F $\frac{\text { EasyChair Preprint }}{\text { № } 11717}$

Two Major Conjectures on Prime Numbers

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Two Major Conjectures on Prime Numbers

Frank Vega

To my mother

Abstract

Let $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ denote the Dedekind Ψ function where $q \mid n$ means the prime q divides n. Define, for $n \geq 3$; the ratio $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ where \log is the natural logarithm. Let $N_{n}=2 \cdot \ldots \cdot q_{n}$ be the primorial of order n. We state that if the inequality $R\left(N_{n+1}\right)<$ $R\left(N_{n}\right)$ holds for all primes q_{n} (greater than some threshold), then the Riemann hypothesis is true and the Cramér's conjecture is false. In this note, we prove that the previous inequality always holds for all sufficiently large primes q_{n}.

Mathematics Subject Classification (2010). Primary 11M26; Secondary 11A41, 11A25.
Keywords. Riemann hypothesis, Cramér's conjecture, prime numbers, Riemann zeta function, Chebyshev function.

1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. It is considered by many to be the most important unsolved problem in pure mathematics. The hypothesis was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. In recent years, there have been several developments that have brought us closer to a proof of the Riemann hypothesis. There are many approaches to the Riemann hypothesis based on analytic number theory, algebraic geometry, non-commutative geometry, etc.

The Riemann zeta function $\zeta(s)$ is a function under the domain of complex numbers. It has zeros at the negative even integers: These are called the trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the
locations of these nontrivial zeros. Bernhard Riemann conjectured that the real part of every nontrivial zero of the Riemann zeta function is $\frac{1}{2}$.

The Riemann hypothesis's importance remains from its deep connection to the distribution of prime numbers, which are essential in many computational and theoretical aspects of mathematics. Understanding the distribution of prime numbers is crucial for developing efficient algorithms and improving our understanding of the fundamental structure of numbers. Besides, the Riemann hypothesis stands as a testament to the power and allure of mathematical inquiry. It challenges our understanding of the fundamental structure of numbers, inspiring mathematicians to push the boundaries of their field and seek ever deeper insights into the universe of mathematics.

A prime gap is the difference between two successive prime numbers. The nth prime gap is the difference between the $(n+1)$ st and the nth prime numbers, i.e. $q_{n+1}-q_{n}$. The Cramér's conjecture states that $q_{n+1}-q_{n}=$ $O\left(\left(\log q_{n}\right)^{2}\right)$, where O is big O notation and \log is the natural logarithm. This conjecture was formulated by the Swedish mathematician Harald Cramér in 1936. Nowadays, many mathematicians believe that the Cramér's conjecture is false.

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{q \leq x} \log q
$$

with the sum extending over all prime numbers q that are less than or equal to x. We use the following inequalities:

Proposition 1.1. For every $x>1$ [10, Theorem 4 (3.15) pp. 70]:

$$
\theta(x)<\left(1+\frac{1}{2 \cdot \log x}\right) \cdot x
$$

Proposition 1.2. For all $x \geq 3$ [9, (5) pp. 378]:

$$
\log \log \theta(x) \leq \log \log x+\frac{\theta(x)-x}{x \cdot \log x}
$$

Leonhard Euler studied the following value of the Riemann zeta function (1734) [1].

Proposition 1.3. We define [1, (1) pp. 1070]:

$$
\zeta(2)=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where q_{k} is the k th prime number (We also use the notation q_{n} to denote the nth prime number). By definition, we have

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

where $\pi \approx 3.14159$ is a well-known constant linked to several areas in mathematics such as number theory, geometry, etc.

The number $\gamma \approx 0.57721$ is the Euler-Mascheroni constant which is defined as

$$
\begin{aligned}
\gamma & =\lim _{n \rightarrow \infty}\left(-\log n+\sum_{k=1}^{n} \frac{1}{k}\right) \\
& =\int_{1}^{\infty}\left(-\frac{1}{x}+\frac{1}{\lfloor x\rfloor}\right) d x
\end{aligned}
$$

Here, $\lfloor\ldots\rfloor$ represents the floor function. Franz Mertens discovered some important results about the constants B and H (1874) [8]. We define $H=\gamma-B$ such that $B \approx 0.26149$ is the Meissel-Mertens constant [8].
Proposition 1.4. We have [2, Lemma 2.1 (1) pp. 359]:

$$
\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}}{q_{k}-1}\right)-\frac{1}{q_{k}}\right)=\gamma-B=H
$$

Proposition 1.5. On the sum of the reciprocals of all prime numbers not exceeding x, we have for $x \geq 2278383$ [4, Theorem 5.6 (1) pp. 243]:

$$
-\frac{0.2}{\log ^{3} x} \leq \sum_{q \leq x} \frac{1}{q}-B-\log \log x \leq \frac{0.2}{\log ^{3} x}
$$

In number theory, $\Psi(n)=n \cdot \prod_{q \mid n}\left(1+\frac{1}{q}\right)$ is called the Dedekind Ψ function, where $q \mid n$ means the prime q divides n.

Definition 1.6. We say that Dedekind $\left(q_{n}\right)$ holds provided that

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right) \geq \frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta\left(q_{n}\right)
$$

A natural number N_{n} is called a primorial number of order n precisely when,

$$
N_{n}=\prod_{k=1}^{n} q_{k}
$$

We define $R(n)=\frac{\Psi(n)}{n \cdot \log \log n}$ for $n \geq 3$. Dedekind $\left(q_{n}\right)$ holds if and only if $R\left(N_{n}\right) \geq \frac{e^{\gamma}}{\zeta(2)}$ is satisfied.
Proposition 1.7. Unconditionally on Riemann hypothesis, we know that [11, Proposition 3 pp. 3]:

$$
\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

Proposition 1.8. The inequality $R\left(N_{n}\right)>R\left(N_{n+1}\right)$ is violated for infinitely many n's under the assumption that the Cramér's conjecture is true [3, Proposition 4 pp. 5], [3, Proposition 7 pp. 7].

Proposition 1.9. For all prime numbers $q_{n}>5$ [2, Theorem 1.1 pp .358$]$:

$$
\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)<e^{\gamma} \cdot \log \theta\left(q_{n}\right)
$$

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John Edensor Littlewood [6]. In 1916, they also introduced the two symbols Ω_{R} and Ω_{L} defined as [7]:

$$
\begin{aligned}
& f(x)=\Omega_{R}(g(x)) \text { as } x \rightarrow \infty \text { if } \limsup _{x \rightarrow \infty} \frac{f(x)}{g(x)}>0 \\
& f(x)=\Omega_{L}(g(x)) \text { as } x \rightarrow \infty \text { if } \liminf _{x \rightarrow \infty} \frac{f(x)}{g(x)}<0
\end{aligned}
$$

After that, many mathematicians started using these notations in their works. From the last century, these notations Ω_{R} and Ω_{L} changed as Ω_{+}and Ω_{-}, respectively. There is another notation: $f(x)=\Omega_{ \pm}(g(x))$ (meaning that $f(x)=\Omega_{+}(g(x))$ and $f(x)=\Omega_{-}(g(x))$ are both satisfied). Nowadays, the notation $f(x)=\Omega_{+}(g(x))$ has survived and it is still used in analytic number theory as:

$$
f(x)=\Omega_{+}(g(x)) \text { if } \exists k>0 \forall x_{0} \exists x>x_{0}: f(x) \geq k \cdot g(x)
$$

which has the same meaning to the Hardy and Littlewood older notation. For $x \geq 2$, the function f was introduced by Nicolas in his seminal paper as [9, Theorem 3 pp .376$]$:

$$
f(x)=e^{\gamma} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1-\frac{1}{q}\right)
$$

Finally, we have the Nicolas Theorem:
Proposition 1.10. If the Riemann hypothesis is false then there exists a real b with $0<b<\frac{1}{2}$ such that, as $x \rightarrow \infty$ [9, Theorem 3 (c) pp. 376]:

$$
\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)
$$

Putting all together yields two breakthrough results on prime numbers.

2. Auxiliary Lemmas

The following are helpful Lemmas.
Lemma 2.1.

$$
\sum_{k=1}^{\infty}\left(\frac{1}{q_{k}}-\log \left(1+\frac{1}{q_{k}}\right)\right)=\log (\zeta(2))-H
$$

Proof. We obtain that

$$
\begin{aligned}
\log (\zeta(2))-H & =\log \left(\prod_{k=1}^{\infty} \frac{q_{k}^{2}}{q_{k}^{2}-1}\right)-H \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}^{2}}{\left(q_{k}^{2}-1\right)}\right)\right)-H \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}^{2}}{\left(q_{k}-1\right) \cdot\left(q_{k}+1\right)}\right)\right)-H \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}}{q_{k}-1}\right)+\log \left(\frac{q_{k}}{q_{k}+1}\right)\right)-H \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}}{q_{k}-1}\right)-\log \left(\frac{q_{k}+1}{q_{k}}\right)\right)-H \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}}{q_{k}-1}\right)-\log \left(1+\frac{1}{q_{k}}\right)\right)-\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}}{q_{k}-1}\right)-\frac{1}{q_{k}}\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{q_{k}}{q_{k}-1}\right)-\log \left(1+\frac{1}{q_{k}}\right)-\log \left(\frac{q_{k}}{q_{k}-1}\right)+\frac{1}{q_{k}}\right) \\
& =\sum_{k=1}^{\infty}\left(\frac{1}{q_{k}}-\log \left(1+\frac{1}{q_{k}}\right)\right)
\end{aligned}
$$

by Propositions 1.3 and 1.4.
Lemma 2.2. The inequality $\sqrt{1.2} \geq R\left(N_{n}\right)>1$ holds for all primes $q_{n}>10^{8}$.
Proof. The inequality $R\left(N_{n}\right)>1$ is the same as

$$
\sum_{q \leq q_{n}} \log \left(1+\frac{1}{q}\right)>\log \log \theta\left(q_{n}\right)
$$

after of applying the logarithm. That would be

$$
\sum_{q \leq q_{n}} \frac{1}{q}>\log \log \theta\left(q_{n}\right)+\sum_{q \leq q_{n}}\left(\frac{1}{q}-\log \left(1+\frac{1}{q}\right)\right)
$$

By Lemma 2.1, we check that

$$
\sum_{q \leq q_{n}} \frac{1}{q}>\log \log \theta\left(q_{n}\right)+\log (\zeta(2))-H
$$

By Proposition 1.5, we have

$$
\log \log q_{n}+B-\frac{0.2}{\log ^{3} q_{n}}>\log \log \theta\left(q_{n}\right)+\log (\zeta(2))-H
$$

By Proposition 1.4, we know that

$$
\gamma-\log (\zeta(2))-\frac{0.2}{\log ^{3} q_{n}}>\log \log \theta\left(q_{n}\right)-\log \log q_{n}
$$

By Proposition 1.2, we notice that

$$
\gamma-\log (\zeta(2))-\frac{0.2}{\log ^{3} q_{n}}>\frac{\theta\left(q_{n}\right)-q_{n}}{q_{n} \cdot \log q_{n}}
$$

In this way, we obtain that

$$
\left(\gamma-\log (\zeta(2))-\frac{0.2}{\log ^{3} q_{n}}\right) \cdot \log q_{n}>\frac{1}{2 \cdot \log q_{n}}
$$

since

$$
\theta\left(q_{n}\right)-q_{n}=\left(1+\frac{1}{2 \cdot \log q_{n}}\right) \cdot q_{n}-q_{n}=\frac{q_{n}}{2 \cdot \log q_{n}}
$$

by Proposition 1.1. Indeed, the inequality

$$
\left(\gamma-\log (\zeta(2))-\frac{0.2}{\log ^{3} q_{n}}\right) \cdot \log q_{n}>\frac{1}{2 \cdot \log q_{n}}
$$

trivially holds since

$$
\left(\gamma-\log (\zeta(2))-\frac{0.2}{\log ^{3} q_{n}}\right) \cdot \log q_{n}>1.46330
$$

and

$$
1>\frac{1}{2 \cdot \log q_{n}}
$$

for all primes $q_{n}>10^{8}$. Moreover, we know that $\sqrt{1.2} \geq R\left(N_{n}\right)$ because of

$$
\frac{\log 1.2}{2}>\left(\gamma-\log \left(\prod_{q \leq q_{n}} \frac{q^{2}}{q^{2}-1}\right)+\frac{0.2}{\log ^{3} q_{n}}\right)
$$

by Proposition 1.5 and Lemma 2.1 for all primes $q_{n}>10^{8}$.
Lemma 2.3. For $1.2 \geq y>x>1$:

$$
\frac{y}{x} \geq \frac{\log y}{\log x}
$$

Proof. That would be

$$
\log \left(\frac{y}{x}\right) \geq \log \frac{\log y}{\log x}
$$

and

$$
\log y-\log x \geq \log \log y-\log \log x
$$

after of applying the logarithm to the both sides. By properties of logarithm, the inequality

$$
\log y-\log x \geq \log \log y-\log \log x
$$

trivially holds for $1.2 \geq y>x>1$. Certainly, the inequality

$$
u-v \geq \log u-\log v
$$

holds for all real numbers $\log 1.2 \geq u>v>0$. Indeed, the solution for the equation

$$
u-v-\log u+\log v=0
$$

is

$$
u=-W\left(-e^{-v} \cdot v\right)
$$

for the Lambert W-function [5].

3. Central Lemma

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is true. Nevertheless, there exist some implications in case of the Riemann hypothesis could be false. The following is a key Lemma.

Lemma 3.1. If the Riemann hypothesis is false, then there exist infinitely many prime numbers q_{n} such that Dedekind $\left(q_{n}\right)$ fails (i.e. Dedekind $\left(q_{n}\right)$ does not hold).

Proof. The function g is defined as [11, Theorem $4.2 \mathrm{pp} 5$.$] :$

$$
g(x)=\frac{e^{\gamma}}{\zeta(2)} \cdot \log \theta(x) \cdot \prod_{q \leq x}\left(1+\frac{1}{q}\right)^{-1}
$$

We claim that Dedekind $\left(q_{n}\right)$ fails whenever there exists some real number $x_{0} \geq 5$ for which $g\left(x_{0}\right)>1$ or equivalent $\log g\left(x_{0}\right)>0$ and q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. It was proven the following bound [11, Theorem 4.2 pp. 5]:

$$
\log g(x) \geq \log f(x)-\frac{2}{x}
$$

By Proposition 1.10, if the Riemann hypothesis is false, then there is a real number $0<b<\frac{1}{2}$ such that there exist infinitely many numbers x for which $\log f(x)=\Omega_{+}\left(x^{-b}\right)$. Actually Nicolas proved that $\log f(x)=\Omega_{ \pm}\left(x^{-b}\right)$, but we only need to use the notation Ω_{+}under the domain of the real numbers. According to the Hardy and Littlewood definition, this would mean that

$$
\exists k>0, \forall y_{0} \in \mathbb{R}, \exists y \in \mathbb{R}\left(y>y_{0}\right): \log f(y) \geq k \cdot y^{-b}
$$

The previous inequality is also $\log f(y) \geq\left(k \cdot y^{-b} \cdot \sqrt{y}\right) \cdot \frac{1}{\sqrt{y}}$, but we notice that

$$
\lim _{y \rightarrow \infty}\left(k \cdot y^{-b} \cdot \sqrt{y}\right)=\infty
$$

for every possible values of $k>0$ and $0<b<\frac{1}{2}$. Now, this implies that

$$
\forall y_{0} \in \mathbb{R}, \exists y \in \mathbb{R}\left(y>y_{0}\right): \log f(y) \geq \frac{1}{\sqrt{y}}
$$

Note that, the value of k is not necessary in the statement above. In this way, if the Riemann hypothesis is false, then there exist infinitely many wide apart numbers x such that $\log f(x) \geq \frac{1}{\sqrt{x}}$. Since $\frac{1}{\sqrt{x_{0}}}>\frac{2}{x_{0}}$ for $x_{0} \geq 5$, then it would be infinitely many wide apart real numbers x_{0} such that $\log g\left(x_{0}\right)>0$. In addition, if $\log g\left(x_{0}\right)>0$ for some real number $x_{0} \geq 5$, then $\log g\left(x_{0}\right)=$
$\log g\left(q_{n}\right)$ where q_{n} is the greatest prime number such that $q_{n} \leq x_{0}$. The reason is because of the equality of the following terms:

$$
\prod_{q \leq x_{0}}\left(1+\frac{1}{q}\right)^{-1}=\prod_{q \leq q_{n}}\left(1+\frac{1}{q}\right)^{-1}
$$

and

$$
\theta\left(x_{0}\right)=\theta\left(q_{n}\right)
$$

according to the definition of the Chebyshev function.

4. New Criterion

This is a new Criterion for the Riemann hypothesis.
Lemma 4.1. The Riemann hypothesis is true whenever for each large enough prime number q_{n}, there exists another prime $q_{n^{\prime}}>q_{n}$ such that

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

Proof. By Lemma 3.1, if the Riemann hypothesis is false and the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for each large enough prime number q_{n}, then there exists an infinite subsequence of natural numbers n_{i} such that

$$
R\left(N_{n_{i+1}}\right) \leq R\left(N_{n_{i}}\right)
$$

$q_{n_{i+1}}>q_{n_{i}}$ and Dedekind $\left(q_{n_{i}}\right)$ fails. By Proposition 1.7, this is a contradiction with the fact that

$$
\liminf _{n \rightarrow \infty} R\left(N_{n}\right)=\lim _{n \rightarrow \infty} R\left(N_{n}\right)=\frac{e^{\gamma}}{\zeta(2)}
$$

By definition of the limit inferior for any positive real number ε, only a finite number of elements of $R\left(N_{n}\right)$ are less than $\frac{e^{\gamma}}{\zeta(2)}-\varepsilon$. This contradicts the existence of such previous infinite subsequence and thus, the Riemann hypothesis must be true.

5. Main Insight

This is the main insight.
Theorem 5.1. The inequality $R\left(N_{n}\right)>R\left(N_{n+1}\right)$ holds for all primes q_{n} (greater than some threshold).

Proof. For all primes q_{n} (greater than some threshold), we need to prove that the inequality

$$
R\left(N_{n+1}\right)<R\left(N_{n}\right)
$$

is satisfied. Numerical computations confirm the inequality holds for all $10^{8} \geq$ $q_{n} \geq 5$. For an arbitrary prime number $q_{n}>10^{8}$, we can assume that

$$
R\left(N_{n}\right)<R\left(N_{n-1}\right)
$$

to show that

$$
R\left(N_{n+1}\right)<R\left(N_{n}\right)
$$

using a proof by complete induction. In this way, we have

$$
R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right)<R\left(N_{n}\right) \cdot R\left(N_{n-1}\right)
$$

which is

$$
R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right) \leq R\left(N_{n}\right)^{2}
$$

under our assumption. We would have

$$
\log R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right) \leq \log R\left(N_{n}\right)^{2}
$$

and

$$
\frac{\log R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right)}{\log R\left(N_{n}\right)} \leq 2
$$

since

$$
\log R\left(N_{n}\right)>0
$$

by Lemma 2.2. By Lemma 2.3, we can see that

$$
\frac{\log R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right)}{\log R\left(N_{n}\right)} \leq \frac{R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right)}{R\left(N_{n}\right)}
$$

Certainly, we know that

$$
1.2 \geq R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right)>R\left(N_{n}\right)>1
$$

jut putting together the assumptions

$$
1>\frac{R\left(N_{n}\right)}{R\left(N_{n-1}\right)}
$$

and

$$
\sqrt{1.2} \geq R\left(N_{n+1}\right)>1
$$

by Lemma 2.2. Finally, we obtain the following inequality:

$$
\frac{R\left(N_{n+1}\right) \cdot R\left(N_{n-1}\right)}{R\left(N_{n}\right)} \leq 2
$$

which is

$$
\frac{R\left(N_{n+1}\right)}{R\left(N_{n}\right)} \leq \frac{2}{e^{\gamma}}
$$

by Proposition 1.9 since

$$
R\left(N_{n-1}\right)<e^{\gamma} .
$$

That is the same as

$$
\frac{\log \theta\left(q_{n}\right)}{\log \theta\left(q_{n+1}\right)} \leq \frac{2}{e^{\gamma}} \cdot\left(1-\frac{1}{q_{n+1}+1}\right)
$$

For $q_{n}>10^{8}$, we can verify that

$$
\left(1-\frac{1}{q_{n+1}+1}\right)>\left(1-\frac{1}{10^{8}}\right) .
$$

However, we know the inequality

$$
\frac{\log \theta\left(q_{n}\right)}{\log \theta\left(q_{n+1}\right)} \leq \frac{2}{e^{\gamma}} \cdot\left(1-\frac{1}{10^{8}}\right)
$$

trivially holds because of

$$
\frac{\log \theta\left(q_{n}\right)}{\log \theta\left(q_{n+1}\right)}<1
$$

and

$$
\frac{2}{e^{\gamma}} \cdot\left(1-\frac{1}{10^{8}}\right)>\frac{2}{1.7811} \cdot\left(1-\frac{1}{10^{8}}\right)>1.12290
$$

and therefore, the proof is done.

6. Main Theorem

This is the main theorem.
Theorem 6.1. The Riemann hypothesis is true and the Cramér's conjecture is false.

Proof. By Lemma 4.1, the Riemann hypothesis is true if for all primes q_{n} (greater than some threshold), the inequality

$$
R\left(N_{n^{\prime}}\right) \leq R\left(N_{n}\right)
$$

is satisfied for some prime $q_{n^{\prime}}>q_{n}$. Therefore, the Riemann hypothesis is true by Theorem 5.1. We also know the the Cramér's conjecture is false as a consequence of Proposition 1.8 and Theorem 5.1.

7. Conclusion

On the one hand, the Riemann hypothesis has far-reaching implications for mathematics, with potential applications in cryptography, number theory, and even particle physics. Certainly, a proof of the hypothesis would not only provide a profound insight into the nature of prime numbers but also open up new avenues of research in various mathematical fields. On the other hand, our proof of the untruthfully Cramér's conjecture could spur considerable advances in number theory as well.

Acknowledgment

Many thanks to Patrick Solé, Michel Planat and Yusnier Viera for their support.

Author's Bibliography

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist who graduated in Computer Science in 2007. In May 2022, The Ramanujan Journal accepted his mathematical article about the Riemann hypothesis. The article "Robin's criterion on divisibility" makes several significant contributions to the field of number theory. It provides a proof of the Robin inequality for a large class of integers, and it suggests new directions for
research in the area of analytic number theory. This current and original research has been dedicated to his mother.

References

[1] Ayoub, R.: Euler and the Zeta Function. The American Mathematical Monthly 81(10), 1067-1086 (1974). https://doi.org/10.2307/2319041
[2] Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357372 (2007). https://doi.org/10.5802/jtnb. 591
[3] Choie, Y., Planat, M., Solé, P.: On Nicolas criterion for the Riemann hypothesis. arXiv preprint arXiv:1012.3613 (2010)
[4] Dusart, P.: Explicit estimates of some functions over primes. The Ramanujan Journal 45, 227-251 (2018). https://doi.org/10.1007/s11139-016-9839-4
[5] Equation Solver - Wolfram Alpha: Solution for the equation $u-v-$ $\log u+\log v=0$. https://www.wolframalpha.com/input?i2d=true\&i=u+-+ v+-+\%5Clog+u+\% $2 \mathrm{~B}+\% 5 \mathrm{Clog}+\mathrm{v}+\% 3 \mathrm{C}+0$, Accessed 11 January 2024
[6] Hardy, G.H., Littlewood, J.E.: Some problems of diophantine approximation: Part II. The trigonometrical series associated with the elliptic ϑ-functions. Acta mathematica 37(1), 193-239 (1914)
[7] Hardy, G.H., Littlewood, J.E.: Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Mathematica 41, 119-196 (1916)
[8] Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie. J. reine angew. Math. 1874(78), 46-62 (1874). https://doi.org/10.1515/crll.1874.78.46
[9] Nicolas, J.L.: Petites valeurs de la fonction d'Euler. Journal of Number Theory 17(3), 375-388 (1983). https://doi.org/10.1016/0022-314X(83)90055-0
[10] Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64-94 (1962). https://doi.org/10.1215/ijm/1255631807
[11] Solé, P., Planat, M.: Extreme values of the Dedekind ψ function. Journal of Combinatorics and Number Theory 3(1), 33-38 (2011)

Frank Vega
NataSquad
10 rue de la Paix
FR 75002 Paris
France
e-mail: vega.frank@gmail.com
Submitted: January 11, 2024.

