Sharp-P and the Birch and Swinnerton-Dyer Conjecture

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Sharp-P and the Birch and Swinnerton-Dyer conjecture

Frank Vega \square ペ
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is a congruent number if and only if the number of triplets of integers (x, y, z) satisfying $2 \cdot x^{2}+y^{2}+8 \cdot z^{2}=n$ is twice the number of triplets satisfying $2 \cdot x^{2}+y^{2}+32 \cdot z^{2}=n$ due to Tunnell's theorem. However, we show these equations are instances of a variant of counting solutions of the homogeneous Diophantine equations of degree two which is a $\# P$-complete problem. Deciding whether n is congruent or not is a problem in $N P$ since congruent numbers could be easily checked by a congruum, because of every congruent number is a product of a congruum and the square of a rational number. We conjecture that if $P=N P$ and $F P \neq \# P$, then the Birch and Swinnerton-Dyer conjecture would be false.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computation Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [5]. If L_{1} is a language such that $L^{\prime} \leq_{p} L_{1}$ for some $L^{\prime} \in N P$-complete, then L_{1} is $N P$-hard [2]. Moreover, if $L_{1} \in N P$, then $L_{1} \in$ $N P$-complete [2]. A principal $N P$-complete problem is $S A T$ [5]. An instance of $S A T$ is a Boolean formula ϕ which is composed of:

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow($ implication $), \Leftrightarrow($ if and only if $) ;$
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks whether a given Boolean formula is satisfiable [5]. We define a $C N F$ Boolean formula using the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [2]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [2]. A Boolean formula is in 3-conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [2]. For example, the Boolean formula:

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$. In computer science, not-all-equal 3 -satisfiability (NAE-3SAT)
is an $N P$-complete variant of $S A T$ over $3 C N F$ Boolean formulas. NAE-3SAT consists in knowing whether a Boolean formula ϕ in $3 C N F$ has a truth assignment such that for each clause at least one literal is true and at least one literal is false [5]. NAE-3SAT remains $N P$-complete when all clauses are monotone (meaning that variables are never negated), by Schaefer's dichotomy theorem [10].

In computational complexity, the complexity class \#P (or Sharp-P) is the set of the counting problems associated with the decision problems in the set $N P$ [12]. Besides, the complexity class $F P$ is the set of the function problems associated with the decision problems in the set $P[8]$. Whether $F P=\# P$ or not is an open problem [8]. A problem is $\# P$-complete if it is in $\# P$ and every $\# P$ problem has a Turing reduction or polynomial-time counting reduction to it. In some cases we use the parsimonious reductions which is a more specific type of reduction that preserves the exact number of solutions.

The counting version of $N A E-3 S A T$ on monotone clauses is $\# P$-complete since to date, all known $N P$-complete languages have a defining relation which is $\# P$-complete [7]. We know that the variant of $X O R 2 S A T$ that uses the logic operator $\oplus(\mathrm{XOR})$ instead of \vee (OR) within the clauses of $2 C N F$ Boolean formulas can be decided in polynomial time [6, 9]. We announce a variant of its counting version which is in $\# P$-complete.

- Definition 1. \#Monotone Exact XOR 2SAT (\#EX2SAT)

INSTANCE: A Boolean formula φ in $2 C N F$ with monotone clauses between logic operators \oplus and a positive integer K.

ANSWER: Count the number of truth assignments in φ such that in each truth assignment there are exactly K satisfied clauses.

- Theorem 2. $\# E X 2 S A T \in \# P$-complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a polynomial whose nonzero terms all have the same degree [3]. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer [3]. From general homogeneous Diophantine equations of degree two, we can reject an instance when there is no solution reducing the equation modulo p. We define another counting problem:

- Definition 3. \#ZERO-ONE Homogeneous Diophantine Equation (\#HDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$ with the unknowns $x_{1}, x_{2}, \ldots, x_{n}$ and a positive integer B.

ANSWER: Count the number of solutions $u_{1}, u_{2}, \ldots, u_{n}$ on $\{0,1\}^{n}$ where we have $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$.

- Theorem 4. $\# H D E \in \# P$-complete.

We generalize this problem.

- Definition 5. \#Bounded Homogeneous Diophantine Equation (\#BHDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$ with the unknowns $x_{1}, x_{2}, \ldots, x_{n}$ and two positive integers B, M.

ANSWER: Count the number of solutions $u_{1}, u_{2}, \ldots, u_{n}$ on non-negative integers lesser than M such that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$.

- Theorem 6. $\# B H D E \in \# P$-complete.

Proof. This is trivial since we can make a parsimonious reduction from $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), B\right)$ in $\# H D E$ to $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), B, 2\right)$ in $\# B H D E$ (i.e. using $\left.M=2\right)$. Due to $\# H D E$ is in $\# P$-complete, then $\# B H D E$ is in $\# P$-hard. Finally, we know that $\# B H D E$ is in $\# P$.

Assuming the Birch and Swinnerton-Dyer conjecture, an odd square-free integer n is a congruent number if and only if the number of triplets of integers (x, y, z) satisfying $2 \cdot x^{2}+y^{2}+8 \cdot z^{2}=n$ is twice the number of triplets satisfying $2 \cdot x^{2}+y^{2}+32 \cdot z^{2}=n$ due to Tunnell's theorem [11]. Deciding whether n is congruent or not is a problem in $N P$ since congruent numbers could be easily checked by a congruum since every congruent number is a product of a congruum and the square of a rational number [1]. Certainly, every congruum is in the form of $4 \cdot m \cdot n \cdot\left(m^{2}-n^{2}\right)$ (with $m>n$), where m and n are two distinct positive integers [4]. Thus, we state our finally conjecture:

- Conjecture 7. Under the assumption that $P=N P$ and $F P \neq \# P$, then the Birch and Swinnerton-Dyer conjecture would be false.

Proof. Under the assumption that $P=N P$, we know that deciding whether an odd squarefree integer n is congruent or not can be done in polynomial time since this problem is in $N P$. On the other hand, for a given n, counting the numbers of solutions of $2 \cdot x^{2}+y^{2}+8 \cdot z^{2}=n$ and $2 \cdot x^{2}+y^{2}+32 \cdot z^{2}=n$ can be calculated by exhaustively searching through x, y, z in the range $-\sqrt{n}, \ldots, \sqrt{n}$. Note that, the solutions with negative values in x, y, z can be generated by the equivalent non-negative values. For example, if there is a solution in $\left(u_{x}, u_{y}, u_{z}\right)$, then $\left(-u_{x}, u_{y}, u_{z}\right)$ is also a solution when $u_{x} \neq 0$ and so on. Hence, we can multiply the number of non-negative solutions by 8 and be able to obtain all the possible number of solutions for these equations. After that, we must subtract the exceeded amount of those non-negative triplets of integers (x, y, z) that contain a single or double zeros (subtracting once or two times, respectively) where the remaining values can be positive. We know the amount of triplets of integers (x, y, z) which contains a zero and the remaining values can be positive is not exponential and so, we could find them and count them in polynomial time under the assumption that $P=N P$. However, the instances $2 \cdot x^{2}+y^{2}+8 \cdot z^{2}=n$ and $2 \cdot x^{2}+y^{2}+32 \cdot z^{2}=n$ belong to the $\# P$-complete problem $\# B H D E$ just using $B=M=n$ when we consider only the non-negative values on the triplets. Since $F P \neq \# P$, then the problem \#BHDE cannot be solved in polynomial time. We don't know specifically whether counting the number of non-negative integer solutions of the instances $2 \cdot x^{2}+y^{2}+8 \cdot z^{2}=n$ and $2 \cdot x^{2}+y^{2}+32 \cdot z^{2}=n$ cannot be solved in polynomial time as well. If that would be the case, then we might obtain a contradiction and therefore, the Birch and Swinnerton-Dyer conjecture would be false by reductio ad absurdum.

2 Proof of Theorem 2

Proof. Take a Boolean formula ϕ in $3 C N F$ with n variables and m clauses when all clauses are monotone. Iterate for each clause $c_{i}=(a \vee b \vee c)$ and create the conjunctive normal form formula

$$
d_{i}=\left(a \oplus a_{i}\right) \wedge\left(b \oplus b_{i}\right) \wedge\left(c \oplus c_{i}\right) \wedge\left(a_{i} \oplus b_{i}\right) \wedge\left(a_{i} \oplus c_{i}\right) \wedge\left(b_{i} \oplus c_{i}\right)
$$

where a_{i}, b_{i}, c_{i} are new variables linked to the clause c_{i} in ϕ. Note that, the clause c_{i} has exactly at least one true literal and at least one false literal if and only if d_{i} has exactly one unsatisfied clause. We notice that the value of positive literals a, b, c coincide in c_{i} and d_{i}, which means that those values are linked one-to-one in both directions. Finally, we obtain a new formula

$$
\varphi=d_{1} \wedge d_{2} \wedge d_{3} \wedge \ldots \wedge d_{m}
$$

where there is not any repeated clause. In this way, we made a parsimonious reduction from ϕ in \#Monotone $N A E-3 S A T$ to $(\varphi, 5 \cdot m)$ in \#EX2SAT. As we mentioned before,
\#Monotone NAE-3SAT is in \#P-complete and thus, \#EX2SAT is in \#P-hard. Moreover, we know that $\# E X 2 S A T$ is in $\# P$.

3 Proof of Theorem 4

Proof. Take a Boolean formula φ in $X O R 2 C N F$ with n variables and m clauses when all clauses are monotone and a positive integer K. Iterate for each clause $c_{i}=(a \oplus b)$ and create the Homogeneous Diophantine Equation of degree two

$$
P\left(x_{a}, x_{b}\right)=x_{a}^{2}-2 \cdot x_{a} \cdot x_{b}+x_{b}^{2}
$$

where x_{a}, x_{b} are variables linked to the positive literals a, b in the Boolean formula φ. When the literals a, b are evaluated in $\{$ false, true $\}$, then we assign the respective values $\{0,1\}$ to the variables x_{a}, x_{b} (1 if it is true and 0 otherwise). Note that, the clause c_{i} is satisfied if and only if $P\left(x_{a}, x_{b}\right)=1$. We notice that c_{i} is unsatisfied if and only if $P\left(x_{a}, x_{b}\right)=0$, so the corresponding and translated values are linked one-to-one in both directions. Finally, we obtain a polynomial

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{a}, x_{b}\right)+P\left(x_{c}, x_{d}\right)+\ldots+P\left(x_{e}, x_{f}\right)
$$

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in φ correspond to K distinct small pieces of Homogeneous Diophantine Equation of degree two $P\left(x_{i}, x_{j}\right)$ which are equal to 1 . In this way, we made a parsimonious reduction from (φ, K) in \#EX2SAT to $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), K\right)$ in \#HDE. Since we obtain that \#EX2SAT is in $\# P$-complete, then $\# H D E$ is in $\# P$-hard. Furthermore, we know that $\# H D E$ is in $\# P$.

References

1 Keith Conrad. The congruent number problem. The Harvard College Mathematics Review, 2(2):58-74, 2008.
2 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
3 David A Cox, John Little, and Donal O'shea. Using algebraic geometry, volume 185. Springer Science \& Business Media, 2006.
4 David Darling. The universal book of mathematics from Abracadabra to Zeno's paradoxes. John Wiley \& Sons, Inc., 2004.
5 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
6 Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondeterministic log space. Mathematical systems theory, 10(1):1-17, 1976. doi:10.1007/BF01683259.
7 Noam Livne. A note on \#P-completeness of NP-witnessing relations. Information processing letters, 109(5):259-261, 2009. doi:10.1016/j.ipl.2008.10.009.
8 Christos H Papadimitriou. Computational complexity. Addison-Wesley, 1994.
9 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1-24, 2008. doi:10.1145/1391289.1391291.

10 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual ACM symposium on Theory of computing, pages 216-226, 1978.
11 Jerrold B Tunnell. A classical Diophantine problem and modular forms of weight 3/2. Inventiones mathematicae, 72(2):323-334, 1983. doi:10.1007/BF01389327.
12 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science, 8(2):189-201, 1979. doi:10.1016/0304-3975(79)90044-6.

