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Abstract—As one of the most popular open source projects, 

Hadoop is considered nowadays as the de-facto framework for 

managing and analyzing huge amounts of data. HDFS (Hadoop 

Distributed File System) is one of the core components in 

Hadoop framework to store big data, especially semi-

structured and unstructured data. HDFS provides high 

scalability and reliability when handling large files across 

thousands of machines. But the performance will be severely 

degraded while dealing with massive small files. Although some 

effort was spent to investigate this well-known issue, existing 

approaches, such as HAR, SequenceFile, and MapFile, are 

limited in their ability to reduce the memory consumption of 

the NameNode and optimize the access performance in the 

meantime. In this paper, we presented LHF, a solution to 

handle massive small files in HDFS by merging small files into 

big files and building a linear hashing based extendable index 

to speed up the process of locating a small file. The advantages 

of our approach are (1) it significantly reduces the size of the 

metadata, (2) it does not require sorting the files at the client 

side, (3) it supports appending more small files to the merged 

file afterwards and (4) it achieves good access performance.  A 

series of experiments were performed to demonstrate the 

effectiveness and efficiency of LHF as well, which takes less 

time while accessing files compared with other methods. 

Keywords—HDFS, massive small files, linear hashing 

I. INTRODUCTION  

In the contemporary era of ABC (AI, Big Data, cloud 
computing), a huge amount of data is being generated and 
this data has to be stored, processed and analyzed. As a 
widely used cloud storage platform, Hadoop has the feature 
of open source, low-cost, high-fault tolerance and scalability. 
Hadoop distributed file system (HDFS) [1] is the storage 
system of Hadoop with a master-slave architecture. HDFS is 
used by lot of running cloud service as file systems on their 
clusters and has been extensively utilized to support cloud 
applications. With the need of computing high availability, 
high scalability and high-capacity storage, cloud computing 
[2] is the ideal solution for big data analysis and processing. 
HDFS is designed for managing large files such as huge 
machine learning data sets, big video files, etc., therefore, 
when accessing and storing a large number of small files, 
HDFS will confront several problems. But there are many 
big data applications generate massive small files, such as 
social networking, online learning, e-commerce, Internet of 
Things, healthcare [3], in which the amount of data generated 
is enormous but the file size is usually from 10KB to 10MB.  

Practically, the production of small files has become 
increasingly common and the amount of data is too large to 
be stored and processed by using local file system in many 
applications. Moreover, small files have to be processed 

along with big files. It is necessary to investigate the small 
files problem in big data storage system. Generally, files 
whose size is smaller than HDFS block size can be thought 
as small files. There are various reasons resulting in the 
Hadoop small files problem [4]. As we know, HDFS consists 
of one NameNode as the master and a group of DataNodes 
as slaves. NameNode is responsible for managing the 
metadata of the whole file system. So the first problem of 
storing massive small files is the huge memory consumption 
of NameNode. Because every data block, file, and directory 
in HDFS needs some space to store the metadata in the 
NameNode memory. For example, each file requires 150 
bytes of memory for storing its metadata. For the same 
physical storage to store one big file or one million small 
files, small files need one million times additional memory 
space to store the metadata. We can reduce the NameNode 
memory consumption by reducing the number of small files 
on Hadoop cluster. Secondly, the existence of a large number 
of small files will deteriorate the performance of MapReduce 
processing as a huge number of small files results in a large 
volume of random disk I/O. Sequential disk I/O is one of the 
key factors for HDFS to get high throughput. It takes less 
time to read the data from one big file sequentially than 
randomly read many small files. 

Presently there is no existing standard and generic file 
systems that is specifically designed for storing, handling and 
analyzing small files. Facebook [5] stores more than 60 
billion images. Facing the performance problem, Facebook 
designed their own distributed file system called Haystack to 
optimize the storing and processing of large number of small 
images. Taobao is one of the largest e-commerce   
corporations, storing more than 20 billion images, with an 
average size of only 15KB. They built the TFS file system, 
an optimized open source framework for managing massive 
small files. All of their work serves their specific need for 
images. Most of the distributed file systems are designed 
primarily for large files, such as Lustre, GlusterFS, GPFS, 
ISILON, GFS, and HDFS. The metadata management, data 
layout and most of the features of these file systems are 
designed for managing large files, which makes the 
performance getting worse rapidly when managing small 
files, sometimes the system cannot even work when the 
number of small files is too large. Moreover, among the 
existing solutions, Hadoop is prime big data analytics 
platform at present. It is the leading platform regarding 
performance, reliability, scalability. A detailed discussion 
and comparison of our LHF with some related works are 
presented in Section III.   

In this paper, we firstly analyze, compare and contrast 
various solutions available for solving Hadoop small files 
problem, including solution provided by Hadoop and others 



which target various aspects of small files problem. We 
proposed a method named LHF (Linear Hashing File) which 
introduces the linear hashing [6] concepts to construct small 
files' index information and does not require small files to be 
sorted in advance. Our LHF not only improves the file 
accessing performance without altering the HDFS 
architecture but also allows additional files to be added to the 

existing archive which is the limitation of HAR [7] and 

MapFile's [8]. The LHF solution specifies the files into three 
categories according to the file size and designs two types of 
index structure for small files. When building the archive file, 
the content of the small files will be merged into some data 
part files, whereas the meta-information will be built into the 
index files following the principles of linear hashing. The 
index is composed of multiple hash buckets, which will 
dynamically increase when appending more files to the 
archive. With this hashing based index design, the 
complexity of locating any of the buckets is O(1). The offset 
information of each specific file inside the merged data file is 
automatically sorted and stored in hash buckets. Every hash 
bucket is stored as a separate file in HDFS and will be loaded 
into the DataNode's main memory to accelerate the access 
performance. We have implemented and evaluated LHF on 
Hadoop cluster and find out that the proposed solution is 
superior in accessing time and supports appending additional 
files to the archive as well. 

The rest of this paper is organized as follows: The 
background of this research is firstly discussed in Section II. 
The related work is introduced in Section III. Section IV 
presents the detail design of our proposed method. The 
experimental results of evaluating the approach are 
summarized in Section V. Section VI concludes this paper. 

II. BACKGROUND 

In this section, we will discuss about the architecture of 
HDFS, the problems associated with processing, storing and 
accessing small files and the concept of the linear hashing. 

A. HDFS 

HDFS with a master/slave architecture is a Hadoop file 
system that transfers large files into smaller blocks and 
distributes these blocks to different nodes named DataNodes. 
Excessive copies of each block are maintained in HDFS for 
fault tolerance. NameNode maintains a database containing a 
mapping from logical files to physical blocks in the 
DataNodes. Block replication is also managed by the 
NameNode. The NameNode handles the management of the 
file system namespace, metadata, and requests from clients 
to access data. DataNodes provide blocking and serving IO 
requests for the clients. They also create, delete, and replicate 
data blocks upon getting command from the NameNode. 

B. Problems of managing small files in HDFS 

1) NameNodes memory consumption: The metadata of 

the file system will be loaded in the main memory of the 

NameNode. In general, the metadata of a file consumes 

approximately 150 bytes of main memory [9]. For each 

block that has three replicas by default, its metadata will 

consume approximately 368 bytes main memory. With 24 

million files stored on HDFS, the NameNode will need 

16GB of memory to store the metadata. So storing massive 

small files will consume huge memory of the NameNode 

and lead to performance decline for the cluster. 

2) The MapReduce performance problem: Processing a 

large number of small files will reduce the performance of 

MapReduce jobs. This is mainly because accessing a large 

number of small files will generate numerous random disk 

IO, which is extremely slow compared with accessing one 

large file with the same size sequentially. 

3) High storing time: Storing a big file to HDFS takes 

less time than storing many small files of the same size. This 

is because, for storing one file, it has to go through the 

process of creating files, allocate metadata and data block, 

writing data, making replicas and closing files. For instance, 

storing 550,000 small files with the size approximately from 

1KB to 10KB to HDFS takes about 7.7 hours [10]. 

4)  NameNode performance degradation: When the 

client needs to access the file, it first needs to obtain the 

metadata of the file from the NameNode, and then read the 

file content according to the acquired metadata to the 

corresponding DataNode. For small files, the time spent on 

access is mainly in the management of metadata and disk 

addressing, while data transfer takes less time. Accessing a 

large number of small files, HDFS clients need to interact 

with the NameNode frequently, so the performance of the 

NameNode will be seriously degraded especially facing 

concurrent file access requests. 

C. Linear hashing 

Linear hashing [6] is one type of dynamic hashing that 
support dynamically expand the hash table by adding one 
bucket at a time. This single-bucket expansion can efficiently 
control the collision chain. The cost of a hash table extension 
does not happen all at once, but throughout each hash table 
insert operation. It consists of a hash function h, data buckets, 
a bucket array a, and meta-information. The data bucket is 
made up of data blocks, and meta-information includes the 
hash level i, the number of data buckets n, the number of 
records r, and a fixed fraction p is the least upper bound of r / 
n. A data block in a data bucket stores the data. The 
addresses of data buckets are kept in a bucket array whose 

size is n. In general, the hash function h is modulo by 2
i
. In 

the process of data access, the hash function h calculates the 
hash value of the target data v, and a[v] keeps the address of 
the data bucket storing the target data. When v is bigger than 
n - 1, a[v] does not exist. In this case, v - i - 1 is used for the 
hash value. Then search this data bucket for retrieval. 

III. RELATED WORK 

To solve the small files problem, we merge small files 
and store the larger file after merging on HDFS. Some of the 
solutions for solving small file problem of HDFS are 
discussed as below. 

Hadoop Archive or HAR [7] [11] is a file archiving tool 
that efficiently puts small files into HDFS blocks. It can 
package multiple small files into one HAR file, which allows 
the file to be transparent while reducing the use of 
NameNode memory. In addition, HAR has some drawbacks: 
First, once created, archives cannot be changed. To add or 
remove files inside, you must recreate the archive. Second, 
when accessing the HAR file, it requires 2 index-file read 



operations as well as one data-file read operation which are 
less efficient than reading files from HDFS. 

NHAR [12] redesign the indexing structure to improve 
the metadata mainframe of HDFS and the accessing 
performance without altering the HDFS architecture. With 
new design, NHAR enables to allow additional files to be 
appended to the existing archive. In order to improve the 
access performance, NHAR model uses a single-level index. 
NHAR uses index information to create a hash table instead 
of master-index approach. These information is divided into 
multiple index files. It allows users to append additional files 
to the existing NHAR file. The adding process involves three 
steps: archiving the new small files, merging index files and 
moving the new part file.  

SequenceFile [13] which stores the data in the form of 
binary key-value pairs is used as a storage container for 
small files. In this data structure, file name is stored as the 
key and file content is stored as the value. It supports 
compression and decompression both at record level and 
block level. SequenceFile also presents several disadvantages. 
For a particular key, it does not have a mechanism for update 
and delete operation; it only supports the append method; 
and secondly, this approach has low access efficiency as it 
takes quite a long time to make a Sequence file. If a user 
needs to look up for a particular key, it is required to read the 
Sequence File from the beginning of this SequenceFile. 

A MapFile [8] which is composed of two files, an index 
file and a data file, is a sorted Sequence File. It maintains the 
index file to store keys location information to allow lookup 
of the data file by key. The key-value pairs are sorted by key 
and stored as records in the data file. MapFile facilitates to 
look up for the key without having to read the full file. 
However, it cannot provide flexible APIs for applications as 
only append method is supported for a particular key. In 
other words, not every key can be appended to a created 
MapFile because it must keep all the keys in order. 
Furthermore, while reading a file from MapFile, we need to 
search the index file, address the disk once and scan with 128 
entries at most by default. The less key stored for the same 
small file set, the more entries are required to be scanned and 
compared with the target key. 

CombineFileInputFormat [14] is also a method provided 
by Hadoop, however, it is MapReduce API to input small 
files. Chen, J., Wang, D. proposed an improved HDFS [15] 
whose structure consisted of two parts: client component 
which merges small files into a big file and data node 
component which satisfies the cache resource management. 
Gurav, Y.B. [16][17] proposed Extended Hadoop Distributed 
File System (EHDFS) which has been designed and 
implemented in such a way that a large number of small files 
can be merged into a single combined file and it also 
provides a framework for prefetching metadata for a 
specified number of files. Yanfeng Lyu proposed an 
optimized strategy for small files storing and accessing in 

HDFS [18]. In their work, their method considers the size of 

small files when merging files into combine file, and 
generates a map record for each small file. Meanwhile, they 
apply prefetching and caching mechanism to enhance the 
access efficiency. Z. Gao proposed an effective merge 
strategy based hierarchy for improving small file problem on 
HDFS [19], which makes a radix sort on files set and merges 
these files orderly. Weipeng Jing [20] and his team aim to 

correct the problems of IoT and CPS because of small files 
problem. 

Most of the existing solutions do not perform well in 
accessing small files inside the merged files. Many methods, 
such as HAR [7] or MapFile [8] provided by hadoop, require 
small files to be ordered in advance. HAR does not support 
the append operation and MapFile only supports the append 
operation for particular keys theoretically.  Although NHAR 
supports append operations, it is not flexible enough. The 
number of index files in NHAR is fixed. At the beginning, 
the number of small files is small. Number of index files of 
NHAR is set to a small digital and we create the NHAR file. 
However, if we constantly append additional small files to a 
NHAR file, each index file of NHAR will increase sharply 
and deteriorate the performance of reading files. Some other 
methods may change the architecture of HDFS, or rely on 
another system such as HBase [21], or propose a completely 
different approach [22].  

In addition, most of the existing methods do not focus on 
the small files of relatively small sizes, such as only a few, 
tens or hundreds of bytes. To access these files, those 
methods need to read the index first and then read the data, 
although the size of the index information is similar to the 
file size, which may waste some time. As a result, we 
reclassified the files and changed the way we read ultra-small 
files for performance improvement. 

The method we proposed supports the appending 
operation, and does not require small files to be sorted in 
advance and has high reading efficiency.  

IV. PROPOSED WORK 

The basic idea of the proposed approach includes two 
steps: (1) merging small files into large files to reduce 
quantity of files and optimize the NameNode memory 
consumption, (2) storing these small files metadata in our 
index system based on linear hashing principle thus allow us 
extending the function of file management such as append 
additional files to the existing archive file, delete files from 
the archive file, etc.  

A. Overview 

In this paper, we proposed a new way to deal with a huge 
number of small files. To solve the small files problem, we 
merge them into large files on HDFS and use the linear 
hashing principle to organize these files index information in 
several small index files. When searching for a small file 
inside the archive file, instead of browsing the entire archive 
file from beginning to end just as the Sequence File does, we 
firstly retrieve the information from the index file that allows 
us to access the file position in the archive file directly. We 
improve the index information lookup by splitting total small 
files’ index into several pieces, limiting the capacity of each 
piece and allowing to have a direct access to the index file 
piece containing the information during index record lookup. 

As showed in Fig. 1, File Filtering Criteria module 
classifies files into three categories according to the file size: 
large files, common small files, and ultra-small files. 
Large files are directly uploaded to HDFS. Common small 
files and ultra-small files are sent to the File Merging module 
to build the merged file, and then the merged files and index 
files are uploaded to HDFS. The general process of 
uploading files to HDFS is presented in Algorithm 1. 



 

Fig. 1.  Architecture of our LHF. 

Algorithm 1: File Processing Algorithm 

1  begin 
2    Initialize File set (FS) and create a new combined file or 

open an existing combined file. 
3    for each file Fi in FS do 

4      if(Fi ∈ FS and Fi is a big file)  then 

5        Upload the file to HDFS directly. 
6      else 
7        Merge the file using the File Merging Strategy module. 
8      end 
9    end 
10  Close the combined file. 
11 end 

B. Design 

In our proposed LHF, we firstly classify files based on 
the file size. The File Filtering Criteria module will classify 
files into three categories: 

 Large files: whose size are larger than the HDFS 
default block size (128 MB). They will be uploaded 
to HDFS directly. 

 Ultra-small files: whose size are smaller than   
predefined value, in our case 1 KB. They will be 
processed by the File Merging module and stored in 
the index file directly. 

 Common small files: whose size are between the 

predefined value and the default HDFS block size. 

They will be processed by the File Merging module 
and merged into big data part files.  

 

Fig. 2.  Our proposed LHF technique. 

Fig. 2 shows the proposed structure of the archive file. 
The archive file consists of two parts, the Index Part and the 
Data Part. The Data Part stores the content of common small 
files, the Index Part stores the ultra-small files’ content and 
the index information of all files in this archive. 

1) Merging of small files 
Common small files and ultra-small files are handled 

differently in the File Merging module. In case of common 
small file, the file content is appended to the data part and 
information like their size, the location of the small file in the 
data part file and so on are used to build an index record that 
is inserted to the index part. In case of ultra-small file, we 
directly write the contents of the file to the appropriate 
bucket of the index part using linear hashing algorithm. The 
merging process of our LHF is described in Fig. 3. 

 

Fig. 3.  The merging process of LHF. 

The Data Part consists of a sequence of part-* files. 
During the merging process if the remaining space of the 
part file is smaller than the small file's size, we create a new 
part file to continue writing new small files’ content. As a 
result, a small file's content is in only one data part file. 
Algorithm 2 describes the process of file merging. Since 
common small files and ultra-small files are handled 
differently, their information stored in linear hashing also 
different. The index information  whose format is described 
in Fig. 4 which includes the full file name, the file identifier 
which indicates that the file is a common small file, the part 
file where this small file is located, the starting offset of this 
small file's content in the part file and the small file's length 
in the merged file is temporarily stored in the client's linear 
hashing, and the ultra-small files' content is also stored in 
the client's same linear hashing in the format described in 
Fig. 5 which includes the full file name, the file identifier 
which indicates that the file is an ultra-small file or common 
small file.  

 

Fig. 4.  Common small file's index information. 

 

Fig. 5.  Ultra small file's index information. 



To increase the access performance, the LHF use single 
index level instead of using master-index approach as in 
HAR. LHF organizes Index Part as linear hashing where the 
index records are split into several index files that represent 
the hashing buckets. Each bucket is stored as a HDFS file 
and the name of the bucket file is specified as the bucket 
label for easy locating. As the number of records in the 
index files increases, the buckets are split according to the 
linear hashing split policy. After all the files are merged, the 
contents of each bucket in the linear hashing are sorted by 
file name, and then written to HDFS.  

Algorithm 2: File Merging Algorithm 

1 begin 
2    initiate the linear hashing0 with two buckets whose 

labels are “0” and “1” 
3    create Data Part file part-0 
4    for each small file do       
4      if it is a common small file then 
5       if small file’s size+part-n file’s size>fixed size then 
6           nn+1 
7           create file part-n 
8       end 
9          write the small file’s content to part-n and record 

the starting offset, small file’s length and Data 
Part file’s name in the given format to the linear 
hashing0 

10    else if it is ultra-small file then 
11      write the content of the ultra-small in the given 

format to linear hashing0 
12    end 
13   end 
14   sort each bucket and store the linear hashing0 to 

HDFS 
15 end 

The linear hashing we used to store index records is 
described as follows, and we define some parameters like: 

 n: the number of buckets, the buckets are numbered 
from 0 to n-1. 

 level: the number of bits used in the file name hash 
value to decide in which bucket to store it 
information’s. It is also the number of bits necessary 
to represent n-1. 

 ɣ: defined as the total number of records in all 
buckets 

 α: the average capacity defined for each bucket 

 Load Factor (LF): the fill rate of all index files and 
is calculated using (1). 





*n
LF                              (1) 

 The split policy: It is the policy that we define that 

will allow us to create a new bucket by calling the 
split operation when the available buckets are getting 
filled. In our experiment, the split policy is verified 
when the Load Factor is greater than 75% 
(LF>75%). 

To insert a small file index record, we need to calculate 
in which bucket the insertion must be done. To do so, from 
the file name we calculate a unique number using a hash 
function, and we get the bucket position by considering the 
last level bits of the binary representation of this unique 
number. 

The split operations are done in round-robin. They serve 
to extend the number of index files when existing index files 
are reaching their maximum capacity. At each record 
insertion in a bucket, we check if split policy is verified 
(LF> 75%) if yes, we call the split operation. During the 
split operation, a new bucket is created and data from the 
corresponding bucket in level-1 are redistributed into the 
new bucket. Because HDFS is used to store files, the split 
operation is performed by using Algorithm 3. 

In Fig. 6, we have an example where we have 2 buckets 
and a new bucket is created during the split operation. In 
this example, we have in total 3 buckets (0, 1, 2) then n = 3; 
level = 2(because last bucket label is 2 = 10 in binary, we 
need two bits to represent 2). The actual level is 2 to find the 
corresponding bucket at level-1 position, we just take the 
corresponding binary representation of the new bucket 
position without the first bit. The new bucket position is 2 
(10 in binary) of the corresponding bucket at level-1 is at 
position 0 (2=10 in binary without the first bit). 

 

Fig. 6.  Example of split operation 

Algorithm 3: Index File Splitting Algorithm 

/*This is executed at client side.*/ 

1  begin 
4   Calculate Load Factor(LF) using (1) 
5   if (LF > 75%) then 
6        label1 Calculate the next label in the index files 

sequence (last index file label+1) 
7        label2  Get the label given by label1 without the first bit 
8  Create two files (file1 & file2) 
9  Initialize Index records(R) from index with label2 
10  for each record r in R do 

11  αCalculate r label using linear hashing 
calculation   

12       if(α == label1) then 
13           Add r to file1 

14       else if(α == label2)then 
15           Add r to file2 
16       end 
17  end 
18  Rename file2 to label1 and upload it to HDFS 



19   Overwrite label2 index file with file1 content 

20    end 

21 end 

2) Accessing small files 
To access a file in the merged file, which is illustrated in 

Fig. 7 and algorithm 4, our archiving program use a hash 
function to calculate the linear hash code from this file's full 
name. With Linear Hashing Calculation module, we locate 
the index file containing the information of this file by 
considering the bucket with a label equal to the last level 
bits of the binary representation of the calculated code. Then 
we lookup the file information in the index file using a 
binary search method. With the acquired information, our 
program will extract the file identifier to determine if this 
file is a common small file or an ultra-small file. If it is a 
common small file, locate the data part file and seek the data 
part file to the starting position and then read file's data. If it 
is an ultra-small we get the file content within the 
information obtained directly. 

 

Fig. 7.  Accessing a file in our LHF. 

Algorithm 4: File Accessing Algorithm 

1  begin 
2    input small file name name0 
3    hashCode0  linearHashingCaculation(name0) 
4    indexFile0  getIndexFile(hashCode0) 
5    indexInformationbinarysearch(indexFile0,name0) 
6    fileIdentifierextract(indexInformation) 
7    if(fileIdentifier==”1”) then 
8        locate the data part file and read the small file’s 

content with starting offset and this small file’s 
length 

9    else if(fileIdentifier==”0”) then 
10  get the ultra-small file’s content from 

indexInformation 
11  end 
12 end  

To further improve the performance of accessing files in 
the merged file, we can prefetch the Index Part files to the 
DataNode memory. 

3) Appending small files 
The process of appending small files is similar to 

merging small files. Certainly, there are some differences. 
We ought to read all the Index Part files on HDFS to build a 
linear hashing in the client's memory. During the appending 
process, common small files' content has to be written into 
the last created part file that is smaller than the defined 
maximum size value, otherwise, written into a new part file. 

Fig. 8 describes the splitting process of the bucket while 
appending files. 

 

Fig. 8.  The splitting process of the bucket while appending files. 

V. EXPERIMENTAL EVALUATION 

In this section, we present experimental results of our 
LHF comparing to native HDFS, HAR and MapFile. 

A. Experimental environment 

The experiment environment is built on a cluster of 4 
nodes. One node serves as NameNode and the other 3 nodes 
act as DataNodes. Each of them has Intel(R) Core(TM) i5-
2400 CPU @ 3.10GHz processors and 4 GB memory. The 
operating system is Centos 6.6, the jdk version is 1.8.0 and 
the Hadoop version is 2.6.5. The number of replicas is set to 
3 and HDFS block size is 128MB. The files we use in the 
experiments include text files, web page files and images. To 
test the performance of LHF comprehensively, we utilized 
different kinds of file sets to do the experiments. First kind of 

file set is text file sets, which contain 20,000, 40,000， 
60,000 and 80,000 files respectively. The total size of file set 
is up to 288MB and file sizes range from 250B to 160KB 
which means many ultra-small files in this data set. The 
second type of file set is about 4.5GB and contains about 
20,000 files whose size range from 20KB to 30MB, which 
means all files are common small files in this data set. All the 
small files are collected from the internet. It is mentioned 
that our method concentrates on how to store and access 
small files on HDFS and certain features of the data for 
evaluation will not make a difference to the evaluation 
results, unlike Machine Learning Algorithms. 

B. Experiments and Analysis 

Our experiments evaluate the LHF performance by five 
parameters: memory usage of NameNode, I/O throughput, 
creation time of the merged file, reading performance and 
time to append files to an existing archive file. We set the 
size of the bucket to 10 thousand. 

To evaluate the performance of accessing small files, we 
performed read operations directly from HDFS, HAR, 
MapFile and our LHF on first file sets and MapFile and our 
LHF on the second file sets which are repeated 5 times. 

For the first file sets, we read part of the file sets and the 
whole file sets. When reading part of the file sets, each time 
is tested with the same 2000, 4000, 6000, 8000, 10000 
random files with different method respectively. The result 
is shown in the following figures. 



 

Fig. 9.  Performance of accessing files from 20,000 files. 

 

Fig. 10.  Performance of accessing files from 40,000 files. 

 

Fig. 11.  Performance of accessing files from 60,000 files. 

 

Fig. 12.  Performance of accessing files from 80,000 files. 

In all the above figures, our LHF almost provided the 
best performance and HAR performed the worst. The only 
set of data in Fig. 12 shows that reading 2000 files from 
HDFS directly performed better than our LHF. This may be 
because reading index part files ahead needs some time.   

 

Fig. 13.  Performance of accessing all files in file sets. 

When reading all the files in the merged file, MapFile 
has two ways to read the file sets--random reading and 
sequential reading. From Fig. 13, our LHF still performed 
best and sequential reading of MapFile also provides good 
performance.  

We also calculated the throughput rate of reading entire 
file sets depicted in Fig. 14 from the reading time and the 
merged file's size. 

 

Fig. 14.  Throughput of accessing files. 

In Fig. 15, we evaluated the time spent on creating an 
archive file to store the file sets. Our LHF costs more time 
slightly. And appending 20 thousand, 40 thousand, 60 
thousand to the archive file which contains 20,000 files cost 
89096, 144761, 203941 milliseconds respectively. 

 

Fig. 15.  The performance of creating merged or uploading files. 



We also evaluated the memory usage in NameNode of 

storing small file. We measured memory usage as showed 

Fig. 16. 

 

Fig. 16.  Memory usage of NameNode. 

As expected, LHF, MapFile and HAR provide much 
better efficiency of storing small files than the original 
HDFS. Comparing to MapFile and HAR, our LHF 
consumes more memory slightly. This is owing to each 
bucket in linear hashing needs a file to store. 

 

Fig. 17.  The performance of accessing files in second file set. 

To avoid the coincidence that our LHF provides good 
performance tested by only the first kind of file sets, we 
further use the second kind of file set in which files size 
range from 20KB to 30MB so there are no ultra-small files. 
The reading performance is shown in Fig. 17. 

From the figure, we can see that our LHF still works 
better than all the other solutions.  

VI. CONCLUSION 

In our method, small files problem of HDFS is solved 
and the files to be merged do not need to be sorted, which 
makes appending additional files to existing merged file 
possible. For random file access, you can use the file name 
to locate the bucket file in the index, which only need one 
time hash computation; when reading the file content, read 
the corresponding content according to the index 
information to the specified location of the specified file, 
without having to find the corresponding content in the data 
file like MapFile. Compared to HAR and MapFile, both 
appending function and the performance of random access 
are advantages of our approach.  

Compared with multiple merged files, appending 
additional files to the existing merged file can make full use 
of the data block, avoiding the case that a small number of 
files also occupying a merged file and corresponding index 
file, to some extent alleviate the memory pressure of the 
NameNode. At the same time, there is no need to care about 
which merged file the small file is in, which is easy to 
access. In addition, due to the number of records in the 
index file is always within a certain range, there is no need 
to worry about the performance degradation of the index 
information as the number of additional files increases. 
Certainly, when to start a new file is up to the user and a 
little overhead such as a little longer merging time and the 
use of memory while appending files to existing merged file 
is needed. 

In the near future, we will study the maximum number 
of elements store in each bucket of the linear hashing to get 
the best reading performance. And we will also improve 
prefetching and caching mechanisms. 
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