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Abstract—Conway’s Game of Life is a zero-player game played
on an infinite square grid, where each cell can be either ”dead”
or ”alive”. The interesting aspect of this game arises when we
observe how each cell interacts with its neighbors over time.
There has been much public interest in this game, and several
variants have become popular. Research has shown that similar
Games of Life can exist on hexagonal, triangular, and other tiled
grids. Games of Life have also been devised in 3 dimensions.
In this work, another Game of Life is proposed that utilizes
a Pythagorean tessellation, with a unique set of rules. Several
interesting life forms in this universe are also illustrated.

Index Terms—cellular automata, Game of Life, two-square
tiling, Pythagorean tessellation

I. INTRODUCTION

Carter Bays defines a cellular automaton [3] as a structure
comprising a grid with individual cells that can have two
or more states; these cells evolve in discrete time units and
are governed by a rule, which usually involves neighbors of
each cell. There are many real-world applications of cellular
automata[8], including VLSI design, pseudo-random number
generation, cryptography, image compression, and many oth-
ers.

A tessellation or tiling is composed of a specific shape that is
repeated endlessly in a plane, with no gaps or overlaps. Exam-
ples of simple tessellations are the square grid, the triangular
grid (a plane completely covered by identical triangles), etc.
In this work, the word ”grid” is interchangeable with ”tiling”
or ”tesselation”.

Conway’s Game of Life is a classic example of a cellular
automata on a square grid. The rules of Conway’s Game of
Life are delightfully simple. They was first published[7] to
the public in 1970. Because of its analogies with the rise, fall
and alternations of a society of living organisms, it belongs
to a growing class of what are called ”simulation games” -
games that resemble real-life processes. The game is played
on an infinite square grid. The basic idea is to start with
a configuration of states (dead or alive), one per cell, then
observe how it changes as Conway’s ”genetic laws” for births,
deaths, and survival are applied. These genetic laws are as
follows:

1) Survivals. Every living cell with two or three neighbor-
ing living cell survives for the next generation.

2) Deaths. Each living cell with four or more neighbors dies
(is removed) from overpopulation. Every living cell with
one neighbor or none dies from isolation.

3) Births. Each empty cell adjacent to exactly three neigh-
bors is a birth cell. It will become alive in the next
generation.

In a cellular automaton of this type, a single cell may do
one of four things within a single time step[6]: If it was dead
but becomes alive, we say that it is born. If it was alive and
remains alive, we say that it survives. If it was alive and
becomes dead, we say that it dies. And if it was dead and
remains dead, we say that it is quiescent. These are all the
state transitions possible by a single cell.

It is important to understand that all transitions (like births
and deaths) occur simultaneously. Together, they constitute a
single generation.

This combination of genetic laws is referred to as a [Game
of Life] rule.

II. LITERATURE SURVEY

Excitement and popular interest into Conway’s Game of
Life started when Martin Gardner published this Scientific
American article[7], first introducing the rules of this zero-
player game to the public and responding to one of Conway’s
challenges. (These rules are explained in Section I. The chal-
lenge was to either prove or disprove Conway’s conjecture that
no pattern can expand without limit. This was disproved by
the discovery of a ”gun”, which is elaborated in section II-B.)

A. The Speed of Light

The speed of light on regularly tiled square grid is defined
as the speed of a chess king moving in any direction[7]. To
make definition this more generic to other tiling patterns, it
can be defined as the furthest distance in one generation that
neighbors a tile. This is because it is the highest speed at
which any kind of movement can occur on the board. It is
also referred to as c.

B. Categories of Life

After this, there have been many public attempts to dis-
cover ”life forms” that abide by Conway’s rules. They can
be broadly classified[10] into still life, oscillators, gliders,
guns, and puffer trains. Still life patterns do not change from
one generation to the next; oscillators return to their initial
state after a finite number of generations; gliders translate
themselves across the grid; guns indefinitely generate patterns
that translate across the grid; puffer trains translate across the
grid, leaving behind debris that don’t eventually disappear on
their own.



Fig. 1: A still-life form in Conway’s Game of Life - the
’Block’

(a) (b)

Fig. 2: An oscillator’s states in Conway’s Game of Life - the
’Toad’

Figure 1 depicts a still-life form in Conway’s Game of
Life. In the next generation of this configuration, no living
cells die, and no dead cells come alive. Figure 2a depicts
an oscillator. The next generation (fig. 2b) changes, but the
subsequent generation returns to its original state. Therefore,
it has a periodicity of 2. (Extrapolating on this concept, still-
life forms can also be considered as oscillators[10] with a
periodicity of 1.) Figure 3 depicts a glider. 4 generations later
(in fig. 3e), the same pattern from the original configuration
is repeated, but it has translated by 1 tile to the bottom-right.
Therefore, it’s this glider’s speed is c/4. Figure 4 depicts a
gun that shoots out gliders with the configuration in fig. 3. It
is called the ”Gosper glider gun”; it produces its first glider on
the 15th generation, and another glider every 30th generation
from then on. This pattern was discovered by Bill Gosper’s
team from Massachusetts Institute of Technology, and is proof
that a pattern in Conway’s Game of Life can grow without
limit.

There are many other patterns of still life, oscillators,
gliders, and guns that have been discovered[4] in the original
Conway’s Game of Life.

(a) (b) (c) (d) (e)

Fig. 3: An glider’s states in Conway’s Game of Life

Fig. 4: A glider gun in Conway’s Game of Life - the ’Gosper
Gun’

Fig. 5: A Pythagorean tessellation, also known as a two-square
tiling

C. Requirements for a valid Game of Life

A valid Game of Life rule must satisfy 3 criteria[2].
1) When counting the neighbors of a cell, all touching

neighbors are considered and treated the same.
2) At least one glider exists.
3) Start with a finite wrapped universe that is completely

filled with a random pattern. Then after a finite number
of generations, all such patterns eventually must either
disappear, or decompose into one or more oscillators.
Rules exhibiting this property are said to be stable.

D. Variants of Conway’s Game of Life

There are many valid variants of the original Conway’s
Game of Life. Some variants involve using the same regularly
tiled square grid, but having a different set of rules for survival,
deaths, and births[4, 1]. For example, there is a valid variant
where living cells survive if they have exactly 3 OR 4 living
neighbors (and die if they don’t), and dead cells are reborn if
they have exactly 3 OR 4 living neighbors[1].

It is also possible to use different types of grid. Carter Bays
describes similar cellular automata in triangular, pentagonal,
and hexagonal tessellations[3].

It is not necessary to restrict Life to 2 dimensions. Candidate
variants have also been discovered in 3 dimensions that are,
as Dewdney puts it, ”worthy of the name”[5]. These include
(but are not limited to) cubic and hexahedral tessellations[1].

Many other attempts at a valid Game of Life using non-
regular grids were made online[9]. Some interesting variants
include the Penrose rhombii grid, the 3-Isohedral convex pen-
tagon grid, and the House grid. However, insufficient research
has been made to find interesting patterns of life here.

III. PROPOSITION

The universe of the proposed Game of Life is an infinite
two-dimensional Pythagorean tiling (also known as the two-
square tiling)[11], where every smaller square is exactly a
quarter of the area of the larger square. Each square is a ”cell”.
Each small square is referred to as a ”mini-cell”, and each large
square is referred to as a ”mega-cell”. A segment of such a
universe is visualized in Figure 5.

A. Speed of Light

In this proposition, the Speed of Light (c) is computed
similar to how it was in section II-A. The maximum distance
that can be covered in one generation is the length of one
mega-cell.



B. Neighboring influence

Each cell interacts with its neighbors, which are the cells
around it that are adjacent to any point of its border. A mini-
cell has 4 mega-cell neighbors and 0 mini-cell neighbors; a
mega-cell has 4 mega-cell neighbors and 4 mini-cell neigh-
bors.

This interplay between larger and smaller cells is more
akin to the reality of Life - some cells are more influential
than others, just as some life forms and structures are more
influential than others. In this proposed Game of Life, mini-
cells are akin to resources in real life, and mega-cells are akin
to neighborhoods in real life.

When evaluating the neighbors of a mega-cell, it is evident
that a neighboring mega-cell covers twice as much of the
border as compared to the border coverage of a mini-cell.
That is, a living mega-cell neighbor is twice as ”influential”
as a living mini-cell neighbor. (Implicitly, dead neighbors do
not influence the cell, irrespective of their size.)

So, the concept of influence points is introduced. Each alive
mini-cell neighbor can contribute 1 influence point, while each
alive mega-cell neighbor can contribute 2 influence points.

(When comparing this to the original Conway’s Game
of Life on a Moore lattice, each cell has 8 equally-sized
neighbors, and each alive neighbor will contribute 1 influence
point.)

C. Cell transitions

After every step in time, the following transitions occur, as
described in Algorithm 1.

Algorithm 1: Cell transition rules for the Game of Life
on a Pythagorean Tessellation

if cell is a mini-cell then
if cell is alive then

cell dies
else

if cell has exactly 4 neighboring influence
points then

cell becomes alive
end

end
else

if cell is alive then
if cell has less than 5 neighboring influence

points OR more than 7 neighboring influence
points then

cell dies
end

else
if cell has exactly 3, 4, OR 5 neighboring

influence points then
cell becomes alive

end
end

end

(a) (b) (c) (d)

Fig. 6: Oscillator - ’H’

To summarize Algorithm 1, there are similar but different
rules followed by mini-cells and mega-cells.

1) Mini-cell transitions
a) A living mini-cell dies in the next generation. This

represents the consumption of a resource in real
life.

b) A dead mini-cell becomes alive in the next genera-
tion if it has exactly 4 neighboring influence points.
This represents the replenishment of a resource in
real life.

2) Mega-cell transitions
a) A living mega-cell dies in the next generation if it

has less than 5 neighboring influence points. This
represents death from underpopulation in real life.

b) A living mega-cell dies in the next generation if it
has more than 7 neighboring influence points. This
represents death from overpopulation in real life.

c) A dead mega-cell becomes alive in the next gen-
eration if it has exactly 3, 4, or 5 neighboring
influence points. This represents the healthy spread
of neighborhoods in real life.

IV. RESULTS

With the proposed Game of Life outlined in section III,
several life forms can be constructed. Using Harold’s cat-
egorization[10], the constructions discovered so far can be
classified into Oscillators, Gliders, and Guns.

Still life

With this proposed Game of Life, a still life form (ie. an os-
cillator with period 1) is not possible. Such a hypothetical still-
life form cannot have any mini-cells (because by algorithm 1,
if a mini-cell is alive, it must die in the next generation, and
this implies that the life form is not ”still”). Therefore, this
still-life form must be comprised of purely mega-cells. For
a mega-cell to survive to the next generation, it must have
exactly 5, 6, or 7 neighboring influence points. But given that
no mini-cells are allowed, the neighboring influence points
must be even (because each neighboring mega-cell contributes
2 influence points). Therefore, every cell in this still-life form
must have exactly 3 neighboring alive mega-cells. But such a
pattern is impossible.

A. Oscillators

This section illustrates the different states of oscillators
discovered so far in subsequent generations.

Figure 6 depicts an oscillator called an ’H’ with period 4.



(a) (b)

Fig. 7: Oscillator - ’S’

(a) (b)

Fig. 8: Oscillator - ’Gateway’

Figure 7 depicts an oscillator called an ’S’ with period 2.
Figure 8 depicts an oscillator called a Gateway with period

2.
Figure 9 depicts an oscillator called a Half-Gateway with

period 2.
Figure 10 depicts an oscillator called a Ribbon with period

2.
Figure 11 depicts an oscillator called a Lamp with period

2.
Figure 12 depicts an oscillator called a Fish with period 4.
Figure 13 depicts an oscillator called a Tree with period 4.

B. Gliders

This section illustrates the different states of gliders dis-
covered so far in subsequent generations. The last subfigure
of each figure listed below is identical to the first subfigure’s
configuration, but it has translated across space and time.

Figure 14 depicts a glider called an Eagle with period 4.
The configurations in the original state (fig. 14a) and final
state (fig. 14e) are identical, but it has translated across space
by a distance of 2 mega-cells. Therefore, its speed is c/2.

Figure 15 depicts a glider called a Jellyfish with period 10.
Its speed is c/2.

(a) (b)

Fig. 9: Oscillator - ’Half-Gateway’

(a) (b)

Fig. 10: Oscillator - ’Ribbon’

(a) (b)

Fig. 11: Oscillator - ’Lamp’

(a) (b) (c) (d)

Fig. 12: Oscillator - ’Fish’

Figure 16 depicts a glider called a Rose with period 10. Its
speed is c/2.

Figure 17 depicts a glider called a Truck with period
30. Its speed is c/2. A zoomed-in illustration of the initial
configuration is provided in fig. 17a. All other subfigures
illustrate the different states in subsequent generations.

C. Guns

This section illustrates the different states of guns discov-
ered so far in subsequent generations.

Figure 18 depicts a bidirectional gun. It is slightly different
from other conventional guns discovered in Conway’s Game of
Life, as this pattern indefinitely spawns replicas of its original
state, but translating across space facing opposite directions.
This is an example of limitless growth[7]. Figure 18a is a
zoomed-in image of fig. 18b, which is the initial configuration
of the gun. Figure 18c is the state after 22 generations; a
replica of the initial configuration is visible 11 mega-tiles
to the bottom-right of its original position, along with other
”debris” in its trail. Figure 18d is the state at generation #44,
where the initial configuration has translated 22 mega-tiles
from its starting configuration, with some other form of debris
in its trails. Figure 18e is the state at generation #51, where
a replica of the initial configuration is visible 25 mega-tiles
away, but translated in the opposite direction and rotated 180
degrees. This pattern repeats itself, and is illustrative of the
type ”bidirectional gun”.

(a) (b) (c) (d)

Fig. 13: Oscillator - ’Tree’

(a) (b) (c) (d) (e)

Fig. 14: Glider - ’Eagle’



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 15: Glider - ’Jellyfish’

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 16: Glider - ’Rose’

V. CONCLUSION

The rules specified in algorithm 1 for this proposed Game of
Life satisfies the three contraints outlined by Carter Bays[2].
(Admittedly, the first constraint had to be modified to account
for two different classes of cells, which is a novelty that
Conway’s original Game of Life didn’t have to consider.)

1) All adjacent mega-cells are treated the same. All adja-
cent mini-cells are treated the same.

2) At least one glider exists.
3) When starting with a random pattern of cells in a finite

wrapped universe, after a finite number of generations,
all patterns eventually either disappear, or decompose
into one or more oscillators.

Future work in this space includes, but is not limited to:
1) Find a puffer train[10].

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

(n) (o) (p)

(q) (r) (s)

(t) (u) (v)

(w) (x) (y)

(z) (aa) (ab)

(ac) (ad) (ae)

(af)

Fig. 17: Glider - ’Truck’



(a)

(b) (c) (d) (e)

Fig. 18: Gun - ’Racecar-Launcher’

2) Find a unidirectional gun.
3) Find constructions that are analogous to a NOT gate,

AND gate, and OR gate.
4) Design a universal Turing machine[12] in this

Pythagorean tessellation.

REFERENCES

[1] C. Bays. “Candidates for the Game of Life in Three
Dimensions”. In: Complex Syst. 1 (1987).

[2] Carter Bays. “A Note on the Game of Life in Hexagonal
and Pentagonal Tessellations”. In: Complex Systems 15
(Jan. 2005).

[3] Carter Bays. “Cellular Automata in Triangular, Pentag-
onal and Hexagonal Tessellations”. In: Computational
Complexity: Theory, Techniques, and Applications. New
York, NY: Springer New York, 2012, pp. 434–442.
ISBN: 978-1-4614-1800-9. DOI: 10.1007/978-1-4614-
1800-9 28.

[4] Carter Bays. “Introduction to Cellular Automata and
Conway’s Game of Life”. In: Game of Life Cellular Au-
tomata. Ed. by Andrew Adamatzky. London: Springer
London, 2010, pp. 1–7. ISBN: 978-1-84996-217-9. DOI:
10.1007/978-1-84996-217-9 1. URL: https://doi.org/
10.1007/978-1-84996-217-9 1.

[5] A. K. Dewdney. “Computer Recreations: The Game of
Life Acquires some Successors in Three Dimensions”.
In: Scientific American 256.2 (Feb. 1987). Description
of Carter Bays’ 3D extensions of Conway’s game of
LIFE., pp. 16–17, 20–22, 24. ISSN: 0036-8733 (print),
1946-7087 (electronic). DOI: https : / / doi . org / 10 .
1038 / scientificamerican0287 - 16. URL: http : / / www.
nature . com / scientificamerican / journal / v256 / n2 / pdf /
scientificamerican0287-16.pdf.

[6] David Eppstein. “Growth and Decay in Life-Like Cel-
lular Automata”. In: Game of Life Cellular Automata.
Ed. by Andrew Adamatzky. London: Springer London,
2010, pp. 71–97. ISBN: 978-1-84996-217-9. DOI: 10 .
1007/978-1-84996-217-9 6. URL: https://doi.org/10.
1007/978-1-84996-217-9 6.

[7] M. Gardner. “Mathematical Games: the Fantastic Com-
binations of John Conway’s New Solitaire Game
‘Life’”. In: Scientific American 223.4 (Oct. 1970),
pp. 120–123. ISSN: 0036-8733 (print), 1946-7087 (elec-
tronic).

[8] M. Ghosh et al. “Cellular Automata and Its Appli-
cations”. In: 2018 IEEE International Conference on
Automatic Control and Intelligent Systems (I2CACIS).
2018, pp. 52–56. DOI: 10 . 1109 / I2CACIS . 2018 .
8603689.

[9] Calvin’s Hobbies. Implement the Game of Life on
Anything but a Regular Grid. URL: https : / / codegolf .
stackexchange.com/q/35827 (visited on 07/17/2020).

[10] Harold V. McIntosh. “Conway’s Life”. In: Game of
Life Cellular Automata. Ed. by Andrew Adamatzky.
London: Springer London, 2010, pp. 17–33. ISBN: 978-
1-84996-217-9. DOI: 10.1007/978-1-84996-217-9 3.
URL: https://doi.org/10.1007/978-1-84996-217-9 3.

[11] Roger B. Nelsen. “Paintings, Plane Tilings, & Proofs”.
In: Math Horizons 11.2 (2003), pp. 5–8. DOI: 10.1080/
10724117.2003.12021741.

[12] Paul Rendell. “A Simple Universal Turing Machine
for the Game of Life Turing Machine”. In: Game of
Life Cellular Automata. Ed. by Andrew Adamatzky.
London: Springer London, 2010, pp. 519–545. ISBN:
978-1-84996-217-9. DOI: 10.1007/978-1-84996-217-
9 26. URL: https://doi.org/10.1007/978-1-84996-217-
9 26.

https://doi.org/10.1007/978-1-4614-1800-9_28
https://doi.org/10.1007/978-1-4614-1800-9_28
https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/https://doi.org/10.1038/scientificamerican0287-16
https://doi.org/https://doi.org/10.1038/scientificamerican0287-16
http://www.nature.com/scientificamerican/journal/v256/n2/pdf/scientificamerican0287-16.pdf
http://www.nature.com/scientificamerican/journal/v256/n2/pdf/scientificamerican0287-16.pdf
http://www.nature.com/scientificamerican/journal/v256/n2/pdf/scientificamerican0287-16.pdf
https://doi.org/10.1007/978-1-84996-217-9_6
https://doi.org/10.1007/978-1-84996-217-9_6
https://doi.org/10.1007/978-1-84996-217-9_6
https://doi.org/10.1007/978-1-84996-217-9_6
https://doi.org/10.1109/I2CACIS.2018.8603689
https://doi.org/10.1109/I2CACIS.2018.8603689
https://codegolf.stackexchange.com/q/35827
https://codegolf.stackexchange.com/q/35827
https://doi.org/10.1007/978-1-84996-217-9_3
https://doi.org/10.1007/978-1-84996-217-9_3
https://doi.org/10.1080/10724117.2003.12021741
https://doi.org/10.1080/10724117.2003.12021741
https://doi.org/10.1007/978-1-84996-217-9_26
https://doi.org/10.1007/978-1-84996-217-9_26
https://doi.org/10.1007/978-1-84996-217-9_26
https://doi.org/10.1007/978-1-84996-217-9_26

