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Abstract. This article investigated machine learning models used to estimate passenger demand. These 

models have the potential to provide valuable insights into passenger trip behaviour and other inferences. 

The estimate of passenger demand using machine learning model research and the methodologies used are 

fragmented. To synchronise these studies, this paper conducts a systematic review of machine learning 

models to estimate passenger demand. The review investigates how passenger demand is estimated using 

machine learning models. A comprehensive search strategy is conducted across the three main online 

publishing databases to locate 911 unique records. Relevant record titles, abstracts, and publication 

information are extracted, leaving 102 articles. Furthermore, articles are evaluated according to eligibility 

requirements. This procedure yields 21 full-text papers for data extraction. 3 research thematic questions 

covering passenger data collection techniques, passenger demand interventions, and intervention 

performance are reviewed in detail. The results of this study suggest that mobility records, LSTM-based 

models, and performance metrics play a critical role in conducting passenger demand prediction studies. 

The model evaluation was mostly restricted to 3 performance metrics which needs improved metric for 

evaluation. Furthermore, the review determined an overreliance on the long- and short-term memory model 

to estimate passenger demand. Therefore, minimising the limitation of the LSTM model will generally 

improve the estimation models. Furthermore, having an acceptable trainset to avoid overfitting is crucial. In 

addition, it is advisable to consider multiple metrics to have a more comprehensive evaluation.  

1 Introduction 

Getting to a location to participate in activities such as 

work, recreation, and socialisation is a necessity for 

human survival. Transport enables these activities to be 

carried out. Individuals use private transportation, 

usually self-owned vehicles. The public uses a system of 

shared transportation units provided by entities. More 

people patronise public transport. Therefore, its impacts 

are immediately felt when it is effective. The demand 

for transportation services continues to increase as a 

result of increasing urbanisation. In London, more than 

two billion passenger trips were made in 2009 (W. 

Wang et al., 2011). The increasing demand for 

passengers threatens the safety and quality of 

transportation services. Public transport operators must 

optimise operations by accurately estimating passenger 

demands, fleet, and income (Hänseler et al., 2017). 

Estimating passenger demand is the foundation of an 

efficient transportation system. It is challenging if 

operators do not use modern technologies and 

mathematical models in managing transportation (Sbai 

& Ghadi, 2018). The deployment of new transportation-

related technology has resulted in an exponential 

increase in the availability of data on passenger 

movements. Furthermore, recent strides in machine 

learning research have resulted in numerous 

applications of machine learning (Hillel et al., 2021). 
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This paper provides a systematic review for the 

estimation of passenger demands using machine 

learning techniques. The review focusses on three 

thematic research questions covering passenger data 

collection techniques, passenger demand interventions, 

and intervention performance.  

1.1 Public Transport Operation 

Public transport refers to a mobility service that is used 

by the public. Public transport operates in modes such 

as buses, trains, subways, and ferries. Bus operations are 

the most common form of public transport around the 

world. Buses offer a practical and economical means of 

transportation for most commuters. They operate in 

designated lanes or share lanes with other vehicles. 

Commuter rail, metro rail, and light rail systems are 

examples of public train operations. Commuter rail 

systems are intended to transport passengers between 

suburban and urban locations, while metro, subway, and 

light rail systems are used primarily for transit within 

cities. Research has shown that public transport reduces 

traffic congestion and air pollution, as well as provides 

social and economic benefits to communities by 

increasing access to jobs and services (Litman & 

Litman, 2022; Meinardi et al., 2008). 
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1.2 Previous passenger demand estimation 

Passenger demand estimation studies aim to forecast the 

number of people who will use a particular 

transportation system or service in the future. These 

studies are crucial for transportation planners to 

determine the appropriate level of service and guide 

decisions about infrastructure investments and 

transportation policies. One popular method for 

estimating passenger demand is the gravity model, 

which is widely used in transportation planning. The 

model assumes that the number of trips between two 

locations is proportional to the product of their 

population and inversely proportional to the distance 

between them (Becker et al., 2018). A study in Madrid 

paid attention to the demand for interurban rail travel. 

The paper analysis is based on the estimation of 

disaggregated Nested Logit models using information 

from travellers. It analyses the competition between 

newly built high-speed trains with other modes. An 

evaluation was conducted using cost-benefit analysis to 

inform investment decisions. In addition, it analyses the 

response of the demand to various policy scenarios for 

high-speed train services. This analysis uses willingness 

to pay for improved levels of service as an indicator 

(Román et al., 2010). In general, passenger demand 

estimation studies are critical for transportation planning 

and can provide valuable information on factors that 

influence travel behaviour. 

2 Research Method  

2.1 Background 

There are ten different types of systematic review. This 

review adopted an effectiveness review. Effectiveness is 

the degree to which an intervention, when applied 

appropriately, produces the desired outcome. When an 

effectiveness review is adopted, the PICO framework is 

recommended to develop a review question (Munn et 

al., 2018). 

2.2 PICO framework for Question Development 

The PICO process uses a case scenario from which a 

question is constructed.  P represents the characteristics 

of the population, I represents the study intervention, C 

represents the comparator, and O represents the results. 

The case statement is as follows; To operate public 

transport successfully, operators should be able to 

anticipate passenger demand and infer journeys. 

However, the operation is negatively affected by the 

absence of automatic data collection in the service. 

Table 1 shows the PICO framework. 

Table 1. PICO Framework for review. 

Component Remarks 

Population Passengers 

Intervention Machine learning models 

Comparator Data collection system 

Outcome Demand estimates 

2.3 The Question 

Therefore, the question developed for the review is as 

follows; What machine learning models can be used to 

estimate travel demands in various data collection 

systems? 

3 Search Methods 

3.1 Search Strategy 

Adopting a search strategy is to find papers that will be 

useful for review. Cross-ref, Scopus, and Google 

Scholar search engines are used to search for articles to 

provide comprehensive coverage of the field. The exact 

search procedure is used on each database. This review 

focusses on papers with trip inferences. Therefore, only 

papers with titles directly related to trip inference are 

included. The following initial phrases are tested: travel 

pattern, trip inference, passenger density, travel demand, 

and origin-destination. The phrases are limited to the 

title, which helps the researcher filter out irrelevant 

papers. To select papers that discuss machine learning 

techniques, only papers with one or more selected 

phrases related to machine learning are selected. The 

following initial phrases are tested: machine learning, 

neural network, decision tree, computer vision, artificial 

intelligence, random forest, boosting, support vector, 

deep vision, and image processing. The initial search 

was not limited to a specific time frame. 

The Google Scholar search for papers containing at 

least one of the above machine learning-related phrases 

alongside at least one of the trip-inference phrases 

across all relevant fields returns 17,700 results as of 

August 2022. The search in the Scopus database 

returned more than 1,240 results. Whilst Crossref 

returns 1,730 results. 

3.2 Selection Criteria 

The setting of inclusion and exclusion criteria is a 

standard and required practise when designing 

systematic research protocols. It helps the researcher 

produce reliable and repeatable results. The following 

inclusion criteria are determined for articles found in the 

search to be included in the study (Booth Andrew et al., 

2016): 

3.2.1 Inclusion Criteria: 

1. Studies that employ one or more machine learning 

techniques for predictive trips or demands. 

2. Studies on the estimation of passenger demands in 

transport modes. 

3. Studies that investigate density passenger densities 

from deep vision systems, google data, or use non-

intrusive methods. 



4. Studies that investigate the passenger data from 

collection systems.  

3.2.2 Exclusion Criteria: 

The following exclusion criteria are determined for the 

articles found in the search to be included in the study: 

1. All related papers or documents were published 

before 2018. 

2. Studies in peer-reviewed journals or conference 

proceedings not written in English. 

 

The Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guideline is used for 

paper selection. First, duplicates are eliminated from the 

search records. Subsequently, the title and abstract of the 

articles are checked against the eligibility criteria.  

Finally, the remaining full-text articles are assessed 

for eligibility (Liberati et al., 2009). A paper with 

multiple datasets and methodologies is treated as a 

separate study for analysis. 

3.3 Data extraction strategy 

A list of attributes is created to extract relevant data 

without bias from each study. Furthermore, it limits 

subjectivity in the data extraction process. The attributes 

are specific, objective, quantifiable, or categorical. The 

studies are carefully reviewed and every attribute is 

noted and tallied. The attributes are shown in table 2. 

Table 2. Research Question and Corresponding attributes for 

data extraction. 

No. Description 

1 
What are the methods for collecting passenger 

data? 

a Transport system 

b Information collected 

c Device used for collection 

d Nature of dataset and size  

e Time Aggregation 

2 
Which functions have been used for determining 

passenger demands and where? 

a Intervention used 

b Classification of intervention 

c Unit of analysis 

d Geographical area studies have been conducted 

3 How is the intervention performance determined? 

a Data Split Ratio 

b Performance metrics used 

3.4 Study selection 

The following search terms are used to carry out the 

search strategy outlined in Section 3.1. 

Scopus: (TITLE (“trip inference” OR “origin 

destination” OR “travel pattern” OR “passenger 

density” OR “travel demand”)) AND TITLE-ABS-KEY 

(“machine learning” OR “neural network” OR “decision 

tree” OR “computer vision” OR “random forest” OR 

“boosting” OR “support vector” OR “deep vision” OR 

“image processing”)) 

Google Scholar: (“trip inference” OR “origin 

destination” OR “travel pattern” OR “passenger 

density” OR “travel demand”) AND (“machine 

learning” OR “neural network” OR “decision tree” OR 

“computer vision” OR “random forest” OR “boosting” 

OR “support vector” OR “deep vision” OR “image 

processing”). 

Semantic Scholar: (“trip inference” OR “origin 

destination” OR “travel pattern” OR “passenger 

density” OR “travel demand”) AND (“machine 

learning” OR “neural network” OR “decision tree” OR 

“computer vision” OR “random forest” OR “boosting” 

OR “support vector” OR “deep vision” OR “image 

processing”). 

Due to the restriction on search length in Google 

Scholar, this search is divided into two separate 

searches, with the results combined. The search was 

carried out on 20/12/2019 on all three databases. Figure 

1 shows a PRISMA flow chart of the study selection 

process. 

A total of 2,095 records were returned from the 

search.  There were 346 records returned from Crossref, 

635 records from Scopus, and 1,114 records from 

Google Scholar. Duplicates are then removed, leaving 

911 records to be screened. The total number of records 

after removing duplicates is more than the results 

obtained from two of the databases, showing that there 

were results from Crossref/Scopus which were not 

returned with the Google Scholar search. The remaining 

records are then screened to determine whether they 

meet the eligibility criteria outlined in Section 2.4.2. 

During the selection, 809 articles are excluded for 

relevance based on their title and abstract.  

The full text is obtained for the remaining 102 

articles for further review. Of these, another 81 are 

excluded based on the selection criteria. This process 

leaves 21 selected articles for data extraction. 

4 Results and Discussion 

4.1.1 Selected papers 

The final number of papers used for the data extraction 

is 21. Table 3 provides a unique identifier for each paper 

and year of publication. 

 

Table 3. Papers selected for review. 

No Paper Year 

S1 

Clustering-Based Travel Pattern for 

Individual Travel Prediction of Frequent 

Passengers by Using Transit Smart Card 

2022 

S2 

Continuous Time and Multi-Level Graph 

Representation Learning for Origin-

Destination Demand Prediction 

2022 

S3 

Short-Term Holiday Travel Demand 

Prediction for Urban Tour Transportation: 

A Combined Model Based on STC-LSTM 

Deep Learning Approach 

2022 



S4 

Short-Term Prediction of Passenger 

Demand in Multi-Zone Level: Temporal 

Convolutional Neural Network with 

Multi-Task Learning 

2019 

S5 

AI-based neural network models for bus 

passenger demand forecasting using smart 

card data 

2022 

S6 

Exploring temporal variability in travel 

patterns on public transit using big smart 

card data 

2022 

S7 

Analysis of Bus Trip Characteristic 

Analysis and Demand Forecasting Based 

on GA-NARX Neural Network Model 

2020 

S8 
A deep spatio-temporal fuzzy neural 

network for passenger demand prediction 
2019 

S9 

Origin-destination matrix prediction via 

graph convolution: a new perspective of 

passenger demand modelling 

2019 

S10 

Passenger Demand Forecasting with 

Multi-Task Convolutional Recurrent 

Neural Networks 

2019 

S11 

Deep learning-based origin-destination 

prediction via contextual information 

fusion 

2022 

S12 

Prediction of Urban Taxi Travel Demand 

by Using Hybrid Dynamic Graph 

Convolutional Network Model 

2022 

S13 

Contextualized Spatial-temporal Network 

for Taxi Origin-Destination Demand 

Prediction 

2019 

S14 

A GAN framework-based dynamic multi-

graph convolutional network for origin–

destination-based ride-hailing demand 

prediction 

2022 

S15 

A novel deep recurrent neural network for 

Short-term travel demand forecasting 

under on-demand ride services 

2019 

S16 

Online Metro Origin-Destination 

Prediction via Heterogeneous Information 

Aggregation 

2019 

S17 

A Spatiotemporal Analysis of Taxis 

Demand: A Case Study in the Manizales 

City 

2021 

S18 

Taxi Hotspots Identification through 

Origin and Destination Analysis of Taxi 

Trips using K-means Clustering and H-

indexing 

2021 

S19 
Travel Destination Prediction Based on 

Origin-Destination Data 
2020 

S20 

Prediction of City-Scale Dynamic Taxi 

Origin-Destination Flows Using a Hybrid 

Deep Neural Network Combined with 

Travel Time 

2019 

S21 

Predictability of short-term passengers' 

origin and destination demands in urban 

rail transit 

2022 

4.1.2 Publication Source 

Table 4 provides details of all the journals and 

conferences/proceedings from which the papers were 

selected. The articles come from a wide spread of 

publications, with a total of 13 different journals and 8 

different conferences featured. 

 

 

 

 

 

Table 4. Summary of published sources. 

Publication Type 

Transportation Research Record Conference 

ACM SIGKDD Conference on Knowledge 

Discovery and Data Mining 
Conference 

KSCE Journal of Civil Engineering Journal 

IEEE Transactions on Intelligent 

Transportation Systems 
Journal 

Journal of Urban Management Journal 

Environment and Planning B: Urban 

Analytics and City Science 
Journal 

IEEE Access: Big Data Technology & 

applications in intelligent transportation 
Journal 

2019 SIAM International Conference on 

Data Mining (SDM) 
Conference 

ACM SIGKDD Conference on Knowledge 

Discovery and Data Mining 
Conference 

PAKDD 2019: Advances in Knowledge 

Discovery and Data Mining 
Conference 

International Journal of Multimedia Tools 

and Applications 
Journal 

Journal of Sensors Journal 

IEEE Transactions on Intelligent 

Transportation Systems 
Journal 

Journal Information Sciences Journal 

IOP Conference Series: Materials Science 

and Engineering 
Conference 

IEEE Transactions on Pattern Analysis and 

Machine Intelligence 
Journal 

CIARP 2019: Progress in Pattern 

Recognition, Image Analysis, Computer 

Vision, and Applications 

Conference 

Journal of Physics Journal 

Conference on Complex, Intelligent, and 

Software-Intensive Systems 
Journal 

IEEE Access Journal 

Journal of Transport Journal 

4.1.3 Publication Year 

Figure 1 shows the distribution of the articles from 2019 

to 2022. There is a recent spike in interest in the 

publication of demand estimation using machine 

learning models. 48% of the articles were published in 

the recent year 2022. The remaining 52% of the 



publications were done before 2022. This demonstrates 

a rising interest in research for demand estimation using 

machine learning models.  

 

 

Fig. 1. Cumulative Publication of papers. 

4.1.4 What are the methods for collecting 
passenger data? 

The following sections present an overview of the 

methods for collecting passenger data used in the 

selected articles. 

Question 1.a What type of transport system has 

passenger data been collected? 

Based on the responses to Q1a, the transportation 

systems are grouped into taxis, buses, and metro/rail. 

62% of the transportation systems were taxis, 19% were 

buses, and 19% were metro/rail systems.  

Question 1.b What device/instrumentation was used 

to collect the data? 

From the review, 57% of the data were recovered 

from mobility records or databases, 19% from smart 

cards, then 19% from automatic fare collection systems, 

and 5% from image captured records. All studies 

conducted in a metro/rail system collected information 

from smart cards except (Han et al., 2022a; Q. Zhao et 

al., 2022). Researchers resorted to smart cards and 

automatic fare collection systems because it generates 

the desired data at less cost, since it requires minimal 

installation, personnel, and man hours (Ait-Ali & 

Eliasson, 2022). 

Question 1.c What type of information was 

collected for the study? 

The information collected from devices or through 

instruments is shown in Table 5. 19% of the studies used 

the tap-in tap-out information of smart cards for 

analysis. Smart cards have a large data volume capacity, 

broad coverage, and high authenticity. Immutable ID 

allows the researcher to obtain long-term travel 

information about passengers, which offers the potential 

to mine travel patterns and travel predictions. Therefore, 

researchers prefer tap-in tap-out information because it 

considers complete trip attributes in addition to real-

time prediction (Ye & Ma, 2022; Z. Zhao et al., 2018). 

A significant number of studies used information on 

boarding and exiting, which is about 43%. This 

information was from mobility records/databases or 

smart cards. Passenger request information was about 

24%. The information usually contained request ID, 

pick-up time, pick-up coordinates, drop-off time, and 

drop-off coordinates (Liang et al., 2019). S11, S12, S18, 

S19, and S20 combine passenger requests with vehicle 

GPS, metrological data, or coded road network. These 

kinds of studies constituted about 25% of the studies. 

Information was classified into passenger-orientated 

information and transport unit-orientated information. 

Passenger-orientated studies are studies where the 

primary data used for the analysis were the passenger 

data, while vehicle-orientated studies analysis was 

based on the transport unit. Table 5 shows the 

information collected and the orientation of the study. 

90% of the studies were in the passenger-oriented 

category and 4% were transported unit oriented. S12 

was the only study to focus on both passenger and 

transport unit-orientated categories. Data from vehicle-

orientated studies were applied to taxi services, while 

data from passenger-orientated studies were mostly 

applied to metro, rail, and bus services. The researcher 

was able to assess vehicular data because they were in 

an open source dataset from the operators (Huang et al., 

2022). The availability of passenger data on smart cards 

influenced the focus of transport system studies. In 

transport systems such as metro, rail and bus systems, 

the desired passenger data was obtained through smart 

cards, which includes information such as travel 

patterns, frequency of use, and duration of trips. These 

data are analysed to gain insight into passenger 

behaviour and preferences, which informs decisions 

related to the design and operation of these systems. As 

a result, studies on these transport systems tend to be 

passenger-orientated, as they are based on readily 

available data.  

Table 5. Summary of Information Collected for Analysis 

Data Information Collected Passenger Vehicle 

Tap in - Tap out Yes No 

Crowd flow images and 

external features 
Yes No 

Alighting and boarding Yes No 

Passenger Request Yes No 

Passenger request, Vehicle GPS Yes Yes 

Passenger request, metrological 

data 
Yes No 

Passenger request, taxi GPS 

data, Road network Passenger  
Yes Yes 

 

Question 1.d What is the Nature of the Dataset, 

Size, Collection Duration, and aggregation?  

The nature, size, period, and temporal aggregation of 

the collected data are shown in table 6.  The nature of 

the data for most studies was transactional requests or 

data from smart card cards. This is because it was less 

costly to obtain transactional data than to conduct 

manual data surveys. Furthermore, smart card systems 

and service requests were readily available at locations 

where the studies were carried out (Sun et al., 2020). The 

size of the data set ranged from 10,000 to more than 700 

million trips. The size of the data sets is correlated with 

the spatial area under study. For S5, 694,000 records 

were collected on 18 routes and 1,781 bus stops. While 



S6 had about 769 million records with 42,000 bus stops 

and 325 subway stations. S1, S2, S6, S7, S13 and S15 

collected more than ten million records from complete 

networks. S4, S5, S16, S19, and S20 collected records 

of less than 10 million transactions, these studies were 

carried out on selected routes or a transport service with 

a limited time frame for data collection.  

Although time is continuous, various time intervals 

were adopted for the studies. This adoption of the time 

interval is an essential part of each study. S19 did not 

state the temporal aggregation for the study. S19 was 

excluded from the temporal aggregation analysis. Data 

were temporally aggregated in 5 min, 10 min, 15 min, 

20 min 25 min, 30 min, 60 min, and 24 hours, except for 

S1 and S7 which used 24 hours and 10 minutes, 

respectively. 21% and 37% of the studies used 15min 

and 60min, respectively, for temporal aggregation of the 

data. S21 used all categories of aggregation in the study. 

The research adopted varying time intervals based on 

population dynamics. Furthermore, the adopted interval 

is relatively stable in order not to conceal the time-

varying laws of passenger demand. The review showed 

that 15 min and 60 min were the preferred time intervals 

for data aggregation (Giraldo-Forero et al., 2019; Yang 

et al., 2022).  

The duration of data collection was from 5 to 365 

days. Most studies collected their data in 30 days. 

Studies such as S6, S11, S12, S13, S14 and S19 data 

were collected over 120 days. The data was readily 

available data from automatic collection systems and 

open-source databases, which made collection easier. 

Therefore, researchers resorted to collecting long-

duration data for their studies. 

Table 6. Nature, size of the dataset, Data Duration, and 

temporal aggregation of the data 

No Nature 
Dataset 

Size 
Duration 

Temporal 

Aggregation 

S1 trips 96,065,229 31 days 24 hours 

S2 Transaction 
279,227,618 

38,498,427 

56 days 

181 days 
30 minutes 

S3 Transactions 

2,808 On 

peak 

2,493 Off-

peak 

55 days 

 
15 minutes 

S4 
Car calling 

requests 

120,000 per 

day 
90 days 20 minutes 

S5 Transactions 693,689 28 days 15 minutes 

S6 Transaction 769,413,168 120 days 60 minutes 

S7 
Passenger 

Flow 
10,658,558 5 days 10 minutes 

S8 
Service 

requests 

5.24 million 

 
30 days 60 minutes 

S9  
Service 

Request 
Not stated 

31 days 

30 days 
60 minutes 

S10 
Service 

Request 

1.5mil 

mobile user 
60 days 60 minutes 

S11 Transaction 160,000,000 365 days 60 minutes 

S12 transaction 12,179,185 180 days 15 minutes 

S13 
Service 

Request 
132,000,000 365 days 30 minutes 

S14 
Service 

Request 

4.9 million 

records per 

day 

90 days 20 minutes 

S15 taxi trips 
78 million 

trips 
163 days 10 minutes 

S16 
Daily 

Ridership 

8.820 

million 

2.35 million 

90 days 

31 days 
15 minutes 

S17 
Service 

Request 

70,9531 

requests 
120 days 60 minutes 

S18 Taxi GPS 28,590 taxis 7 days 10 minutes 

S19 
Travel 

records 
1,495,814 212 days Not Stated 

S20 Trip 10,000 trips 10 days 60 minutes 

S21 Transactions 10,658,558 
30 days 

61 days 

5, 10, 15, 20, 

25, 30, 

60,120 min 

4.1.5 What functions have been used to 
determine passenger demands and where? 

The following sections present an overview of the 

methods for collecting passenger data used in the 

selected articles. 

Question 2.a Which intervention and class of 

intervention was used in the study? 

Based on the responses to Question 2.a, the 

interventions were categorised according to the type of 

model in addition to the snippet of the model. The 

known types of models are supervised, unsupervised, 

semi-supervised, and reinforcement learning. The 

identified model class was further classified into 

subtypes. Table 7 shows the interventions, the type of 

model, and the comments. 76% of the studies conducted 

the research using a supervised regression model. The 

remaining percentage was shared between the 

unsupervised clustering model and the unsupervised 

dimension reduction model at 19% and 5%, 

respectively. Forecasting traffic demand using deep 

neural networks has attracted widespread interest. Most 

studies that used neural network models combined 

several machine learning models as their intervention. 

(Han et al., 2022b).  Recurrent neural networks are 

suitable for forecasting studies. However, it is limited in 

using information from a distant past and also performs 

poorly for long-term memory (Liyanage et al., 2022). 

Therefore, S3, S5, S8, S9, S10, S11, S12, S13, S14, S15 

and S20 combined long-short-term memory (LSTM) 

models with other models for their studies. Hybrid 

LSTM studies constituted 73% of supervised regression 

model studies. LSTM models are generally identified to 

outperform RNNs in time-series data forecasting (Yeon 

et al., 2019). Therefore, the LSTM-based model is 

preferred for predicting and forecasting series.    



Table 7. Intervention and Class of Intervention 

No 
Intervention 

Used 

Type of 

Model 

Class of Model 

Remarks 

S1 
DBSCAN 

algorithm 

Unsupervised 

clustering 

Density-based 

method 

S2 

Continuous-

Time and Multi-

Level Graph 

Representation 

Unsupervised 

clustering 

Neural network 

with multi-level 

memories for 

nodes 

S3 

Long Short-

Term Memory 

model 

Supervised 

regression 

LSTM with 

Spatio temporal 

correlation 

S4 

End-to-end 

multitask 

learning 

temporal 

convolutional 

neural network 

Supervised 

regression 

Temporal 

Convolutional 

Neural Network 

with Multi-Task 

Learning 

S5 

LSTM and 

BiLSTM deep 

learning models 

Supervised 

regression 

Bidirectional 

LSTM 

S6 

K means, 

multivariate 

ordinary least 

square 

regression 

Unsupervised 

clustering 

Customer 

segregation 

method 

S7 

Genetic 

Algorithm-

Optimised 

NARX neural 

network model 

Supervised 

regression 

ARIMA with 

genetic algorithm 

neural network 

S8 

Spatio- 

Temporal Fuzzy 

Neural Network 

Supervised 

regression 

LTSM with fuzzy 

logic 

S9 
Graph 

Convolution 

Supervised 

regression 
Multi-task LSTM 

S10 

Multi-Task 

Convolutional 

Recurrent 

Neural 

Networks 

Supervised 

regression 
LSTM with CNN 

S11 

Auxiliary-tasks 

Enhanced 

Spatio-

Temporal 

Network 

Supervised 

regression 

LSTM with CNN 

and GCN 

S12 

Hybrid 

Dynamic Graph 

Convolutional 

Network Model 

Supervised 

regression 
LSTM with GRU 

S13 

Contextualised 

spatial- 

Temporal 

Network 

Supervised 

regression 

ConvoLSTM and 

global correlation 

index 

S14 

Dynamic Multi-

Graph 

Convolutional 

Network with 

Generative 

Adversarial 

Network 

structure 

Supervised 

regression 

LSTM with 

Multiple Graph 

Convolution 

S15 

Stacked 

bidirectional 

long short-term 

memory neural 

network 

Supervised 

regression 

LSTM stacked 

bidirectional 

S16 

Heterogeneous 

Information 

Aggregation 

Machine 

Supervised 

regression 

Unified neural 

network module. 

Made up Long 

Short term 

GCGRU 

S17 

Generalized 

Additive 

models 

Supervised 

regression 

Regressive model 

with non-linear 

smoothing 

S18 

K-means, 

Clustering and 

H-indexing 

Unsupervised 

clustering 
 

S19 

Destination 

Prediction 

Algorithm 

Supervised 

regression 
LightGBM 

S20 
Convolutional 

LSTM 

Supervised 

regression 
LSTM with CNN 

S21 

Temporal 

Pearson 

Coefficients and 

Approximate 

Entropy 

Unsupervised 

Dimension 

Reduction 

unsupervised 

statistical 

technique 

 

Question 2.b What was the unit of analysis? 

S1 uses travel patterns to improve the accuracy of 

passenger travel information prediction. It achieved its 

objectives by analysing the degree of accuracy of the 

proposed model. S2 and S7 analyse demand predictions 

by aggregating data into different time zones and 

updated transactions. The researcher minimises the 

abundance of results by aggregating the data.  S3, S8 and 

S15 analysed the prediction of short-term demand and 

the effect of weather conditions, such as air temperature 

and the air quality index. The research determined this 

from the passenger correlation flow and showed that the 

population is attracted to the same type of facility. 

Furthermore, the shorter the distance between the bus 

top or the numerous bus routes to the stop, the higher the 

degree of correlation of tourist flow. S4 analysis Spatio-

temporal dynamic time-warping test where correlation 

between zones was evaluated based on short-term 

passenger demand data. S5 article analysis predictions 

of varying temporarily aggregated short-term data. S6 

analyses the variability of the travel pattern. To 

investigate the variability, probability density functions 

were developed and curves representing different 

groups of passengers were fitted and evaluated. S9, S11, 

S12, S13, S14 and S16 analyse the number of demands 

from passengers in each region. S11 also incorporates 

an objective function as part of its analysis. S10 analyses 

the prediction of passenger demand over a fixed 

temporal interval. Spatial analysis of S17 and S21 

considers the requested demand and attributes the 

intensity of the demand to land use. They also perform 

a temporal analysis, in which the demand behaviour is 

analysed over time. Further analysis was performed in 

which the observed demand in specified periods was 

critically analysed. 

S18 generates various clusters; it uses the elbow 

method to find the optimised number of clusters. Due to 

spatial restrictions, a high number of clusters is also used 

to enable the study to determine hotspots. S19 analysed 

the distance travelled by passengers; the study also used 

an evaluation metric and the performance of the model 

for its analysis. S20 analyses the correlation between 

travel frequency and travel time by comparing travel 

frequency and travel time in different time intervals. It 



should be noted that the following articles S4, S8, S9, 

S10, S11, S12, S13, S14, S15, S16, S17, S20, and S21 

analyse the performance and comparison of the model 

implemented in the study.  

Table 8. Summary of the analysis 

No. Summary Analysis 

S1 
Cluster Travel Pattern and the regularity of 

passenger travel 

S2 
Predict the departure time and demand of 

passengers 

S3 Predict forecast short-term holiday travel demand 

S4 
Predict the short-term passenger demand in a 

multizone level 

S5 
Predict the ticketing system based on bus passenger 

demand. 

S6 
Investigate the temporal variability in travel 

patterns for passengers 

S7 
Analyse the demand and temporal variability of 

passenger flow 

S8 
Predict passenger demand including the 

interactions of all known important factors 

S9 
Obtain mobility patterns to predict passenger 

demands from one region to another 

S10 Predict passenger demand 

S11 
Predict passenger travel demands from one region 

to another. 

S12 
Improve prediction accuracy to capture the 

characteristics of urban travel demand. 

S13 
Predict temporal variability of taxi demand 

between region pairs 

S14 
Investigate origin-destination-based demand 

prediction 

S15 
Predict short-term travel demand based on 

historical data and other information 

S16 
Exploit heterogeneous information to learn the 

evolutionary patterns of ridership 

S17 
Present spatio-temporal and temporal analysis of 

demand flow in taxi requests 

S18 
Determining Hotspots by measuring the clusters' h-

index 

S19 
Predict the travel destination only depending on the 

departure time and coordinates 

S20 
Predict passenger travel demands, as well as 

manage taxi operations and scheduling 

S21 
Reflect the inherent time-space correlations and 

complexity of the passenger flow 

 

 

 

Question 2.c In what geographical areas have these 

studies been conducted? 

Figure 2 shows the geographical locations where the 

selected studies have been conducted. Most studies have 

been conducted in Asia (60%) and the United States 

(30%). This can be attributed to the open data policies 

in these regions. The data required for these studies are 

readily available and in the appropriate format. S18 did 

not state the location where the research was conducted. 

Public transportation in Africa is usually unregulated 

and its mode of operation presents a challenge in 

collecting information on passenger demand (Kumar & 

Barrett, 2008).  

 

 

Fig. 2. Geographical locations where selected studies have 

been done. 

4.1.6 How is the performance of the intervention 
determined? 

The following sections present how the intervention 

performance has been used in the selected articles. 

Question 3.a What is the data split ratio used in the 

studies? 

To ensure that the model used can generalise to 

unseen data, the model is trained on a diverse dataset. 

Data are split into sets to identify and correct overfitting 

issues, therefore improving the overall performance of 

the machine learning model. The training set split 

between 70% and 80% was 83% of the selected articles. 

S3, S10, S13, S17, S19, and S20 split more than 80% of 

their data as a training set and did not consider a 

validation set. S4. S2, S4, S12, S14, and S16 with a 

training set below 80% further split the training set into 

a training and validation set. Splitting a data set into 

training and testing sets is an important step in machine 

learning as it also helps to evaluate the performance of 

a model. The 80/20 data split is a common choice 

because it strikes a good balance between having 

enough data to train a model and having enough data to 

test it. Choosing a small test set presents a risk that the 

model is unable to generalise well to new data. Models 

can learn faster with a large training set, thus reducing 

the overall training time. There is no hard and fast rule 

on data splitting. However, different data split ratios 

may be more appropriate depending on the specific 

problem, the amount of data available and the 

complexity of the model. It is a good practise to 

experiment with different data split ratios and evaluate 

the model's performance before making a final decision 

(Aurélien Géron, 2019; Raschka & Mirjalili, 2019). 

Question 3.b What performance metrics were used? 

Performance metrics are useful for evaluating the 

performance of models because they provide a 



standardised way to compare different models. Table 9 

shows the performance metrics used for the evaluation 

of the models used in the studies. Three discrete 

performance metrics were used in the selected studies. 

The root mean square error (RMSE), the mean absolute 

error (MAE), and the mean absolute percentage error 

(MAPE) were the metrics commonly used to evaluate 

the models. They provide a quantitative measure of how 

well a model performs in terms of predicting the output 

variable compared to the actual values. RMSE is a 

measure of the average difference between the predicted 

and actual values, but with a higher weight given to 

larger errors. It is useful when you want to penalise 

larger errors more heavily. MAE is a measure of the 

average difference between the predicted and actual 

values, with equal weight given to all errors. It is useful 

when you want to give equal importance to all errors. 

MAPE is a measure of the average percentage difference 

between predicted and actual values. It is useful when 

you want to evaluate the accuracy of a model in terms 

of percentage error, which can be helpful in situations 

where the magnitude of the error is important. S1, S2, 

S6, S7, S9, S13, S14, S19, and S21 employed different 

metrics or combined with the commonly used metric.  

S1 used only the prediction accuracy as a metric, 

where the prediction accuracy is equal to the number of 

correctly predicted travel data divided by the total 

number of travel data. The correct prediction referred to 

the difference between the predicted time and the actual 

value as less than 1 hour. For S2, the Pearson 

Correlation Coefficient (PCC) was added to MAE and 

RSME as a metric. S2 and S21 adopted PCC because the 

results are linear, the variables are quantitative, 

normally distributed, and have no outliers. S6 adopted 

F1 score, precision and recall as its metrics. Recall and 

precision metrics are used to evaluate the performance 

of a classification or information retrieval model. Recall 

measures the percentage of relevant instances that were 

correctly retrieved by the model out of all relevant 

instances in the data set. It is used to evaluate the 

completeness of the results produced by the model. 

Precision measures the percentage of retrieved instances 

that are relevant from all retrieved instances. It is used 

to evaluate the accuracy of the results produced by the 

model. Then the F1 score was applied, which is the 

harmonic mean of precision and recall. It symmetrically 

represents both precision and recall in one metric. S7 

adopted the mean error, a fitness function, and the mean 

standard error as a performance metric for its model. 

MSE measures the precision of the estimates since it 

reflects the magnitude of the error to expect in the 

estimates. A smaller MSE indicates that the estimates 

are more precise and have less variability, while a larger 

MSE suggests that the estimates are less precise and 

have more variability.  The MSE values were associated 

with the neural network training effect, where a lower 

value indicated better neural network training. The 

fitness function was adopted because the study involved 

the use of a genetic algorithm. The function is used to 

guide the optimisation process. The reciprocal value of 

the mean squared error is used as a fitness function. ME 

sums up the variances and divides the result by sample 

population. The variance is the difference between the 

measured value and the true value. S9 adopted the 

RSME and the symmetric mean absolute percentage 

error (SMAPE), which measure the accuracy based on 

relative errors. The study justified the choice of SMAPE 

because it was not scale sensitive. S13 and S14, in 

addition to MAE and RSME, include the R2 score as a 

performance metric that indicates how well the data fit 

the regression model. The R2 score is a statistical 

measure in a regression model that determines the 

proportion of variance in the dependent variable that can 

be explained by the independent variable. The score or 

value derived from this metric is independent of the 

context because it measures the goodness of fit of the 

model. MAE, RSME, and MAPE have primarily 

featured metrics in the selected papers. MAE, RSME 

and MAPE were found to be used in 57%, 67% and 52% 

of the studies, respectively. It suggests that these metrics 

are commonly used in model evaluation and machine 

learning studies. The other metrics were selected based 

on the preference and the objective of the study. 

Table 9. Summary of the performance metrics for evaluation. 

No. MAE RSME MAPE Others 

S1 - - - prediction accuracy 

S2 MAE RSME - 
Pearson Correlation 

Coefficient 

S3 MAE RSME MAPE - 

S4 MAE RSME MAPE - 

S5 MAE RSME MAPE - 

S6 - - - 
Score, Precision, and 

Recall 

S7 - - - 
ME, MSE, fitness 

Function 

S8 MAE RSME - - 

S9 - RSME - SMAPE 

S10 MAE RSME - - 

S11 MAE RSME  - 

S12 MAE RSME MAPE - 

S13 - RSME MAPE R2 

S14 MAE RSME MAPE R2 

S15 MAE RSME MAPE  

S16 - - MAPE - 

S17 MAE RSME MAPE - 



S19 - - - Score 

S20 MAE RSME MAPE - 

S21 - - MAPE Accuracy 

5 Conclusion 

The review investigates how passenger demand is 

estimated with a collection system using machine 

learning models. It examines three thematic research 

questions that cover passenger data collection 

techniques, passenger demand interventions, and 

intervention performance. A comprehensive search 

strategy is carried out across the three main online 

publishing databases to locate unique 911 records. 

Relevant record titles, abstracts, and publication 

information are extracted, leaving 102 articles. In 

addition, the articles are evaluated according to the 

eligibility requirements. This procedure yields 21 full-

text papers for data extraction. For data collection 

techniques, approximately 57% of the data was 

recovered from mobility records or open databases. This 

is because the data were readily available, in an 

appropriate format, over a substantial period, and less 

expensive to obtain. Traffic data was mostly aggregated 

in multiples of 15-minute intervals because it provided 

sufficient time resolution to capture changes in traffic 

patterns while minimising noise. Furthermore, it 

becomes more manageable and easier to compare and 

analyse the aggregated data (Giraldo-Forero et al., 2019; 

Yang et al., 2022). Demand forecasting using machine 

learning models has attracted widespread interest. The 

common intervention for passenger demand was 

supervised regression model. 73% of the studies usually 

combined LSTM models with other models for their 

research. Making LSTM-based models is preferred for 

predicting and forecasting series (Liyanage et al., 2022; 

Yeon et al., 2019). 83% of the articles split the training 

set between 70% and 80%. Splitting a data set prevents 

overfitting and allows one to evaluate the performance 

of a model. MAE, RSME, and MAPE were featured as 

performance metrics in the selected articles. MAE, 

RSME and MAPE were found to be used in 57%, 67% 

and 52% of the studies, respectively. It suggests that 

these metrics are commonly used in model evaluation 

and machine learning studies. Despite the exhaustive 

nature of this document, the following limitations must 

be acknowledged. Only three Internet databases were 

used to search for relevant materials. Furthermore, this 

review did not evaluate grey and unpublished literatures. 

However, it is expected that the selected papers will 

cover new methodologies. The approach to the review 

is intended to be as objective as possible. Data extraction 

and discussion are carried out by the first author under 

the supervision of the coauthors. All results have been 

double-checked, but the authors are responsible for any 

residual inaccuracies. 

The results of this study suggest that mobility 

records, LSTM-based models, and performance metrics 

play a critical role in performing passenger demand 

prediction studies. Besides, the review determined an 

overreliance on the long- and short-term memory model 

to estimate passenger demand. Therefore, minimising 

the limitation of the LSTM model will generally 

improve the estimation models. Additionally, having an 

acceptable train set to avoid overfitting is crucial. 

Furthermore, it is advisable to consider multiple metrics 

to have a more comprehensive evaluation.  

References 

1. Ait-Ali, A., & Eliasson, J. (2022). The value of 

additional data for public transport origin–

destination matrix estimation. Public Transport, 

14(2), 419–439. https://doi.org/10.1007/S12469-

021-00282-0 

2. Aurélien Géron. (2019). Hands-on machine 

learning with Scikit-Learn, Keras and TensorFlow: 

concepts, tools, and techniques to build intelligent 

systems. O’Reilly Media, 851. 

https://www.oreilly.com/library/view/hands-on-

machine-learning/9781492032632/ 

3. Bai, L., Yao, L., Kanhere, S. S., Yang, Z., Chu, J., 

& Wang, X. (2019). Passenger demand forecasting 

with multi-task convolutional recurrent neural 

networks. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 

11440 LNAI, 29–42. https://doi.org/10.1007/978-

3-030-16145-3_3/COVER 

4. Becker, K., Terekhov, I., Niklaß, M., & Gollnick, 

V. (2018). A global gravity model for air 

passenger demand between city pairs and future 

interurban air mobility markets identification. 

2018 Aviation Technology, Integration, and 

Operations Conference. 

https://doi.org/10.2514/6.2018-2885 

5. Booth Andrew, Sutton Anthea, & Papaioannou 

Diana. (2016). Systematic Approaches to a 

Successful Literature Review. Systematic 

Approaches to a Successful Literature Review, 1–

336. 

https://www.google.co.uk/books/edition/Systemati

c_Approaches_to_a_Successful_Li/JD1DCgAAQ

BAJ?hl=en&gbpv=0&kptab=overview 

6. Duan, Z., Zhang, K., Chen, Z., Liu, Z., Tang, L., 

Yang, Y., & Ni, Y. (2019). Prediction of city-scale 

dynamic taxi origin-destination flows using a 

hybrid deep neural network combined with travel 

time. IEEE Access, 7, 127816–127832. 

https://doi.org/10.1109/ACCESS.2019.2939902 

7. Giraldo-Forero, A. F., Garcia-Lopez, S., 

Rodriguez-Marin, P. A., Martinez, J., Céspedes-

Villar, Y. R., Cardona, O., Acosta, J. C., & 

Trujillo, L. C. (2019). A Spatiotemporal Analysis 

of Taxis Demand: A Case Study in the Manizales 

City. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), 

11896 LNCS, 514–524. 

https://doi.org/10.1007/978-3-030-33904-

3_48/COVER 

8. Han, L., Ma, X., Sun, L., Du, B., Fu, Y., Lv, W., 

& Xiong, H. (2022a). Continuous-Time and Multi-



Level Graph Representation Learning for Origin-

Destination Demand Prediction. Dl.Acm.Org, 22, 

516–524. 

https://doi.org/10.1145/3534678.3539273 

9. Han, L., Ma, X., Sun, L., Du, B., Fu, Y., Lv, W., 

& Xiong, H. (2022b). Continuous-Time and Multi-

Level Graph Representation Learning for Origin-

Destination Demand Prediction. Proceedings of 

the ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 516–524. 

https://doi.org/10.1145/3534678.3539273 

10. Hillel, T., Bierlaire, M., Elshafie, M. Z. E. B., & 

Jin, Y. (2021). A systematic review of machine 

learning classification methodologies for 

modelling passenger mode choice. Journal of 

Choice Modelling, 38, 100221. 

https://doi.org/10.1016/J.JOCM.2020.100221 

11. Huang, Z., Zhang, W., Wang, D., & Yin, Y. 

(2022). A GAN framework-based dynamic multi-

graph convolutional network for origin–

destination-based ride-hailing demand prediction. 

Information Sciences, 601, 129–146. 

https://doi.org/10.1016/J.INS.2022.04.024 

12. Kumar, A., & Barrett, F. (2008). Stuck in Traffic: 

Urban Transport in Africa Africa Infrastructure 

Country Diagnostic. 

13. Li, W., Guan, H., Han, Y., Zhu, H., & Wang, A. 

(2022). Short-Term Holiday Travel Demand 

Prediction for Urban Tour Transportation: A 

Combined Model Based on STC-LSTM Deep 

Learning Approach. KSCE Journal of Civil 

Engineering, 26(9), 4086–4102. 

https://doi.org/10.1007/S12205-022-2051-

8/METRICS 

14. Liang, X., Wang, G., Renqiang Min, M., Qi, Y., & 

Han, Z. (2019). A Deep Spatio-Temporal Fuzzy 

Neural Network for Passenger Demand Prediction. 

Proceedings of the 2019 SIAM International 

Conference on Data Mining. 

https://epubs.siam.org/terms-privacy 

15. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, 

C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., 

Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). 

The PRISMA statement for reporting systematic 

reviews and meta-analyses of studies that evaluate 

healthcare interventions: explanation and 

elaboration. BMJ (Clinical Research Ed.), 339. 

https://doi.org/10.1136/bmj.b2700 

16. Litman, T. A., & Litman, T. (2022). www.vtpi.org 

Info@vtpi.org 250-508-5150. www.vtpi.org 

17. Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., & 

Lin, L. (2019). Contextualized Spatial-Temporal 

Network for Taxi Origin-Destination Demand 

Prediction. IEEE Transactions on Intelligent 

Transportation Systems, 20(10), 3875–3887. 

https://doi.org/10.1109/TITS.2019.2915525 

18. Liyanage, S., Abduljabbar, R., Dia, H., & Tsai, P. 

W. (2022). AI-based neural network models for 

bus passenger demand forecasting using smart 

card data. Journal of Urban Management, 11(3), 

365–380. 

https://doi.org/10.1016/J.JUM.2022.05.002 

19. Meinardi, S., Nissenson, P., Barletta, B., Dabdub, 

D., Sherwood Rowland, F., & Blake, D. R. (2008). 

Influence of the public transportation system on 

the air quality of a major urban center. A case 

study: Milan, Italy. Atmospheric Environment, 

42(34), 7915–7923. 

https://doi.org/10.1016/J.ATMOSENV.2008.07.04

6 

20. Miao, H., Fei, Y., Wang, S., Wang, F., & Wen, D. 

(2022). Deep learning based origin-destination 

prediction via contextual information fusion. 

Multimedia Tools and Applications, 81(9), 12029–

12045. https://doi.org/10.1007/S11042-020-

10492-6/METRICS 

21. Munn, Z., Stern, C., Aromataris, E., Lockwood, 

C., & Jordan, Z. (2018). What kind of systematic 

review should i conduct? A proposed typology and 

guidance for systematic reviewers in the medical 

and health sciences. BMC Medical Research 

Methodology, 18(1), 1–9. 

https://doi.org/10.1186/S12874-017-0468-

4/TABLES/1 

22. Raschka, S., & Mirjalili, V. (2019). Python 

machine learning : machine learning and deep 

learning with python, scikit-learn, and tensorflow 

2. 741. 

23. Román, C., Espino, R., & Carlos Martín, J. (2010). 

Analyzing Competition between the High Speed 

Train and Alternative Modes. The Case of the 

Madrid-Zaragoza-Barcelona Corridor. Journal of 

Choice Modelling, 3(1), 84–108. 

www.jocm.org.uk 

24. Street, M., Rachman, H. O., Ridwan, K., Li, X., 

Li, C., & Yu, H. (2021). Taxi Hotspots 

Identification through Origin and Destination 

Analysis of Taxi Trips using K-means Clustering 

and H-indexing. Journal of Physics: Conference 

Series, 1997(1), 012006. 

https://doi.org/10.1088/1742-6596/1997/1/012006 

25. Sun, F., Wang, X. L., Zhang, Y., Liu, W. X., & 

Zhang, R. J. (2020). Analysis of bus trip 

characteristic analysis and demand forecasting 

based on GA-NARX neural network model. IEEE 

Access, 8, 8812–8820. 

https://doi.org/10.1109/ACCESS.2020.2964689 

26. Wang, Y., Wo, T., Yin, H., Xu, J., Chen, H., & 

Zheng, K. (2019). Origin-destination matrix 

prediction via graph convolution: A new 

perspective of passenger demand modeling. 

Proceedings of the ACM SIGKDD International 

Conference on Knowledge Discovery and Data 

Mining, 1227–1235. 

https://doi.org/10.1145/3292500.3330877 

27. Wei, W., & Yan, X. (2019). A novel deep 

recurrent neural network for Short-term travel 

demand forecasting under on-demand ride 

services. IOP Conference Series: Materials 

Science and Engineering, 688(3), 033022. 

https://doi.org/10.1088/1757-899X/688/3/033022 

28. Yang, F., Shuai, C., Qian, Q., Wang, W., He, M., 

He, M., & Lee, J. (2022). Predictability of short-

term passengers’ origin and destination demands 

in urban rail transit. Transportation, 1–27. 



https://doi.org/10.1007/S11116-022-10313-

9/METRICS 

29. Ye, P., & Ma, Y. (2022). Clustering-Based Travel 

Pattern for Individual Travel Prediction of 

Frequent Passengers by Using Transit Smart Card. 

Https://Doi.Org/10.1177/03611981221111355, 

036119812211113. 

https://doi.org/10.1177/03611981221111355 

30. Yeon, K., Min, K., Shin, J., Sunwoo, M., & Han, 

M. (2019). Ego-Vehicle Speed Prediction Using a 

Long Short-Term Memory Based Recurrent 

Neural Network. International Journal of 

Automotive Technology, 20(4), 713–722. 

https://doi.org/10.1007/S12239-019-0067-

Y/METRICS 

31. Zhang, K., Liu, Z., & Zheng, L. (2020). Short-

Term Prediction of Passenger Demand in Multi-

Zone Level: Temporal Convolutional Neural 

Network with Multi-Task Learning. IEEE 

Transactions on Intelligent Transportation 

Systems, 21(4), 1480–1490. 

https://doi.org/10.1109/TITS.2019.2909571 

32. Zhao, J., Kong, W., Zhou, M., Zhou, T., Xu, Y., & 

Li, M. (2022). Prediction of Urban Taxi Travel 

Demand by Using Hybrid Dynamic Graph 

Convolutional Network Model. Sensors 2022, Vol. 

22, Page 5982, 22(16), 5982. 

https://doi.org/10.3390/S22165982 

33. Zhao, Q., Zhu, J., Zhu, J., -,  al, Qu, H., Sako, M., 

Gödel, M., Lehmberg, D., Brydon, R., Bosina, E., 

& Köster, G. (2022). Toward learning dynamic 

origin-destination matrices from crowd density 

heatmaps. Iopscience.Iop.Org, 53401. 

https://doi.org/10.1088/1742-5468/ac6255 

34. Zhao, X., Cui, M., & Levinson, D. (2022). 

Exploring temporal variability in travel patterns on 

public transit using big smart card data. 

Https://Doi.Org/10.1177/23998083221089662, 

50(1), 198–217. 

https://doi.org/10.1177/23998083221089662 

35. Zhao, Z., Koutsopoulos, H. N., & Zhao, J. (2018). 

Individual mobility prediction using transit smart 

card data. Transportation Research Part C: 

Emerging Technologies, 89, 19–34. 

https://doi.org/10.1016/J.TRC.2018.01.022 


