. Han, and X. He, “Implementing webgis
on hadoop: A case study of improving small file i/o performance on
hdfs,” in 2009 IEEE International Conference on Cluster Computing
and Workshops. IEEE, 2009, pp. 1–8.

[11] Sachin Bende and Rajashree Shedge, “Dealing with Small Files
Problem in Hadoop Distributed File System,” International
Conference on Communication, Computing and Virtualization
(ICCCV), 2016, pp.1001-1012.

[12] C. Vorapongkitipun, N. Nupairoj. “Improving performance of small-
file accessing in Hadoop,” IEEE International Conference on
Computer Science and Software Engineering (JCSSE), 2014, pp.200-
205.

[13] SequenceFile.[Online].Available:https://wiki.apache.org/hadoop/Sequ
enceFile.

[14] CombineFileInputFormat.[Online].Available:http://hadoop.apache.or
g/docs/r2.7.1/api/org/apache/hadoop/mapreduce/lib/input/CombineFil
eInputFormat.html

[15] Chen, J., Wang, D., Fu, L., and Zhao, W., “An Improved Small File
Processing Method for HDFS,” in International Journal of Digital

Content Technology and its Applications (JDCTA), Vol.6, pp.296-
304, Nov 2012.

[16] Gurav, Y.B. and Jayakar, K.P., “Efficient Way for Handling Small
Files using Extended HDFS,” International Journal of Computer
Science and Mobile Computing, Vol.3, pp.785-789, June 2014.

[17] Chandrasekar, S., Dakshinamurthy, R., Seshakumar, P. G.,
Prabavathy, B., and Babu, C., “A novel indexing scheme for efficient
handling of small files in hadoop distributed file system,” Computer
Communication and Informatics (ICCCI) 2013 International
Conference, pp. 1-8, 2013.

[18] Yanfeng Lyu, Xunli Fan and Kun Liu, “An Optimized Strategy for
Small Files Storing and Accessing in HDFS,” IEEE International
Conference on Computational Science and Engineering (CSE),
Volume: 1, pp.611 - 614, 2017.

[19] Z. Gao, Y. Qin, and K. Niu, “An effective merge strategy based
hierarchy for improving small file problem on HDFS,” in 2016 4th
International Conference on Cloud Computing and Intelligence
Systems (CCIS), 2016, pp.327–331.

[20] Weipeng Jing, Danyu Tong, Guangsheng Chen, Chuanyu Zhao, and
Liangkuan Zhu, “An optimized method of HDFS for massive small
files storage,” Comput. Sci. Inf. Syst. 15(3), pp.533-548, 2018.

[21] Tong Ouyang, Yizhen Cao, “Research and Optimization of Massive
Music Data Access Based on HDFS,” ICIS, 2018, pp.697-700.

[22] Pierre Matri, María S. Pérez, Alexandru Costan, Gabriel Antoniu,

“TýrFS: Increasing Small Files Access Performance with Dynamic
Metadata Replication,” CCGrid, 2018, pp.452-461.

