
EasyChair Preprint
№ 8030

Sorting Algorithms

Casian Jors

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 22, 2022



Sorting Algorithms

Casian Jors
West University,

Timis,oara, Romania
Email: casian.jors02@e-uvt.ro

May 2022

Abstract

In this paper, we will discuss important properties of different sorting
techniques including their complexity, stability and memory constraints
and then compare their efficiency. Each sorting technique has an advan-
tage in a certain situations, but is innefficient in another. Using raw data,
we have experimented with the Bubble Sort, Selection Sort, Insertion Sort,
Merge Sort, Quicksort, Heap Sort, Counting Sort and Radix Sort.

Although the results are different depending on the size and type of
the data, the overall conclusion is that Radix Sort is in the majority cases,
the most efficient algorithms.

1



Contents

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The algorithms and their properties 4
2.1 Bubble Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Selection Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Insertion Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 QuickSort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Heap Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7 Radix Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The algorithms in practice 6
3.1 How the code works . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Comparing all of them . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Comparing on a smaller scale . . . . . . . . . . . . . . . . . . . . 8
3.4 Comparing on average scale . . . . . . . . . . . . . . . . . . . . . 8
3.5 Comparing on the highest scale . . . . . . . . . . . . . . . . . . . 9

4 References and repository 9

2



1 Introduction

Arranging or sorting things or items is not an overnight development. Its foot-
prints can be traced back in 7th century BCE. Abdul Wahab and O.Issa (2009)
state that King of Assyria used the idea of arranging clay tablets for Royal
Library sorted according to their shape. Sorting is not a jaguar leap but it has
emerged in parallel with the development of human mind. In computer sci-
ence, alphabetizing, arranging, categoring or putting data items in an ordered
sequence on the basis of similar properties is called sorting. Sorting is of key
importance because it optimizes the usefulness of data. We can observe plenty
of sorting examples in our daily life, e.g. we can easily find required items in a
shopping maal or utility store because the items are kept categorically. Finding
a word from dictionary is not a tideous task because all the words are given
in sorted form. Similarly, finding a telephone number, name or address from a
telephone directory is also very easy due to the blessings of sorting.

1.1 Motivation

In computer science, sorting is one of the most important fundamental opera-
tions because of its pivotal applications. Priority scheduling and shortest job
first scheduling are examples of sorting. Thomas Cormen, Charlese Ronald, Clif-
ford Stein and Rivest Leiserson (2001) state “An algorithms is any well-defined
computational procedure that takes some value, or set of values, as input and
produces some value or set of values as output”. A number of sorting algorithms
are available with pros and cons. Alfred Aho, John Hopcroft and Jeffrey Ull-
man (1974) has classified algorithms on the basis of computational complexity,
number of swaps, stability, usage of extra resources and recursion . The items
to be sorted may be in various forms i.e. random as a whole, already sorted,
very small or extremely large in numer, sorted in reverse order etc. There is no
algorithm which is best for sorting all types of data.

The algorithms compared by us are the following:

• Bubble Sort,

• Selection Sort,

• Insertion Sort,

• Merge Sort,

• Quicksort,

• Heap Sort,

• Radix Sort.

3



1.2 Methodology

Empirical comparison is always machine dependent. It is essential to explic-
itly describe the machine used for experiments in particular to facilitate the
researchers who intend to reverify the results. A program developed in Python
3.10 has been used for calculation of CPU time taken by each algorithm. The
data set used for this purpose consists of 10-150 in best, worst and average
cases. The program was executed on Windows 7 (64 bit). Computer used for
this purpose was CPU Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz . Mem-
ory installed was 8.00 GB. The results were calculated after tabulation and then
their graphical representation was developed using LaTex.

2 The algorithms and their properties

In a theoretical setting, the running times of algorithms can be very similar,
they are mostly either O(n2) or O(nlog(n)). However, because of their different
approach on memory, they aren’t so similar in practice. In this section we will
discuss each algorithm one by one. This is necessary for their comparison.

2.1 Bubble Sort

Bubble sort repeatedly compares and swaps(if needed) adjacent elements in
every pass. In i-th pass of Bubble Sort (ascending order), last (i-1) elements are
already sorted, and i-th largest element is placed at (N-i)-th position, i.e. i-th
last position.

Average case time complexity n2

Best case time complexity n
when data is already
sorted

Worst case time complexity n2 when data is reverse
sorted

2.2 Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum
element (considering ascending order) from unsorted part and putting it at the
beginning. The algorithm maintains two subarrays in a given array.

Average case time complexity n2

Best case time complexity n2

Worst case time complexity n2

2.3 Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you
sort playing cards in your hands. The array is virtually split into a sorted and

4



an unsorted part. Values from the unsorted part are picked and placed at the
correct position in the sorted part.

Average case time complexity n2

Best case time complexity n
Worst case time complexity n2

2.4 Merge Sort

Merge Sort is a Divide and Conquer algorithm. It divides the input array into
two halves, calls itself for the two halves, and then it merges the two sorted
halves. The merge() function is used for merging two halves.

Average case time complexity n log(n)
Best case time complexity n log(n)
Worst case time complexity n log(n)

2.5 QuickSort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and
partitions the given array around the picked pivot. There are many different
versions of quickSort that pick pivot in different ways.

Average case time complexity n log(n)
Best case time complexity n log(n)
Worst case time complexity n2

2.6 Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data
structure. It is similar to selection sort where we first find the minimum element
and place the minimum element at the beginning. We repeat the same process
for the remaining elements.

X

Average case time complexity n log(n)
Best case time complexity n log(n)
Worst case time complexity n log(n)

5



2.7 Radix Sort

In computer science, radix sort is a non-comparative sorting algorithm. It avoids
comparison by creating and distributing elements into buckets according to their
radix. For elements with more than one significant digit, this bucketing process
is repeated for each digit, while preserving the ordering of the prior step, until
all digits have been considered. For this reason, radix sort has also been called
bucket sort and digital sort.

Radix sort can be applied to data that can be sorted lexicographically, be
they integers, words, punch cards, playing cards, or the mail.n.

Average case time complexity nk
Best case time complexity nk
Worst case time complexity nk

3 The algorithms in practice

3.1 How the code works

The code (see reference) is written in python and uses random and sorting
modules to make the code cleaner and easier to read. In the program, each
sorting algorithm is tested multiple times for the same amount of elements and
the average of the results is calculated for a more accurate result. The number
of elements that are tested for each is 100,1000,5000 and 10000.

6



3.2 Comparing all of them

In this graph, you can see the efficiency of the algorithms on a very big scale.
The number of elements range from 100 to 10000. The conclusion is that as we
initially thought, the algorithms with logarithmic complexity can handle more
elements in a significant amount of time.

1 · 10−20.1 0.5 1

·104

1

10

20

40

80

100

Number of elements

T
im

e
(s
)

Comparison

bubble
select
quick

insertion
merge
heap
radix

7



3.3 Comparing on a smaller scale

In this graph, we are offering a closer look for the smaller values. here the
algorithms are close but the difference is still noticeable.

100 1,000

1

Number of elements

T
im

e
(s
)

Comparison

bubble
select
quick

insertion
merge
heap
radix

3.4 Comparing on average scale

Here the difference is very clear, Bubble, Radix, Insertion and Select sorting
algorithms are a lot less efficient than Heap, Merge and Quicksort.

1,000 5,000

1

10

Number of elements

T
im

e
(s
)

Comparison

bubble
select
quick

insertion
merge
heap
radix

8



3.5 Comparing on the highest scale

As we can see, the most efficient algorithms are indeed Heap and Merge sort,
followed by Radix.

1

·104

1

10

20

40

80

100

Number of elements

T
im

e
(s
)

Comparison

bubble
select
quick

insertion
merge
heap
radix

4 References and repository

• Wahab, A., Issa, O.A. Fundamentals of Library Information Sciences,
(1st ed.). Cataloguing-in-Publication Data, Ilorin (2009)

• https://github.com/casistieinfo/MPIPaper/blob/main/sorting.py

• https://www.geeksforgeeks.org/sorting-algorithms/?ref=shm

9

https://github.com/casistieinfo/MPI_Paper/blob/main/sorting.py
https://www.geeksforgeeks.org/sorting-algorithms/?ref=shm

	Introduction
	Motivation
	Methodology

	The algorithms and their properties
	Bubble Sort
	Selection Sort
	Insertion Sort
	Merge Sort
	QuickSort
	Heap Sort
	Radix Sort

	The algorithms in practice
	How the code works
	Comparing all of them
	Comparing on a smaller scale
	Comparing on average scale
	Comparing on the highest scale

	References and repository

