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Abstract—Processing of deep neural networks (DNNs) at the
edge may be limited by power or energy constraints of the used
embedded hardware system. It is therefore desirable for the com-
piler to create efficient executables for given DNN models meeting
the specific constraints. Here, we consider a low-power many-core
hardware with 152 processing elements (PE), each containing an
ARM M4F processor, 128 KB SRAM and a custom accelerator
for DNN inference. Dynamic power management allows each core
to switch between a high-speed and a low-power mode within tens
of nanoseconds. For an energy-optimal parallelization of DNNs
on the hardware, we first develop analytical performance models
to predict the time and energy for executing a DNN layer with
the custom accelerator. The models are fitted and validated using
measurements on a prototype chip. In a second step we develop
concepts for the energy-optimal parallelization of DNNs under
latency constraints and evaluate them deploying the performance
models: By dynamically switching between the operating modes
more than 10% of energy can be saved compared to the case
running at high-speed mode only. The presented methodology
and concepts are easily transferable to other many-core edge
processors.

Index Terms—deep neural networks, edge computing, many-
core hardware, performance model, parallelization, power man-
agement

I. INTRODUCTION

Dynamic Voltage and Frequency Scaling (DVFS) is an
established technique for compute devices to control the speed
and power of processing. By simultaneously decreasing the
clock frequency and the supply voltage on a System-on-Chip
(SoC), one can reduce the energy as the dynamic energy
per operation scales with V 2 at cost of a lower speed. Very
often, the DVFS settings are automatically adjusted by the
operating system and not transparent to the user. In recent
years, DVFS has been applied to DNN processing on ASICs
[1], GPUs [2], and FPGAs [3]. While commonly DFVS is
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applied globally on the device level, one exception is the
simulation study in [4] which performs fine-grained DVFS per
processing element (PE) exploiting dynamic and static sparsity
of DNNs for improved energy-efficiency.

Here, we consider the SpiNNaker2 many-core hardware of-
fering fast PE-level power management with DVFS [5]. While
originally conceived for the efficient simulation of biological
neural networks, DNN accelerators have been integrated into
the PEs making the system a powerful and energy-efficient
device for DNN inference [6]. In this work we study the use of
dynamic power management for an energy-optimal processing
of DNNs on SpiNNaker2. This is crucial especially for edge
applications where limited battery capacity and constraints
on maximum power for the device are confronted with low-
latency requirements for the real-time processing of sensor
data.

The paper is structured as follows: Section II introduces the
SpiNNaker2 many-core hardware. In Section III we develop
energy and performance models of the DNN accelerator and
validate them against hardware measurements. These models
are deployed in Section IV where we suggest and evaluate
power management concepts for optimal processing of CNNs
on the hardware for different scenarios. We summarize the
results in Section V.

II. MANY-CORE HARDWARE

The SpiNNaker2 hardware architecture is shown in Fig. 1).
It consists of 36 Quad Processing Elements (QPEs), each in
turn containing 4 PEs. The QPEs are interconnected on a
2D grid though a high-throughput Network-on-Chip (NoC),
routing over 4 directions to each neighbor. This 2D mesh
provides a faster means to share data space between PEs.
Each PE contains an ARM M4F processor, 128 KB SRAM,
and multiple accelerators focused on speeding up spiking and
non-spiking neural network models. The machine learning
accelerator (MLA) provides a 16x4 MAC array to speed up
matrix multiplication and 2D convolution for 8bit or 16bit
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Fig. 1. SpiNNaker2 chip overview.

integers. The accelerator fetches data from the local SRAM
and global NoC and writes the results back to the local SRAM.
All 8bit unsigned MAC cells are reused by optional two’s
complement converter at the input and adder stage at the output
to provide signed operation and a 16bit MAC. At the end
the output is fed to optional post-processing modules which
execute quantization and ReLU activation. An explanation of a
more detailed data flow of an older version is provided in [7].

In the outermost NoC ring the chip provides a variety of
periphery and additional interfaces, and access to a 2 GB
LPDDR4 DRAM with 6.4 GB/s total throughput. Six serial
chip-to-chip links and the SpiNNaker router allow the packet-
based communication to other chips (not used in this study).

The system is specialized on fine-grained dynamic power
control provided by 2 power lanes each PE can access,
integrated adaptive body-biasing in 22FDX technology and
4 frequency dividers per QPE. While the supply voltages of
the 2 power lanes for the PE logic (ARM core, accelerators)
are set externally and globally per chip (typically between
0.45V and 0.6V), the clock frequencies can be chosen per
PE between 50MHz and 400MHz. Each PE then can change
to different performance levels (power lane and frequency
combinations) during execution independent from other PEs or
other NoC modules. This enables the system to adapt supply
voltage and clock frequency to application requirements within
tens of nanoseconds [5]. The SRAM is supplied with 0.8V
(fixed) and is accessed with the PE clock frequency. The
NoC is typically operated at 300MHz and 0.6V (not changed
during operation). Further details on the system architecture
are available in [8].

III. PERFORMANCE MODELS

a) Power measurements: We performed detailed mea-
surements on a prototype chip with 2 QPEs [6], [8], where
the MLA operation is looped 100k times while the power
consumption is recorded for 3 power lanes: VDD08 for the
SRAM, VDD06 for the NoC and periphery, and VDD04 for
the PEs including the MLA. Execution times were measured
with built-in timers of the ARM cores. Frequencies and volt-
ages of the PE supply (VDD04) were swept to determine the
optimal operation point by maximizing TOPS/W (see Fig. 2
for the convolution case). When increasing the frequency while
keeping the voltage constant, the efficiency increases as the
static power is drawn for a shorter time. The lower the supply
voltage, the better is the efficiency at the same frequency
due a smaller dynamic energy per operation. The higher the
voltage, the higher is the maximum frequency where the MLA
produces correct results.

From Fig. 2 we identify two specific operating points:

• PL 1: VDD04=0.5V, fclk=320MHz for least energy
• PL 2: VDD04=0.6V, fclk=400MHz for highest speed

further on called performance levels PL 1 and PL 2. PL 1 has
the highest energy efficiency and thus represents the DVFS
setting to accomplish tasks with least energy. Instead, PL 2 is
the DVFS setting with the highest clock frequency with correct
operation and thus provides the highest speed / lowest latency
per task. No further PL is considered in this study as there are
only two global power lanes for the voltage settings, and other
frequencies at the selected voltages are less energy-efficient.
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Fig. 2. Energy-efficiency for Conv2D operation on all 8 PEs of a SpiNNaker2
prototype chip for different voltage-frequency operation points.

b) Models: Based on the measurements, we have de-
veloped and fitted models to predict the energy consumption
and time for the MLA. For sake of brevity, we focus on
the performance models for conv2d mode of the accelerator.
Similar models are available for matrix multiplication.

The energy is modelled as the sum of static and dynamic
energy (1), where the static energy depends on the static power
(leakage, clock enable etc.) over time (2). Instead, the dynamic



power is calculated by considering different atomic actions
such as a memory accesses, cf. (3).

Etot = Edynamic + Estatic (1)
Estatic = Pstatic · t (2)

Edynamic =
∑

actions

Eaction ·Naction (3)

Here, Eaction denotes the energy per atomic action and Naction
action count per application. The energy is modelled for
the three different power supplies that are directly linked
to different functional components: SRAM (VDD08), NoC
(VDD06), and MLA (VDD04, this includes also the ARM
core).

The dynamic energy for the different supplies is computed
as follows:

Edynamic,SRAM = Eread32 ·Nread32 + Ewrite32 ·Nwrite32 (4)
Edynamic,NoC = ENoC-read ·NNoC-read (5)
Edynamic,MLA = EMLA-compute ·NMLA-compute (6)

The different actions are described in Table I.
The presented method for energy modeling is similar to

Accelergy [9] by considering atomic actions with specific
energies. However, we explicitly model static power whereas
Accelergy uses idle operations. Our approach allows to predict
the energy for different frequency settings without having to
re-fit the parameters.

The time for running a convolutional layer with the machine
learning accelerator depends on the parameter settings xconv,
a set of fittable parameters θconv and the clock frequency fclk:

tconv = tconv(xconv,θconv, fclk) (7)

More concretely, we first model the number of clock cycles
clksconv:

clksconv = clksinit +

⌈
Wi −Ww + 1

16

⌉
(Hi −Hw + 1) (8)

· (aWwHwCi + clkswb)

⌈
Co

4

⌉
b ,

and then compute the total time:

tconv =
clksconv

fclk
. (9)

Here, xconv contains the width Wi and height Hi of the input
feature maps, the number of input and output channels (Ci
resp. Co), and the width Ww and height Hw of the weight
kernel, while θconv contains four fittable parameters:

xconv = (Wi, Hi, Ci, Co,Ww, Hw) (10)
θconv = (clksinit, clkswb, a, b) (11)

The equation for the clock cycles in 8 was conceived based
on the accelerator’s operation workflow, see [7] for details.
We remark that the execution time of the MLA for given
parameter settings xconv is not fixed, even not the number of
clock cycles. As the weights are fetched using the NoC from

Parameter Description

Eread32 Energy per SRAM read (32bit)
Ewrite32 Energy per SRAM write (32bit)
ENoC-read Energy per 128-bit NoC read within QPE
EMLA-compute Energy per MLA compute cycle (64 MAC ops)

TABLE I
PARAMETER DESCRIPTION

another PE, both congestion in the NoC as well as concurrent
SRAM accesses may slow down the operation. Hence, model
fitting is needed for different scenarios and clock frequencies.

c) Parameter fitting: The time and energy models have
been fit to the measurements on the SpiNNaker2 prototype
chip. First, the static power for the various supply domains
was extracted from measurements such as those in Fig. 2.
Then, the time model parameters were obtained for 4 different
convolutional layers with diverse settings. Finally, the energies
per atomic operations (cf. Table I) were determined from
the power measurements. For this, the action counts per
execution of the convolutional layer were calculated based
on the parameter setting xconv according to the operating
principle of the accelerator (formulas not shown). The energy
and time models were determined for the two performance
models PL 1 and PL 2. Note that for the NoC and the SRAM
the static power and energies per action are the same for both
performance levels.

Figure 3 shows the predicted energy for running the selected
convolutional layers 100 000 times in the loop on 8 PEs in
comparison to the measured energy at PL 2. One can see a
very good match between the predicted and measured energy
(relative error less than 5%), not only for the total energy
but also for the energy per component. The error of the time
models is less than 9% (not shown).

A dedicated Python package was developed for fitting the
performance models and for their deployment in the next
section. To obtain performance models at other operating
points, the timing models have to be refitted. Instead, the
energy models are specific to the underlying supply voltage
and can be reused for all frequency settings.
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IV. POWER MANAGEMENT CONCEPTS

In the following, we explore the power management capa-
bilities of SpiNNaker2 for efficient DNN processing, choosing
the performance level of the PE dynamically depending on the
use case. Here we focus on processing convolutional layers,
but we emphasize that the developed approaches equally
apply to matrix multiplication on the MLA or software-based
processing on the ARM cores. Note that we only present
predictions for the SpiNNaker2 architecture. A hardware val-
idation of the concepts and models is planned in the future
using the final SpiNNaker2 chip.

a) Speed vs. energy for single convolutional layer: To
run large convolutional layers on SpiNNaker2, they have to be
split into smaller parts that fit into single processing elements.
The main limitation is the available data memory per PE of
96KB, which is needed for both input feature maps and output
feature maps. For example, the largest convolutional layer of
the VGG-16 network for image classification [10] requires
3 MB each for input and output feature maps and 35 KB
for the weights. The layer has to be split into many parts that
even exceeds the number of PEs on the chip [11].
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Fig. 4. Power consumption over time for processing VGG layer Conv-1-2
for different power management scenarios.

Figure 4 shows the estimated power over time to process
the VGG layer Conv-1-2 on one SpiNNaker2 chip. The layer
is split into 1024 parts so that in total 7 loops of processing are
required. In the first 6 loops, all 152 PEs process one chunk
of the layer in parallel, while in the last loop only 112 PEs are
needed and the remaining cores go into sleep mode and only
consume static power. When operated at performance level
PL 1 (subfigure A), processing of the entire layer takes longer
than at PL 2 (subfigure B). However, both the total energy and
the maximum consumed power are less for PL 1. This shows

the general flexibility to choose between speed and energy
efficiency for processing DNNs on SpiNNaker2.

b) Power management scenarios: There are different
application scenarios where power management, i.e., switching
between performance levels, can be applied. For all scenarios
we assume that there are exactly two performance levels. All
PEs are enabled all the time, but can go into sleep mode to
consume only static power. We have identified the following
scenarios:

1) Speed: DNN should be processed as fast as possible.
2) Energy: DNN should be processed with least energy.
3) Limited time: Time for processing the DNN is limited,

e.g., when images arrive at a certain frame rate.
4) Limited power: The power the chip can draw is limited,

e.g., by the power supply unit.

The first two scenarios don’t require any specific power
management, either the higher or lower performance level
is chosen. Instead, for the other scenarios an active power
management strategy is needed to operate the chip at optimal
energy efficiency under time or power constraints. In the
following, for sake of brevity, we focus on approaches for
limited time.

c) Limited time budget: single layer: We assume that the
time to process a single convolutional layer is limited and that
the available time budget Tbudget is between the time needed
using PL 1 or PL 2 only. Of course, one can use PL 2 only to
meet the time constraint. However, by processing parts of the
layer at the lower performance level PL 1, one can save energy
while still not exceeding the time limit. Figure 4C shows an
example applying such active power management for the same
VGG layer as before: The first 4 loops are processed at PL 1
and the last 3 loops at PL 2. The computation of the layer stops
shortly before the assumed time budget of 0.27ms. 7.4% less
energy is needed compared to using PL 2 only. The number of
loops to process at PL 1 was determined automatically. With
the suggested approach and for the considered layer, one can
reduce the energy by up to 11% depending on the given time
budget.

d) Limited time budget: network: Similarly, the power
management can be applied on the network level. Let’s as-
sume that all 13 convolutional layers of VGG-16 need to be
processed within 3.3ms as shown in Fig. 5: When processed
at PL 1, time to finish is 3.6ms and hence too long. Note
that the time and average power per layer varies depending on
the parameters of the layer. At PL 2, the processing finishes
more than 0.3ms before the end of the time budget. This
remaining time can be used to process some layers at the
lower performance level to minimize the total energy. The
bottom plot in Fig. 5 shows the optimal solution that finishes
just before the time limit and requires the least possible total
energy, which saves 6.6%. Depending on the given time
budget, up to 12% of energy can be saved in comparison
to using PL 2 only.
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Fig. 5. Energy-optimized operation of all 13 convolutional layers of VGG-16.
The width and height of each vertical bar denote the time and average power
per layer.

V. CONCLUSION

We have developed grey box time and energy models for the
machine learning accelerator of the SpiNNaker2 many-core
hardware. Compared to others, our methodology considers
also static power and inherently supports changing the clock
frequency. In a second step, power management concepts are
proposed that make use of the fine-grained DVFS available
on the many-core hardware. It was shown for scenarios with
limited processing time that, by switching the performance
level for individual layers or parts of layers, the total energy
can be reduced by up to 12% compared to using the high-speed
performance level only. Further savings are expected for the
final SpiNNaker2 chip due to a reduced static power. The con-
cepts are easily transferable to other many-core architectures
with fine-grained power management.

In the future, both the performance models and the power
management strategies shall be integrated into the DNN com-
piler for SpiNNaker2. This will allow to find an energy-
optimal mapping and scheduling for entire networks.
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