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Abstract

In this study, we consider a single objective fuzzy portfolio optimization
with flexible goal and constraints, in which the Sharpe ratio is cho-
sen as the goal and the portfolio’s mean and variance are included in
the constraints. Although this problem has much significance in finance,
it is difficult to solve because of the nonconvexity of the objective
function. Based on fuzzy theory and flexible optimization, the fuzzy
portfolio problem is transformed to the crisp form which is proved to
be a semistrictly quasiconvex programming problem for any decreas-
ing membership functions. This property of the equivalent problem is
the basis to solve the main problem efficiently by available convex pro-
gramming algorithms. The computational experiments with the SP500
data set is reported to show the performance of the proposed model.

Keywords: Fuzzy portfolio selection, Flexible optimization, Soft constraints,
Sharpe ratio, Semistrictly quasiconvex programming.

1



2 Fuzzy Portfolio Selection via Quasiconvex Programming

1 Introduction

In financial technology, portfolio selection is a significant process, specially in
business investments. It is the process of assigning a predetermined amount of
money to various assets in order to construct a well-balanced portfolio. This
process helps determine a mix of securities from a large number of possibil-
ities. Its goal is to help investors get the most out of their money. In recent
years, portfolio selection has gotten much attention from many individuals and
institutions.

Mean-Variance model or Markowitz model is popular and used widely
in modern portfolio theory, where portfolio selection is constructed as a bi-
objective optimization problem for minimizing risk of portfolio as well as
maximising expected portfolio profit. As usual, this problem is transformed to
a single-objective programming problem, such as minimizing risk of portfolio
for a chosen level of anticipated return or maximising expected portfolio profit
for a chosen level of risk. Because both the risk and profit objective functions
are convex, the transformed problem is a convex programming problem.

In practice, the actual data, however, we can see that a number of vari-
ables impact the stock market, resulting in frequent price changes as well as
our desire to find the best answer to the difficult situation (see [1]). As a con-
sequence, we can see that tackling the problem of fuzzy portfolio selection is
a great idea. Numerous more results that applied fuzzy theory to portfolio
problems were presented recently (see [2–4]).

Besides mean and variance, some other measures are also used to evaluate
portfolios (see [2, 5, 6]). This research considers a variant Markowitz model by
adding an objective function called Sharpe Ratio (SR) (also see [7]). SR is a
prominent risk-adjusted return performance metric that indicates the ratio of
the expectant profit to the standard deviation of the portfolio. SR has much
applied and economic significance, but it has some disadvantages when solving
the programming problem with the objective SR because of its non-convexity.
Therefore, recently there only some works related to this index, such as Sharpe
Ratio - VaR Ratio model with fuzzy coefficients solved using genetic algorithm
(see [4]) ,the “fuzzy Sharpe Ratio” and new risk measure with fuzzy random
variables in the fuzzy modeling environment (see [2]). These works used the
heuristic approach such as genetic algorithms for solving the programming
problem. This approach only helps find the local optimal solutions and cannot
guarantee the algorithmic convergence to global optimal solutions. Moreover,
for the computational performance aspect, it may have to execute a huge
computational load to generate a big enough population to find a good enough
approximated solution.

In this research, we show the semistrictly quasiconvex property of Sharpe
Ratio function. By utilizing the properties of semistrictly quasiconvex functions
, the fuzzy portfolio selection problem using SR is transformed to a semistrictly
quasiconvex programming, which can solve globally and efficiently by available
convex programming algorithms (also see [8, 9]). The globally convergence of
the proposed procedure is guaranteed. Last but not least, we also prove that
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the equivalent crisp problem is still a semistrictly quasiconvex programming
even when the membership functions are arbitrary decreasing functions, while
the previous works only consider some specific forms of membership functions
(see [10]). This helps one get more flexible, easily and suitable options for
fuzzification in the modelling process.

The remainder of the paper is arranged as follows. In section 2, we present
the portfolio selection problem which uses the Sharpe Ratio index. Section 3
introduces the fuzzy portfolio selection issue and the solution approach. The
findings of the computational experiments are shown in Section 4. In the final
portion, there are a few conclusions.

2 Portfolio selection problem

Markowitz’s portfolio theory is founded on two key assumptions: 1) investors
are wary about risks and want the highest possible expected profit, and 2)
investors pick their portfolios based on desirable return and variance of return.

Recall the random vector R = (R1, R2, . . . , Rn)
T ∈ Rn denotes random

returns of the n assets. Suppose that p(R) is the probability distribution of
R. Calling mean vector of R is L = (L1, . . . , Ln)

T and covariance matrix
of R is Q = (σij)n×n, where σ2

jj is variance of Rj and σ2
ij is correlation

coefficient between Ri and Rj , i, j = 1, . . . , n. With x = (x1, . . . , xn)
T is a

portfolio, note that
∑n

j=1 xj = 1 and xj ≥ 0 for all j = 1, . . . , n. We have

the expected return E(x) = E[RTx] =
∑n

j=1 Ljxj , and variance of profit

V(x) = V ar(RTx) =
∑n

i=1

∑n
j=1 σijxjxi = xTQx.

The expected return is used to represent the investment in the future,
whilst the variance of return is used to estimate the risk of the investment.
As a result, the return is calculated by the projected profit or the average of
the profits, while the profit variance throughout the whole portfolio is used
to estimated the risk. Investors are best served by two objectives: maximum
lucrative and minimum the risk with portfolio value bound constraints.

Set M = {x ∈ Rn
+ |

∑n
j=1 xj = 1} where Rn

+ is nonnegative orthant of
real n-dimentional space. Then, the portfolio optimization problem is therefore
presented as follows.

max E(x) = E[RTx] =
∑n

j=1 Ljxj

min V(x) = V ar(RTx) =
∑n

i=1

∑n
j=1 σijxjxi = xTQx,

s.t. x ∈ M.

(MV)

The Sharpe Ratio function, on the other hand, is the aim of our article - an
index that measures a portfolio’s risk-adjusted returns with the formulation as

S(x) = E(x)− rf√
V(x)

where rf represents the risk free rate. The higher the SR value, the higher the
portfolio return in comparison to the risk the decision-maker is willing to take.
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In this research, we propose the single-objective deterministic portfolio
optimization model as

min f(x) = −S(x) = −E(x)− rf√
V(x)

s.t. E(x) = E[RTx] =
∑n

j=1 Ljxj ≥ α,

V(x) = V ar(RTx) =
∑n

i=1

∑n
j=1 σijxjxi = xTQx ≤ β,

x ∈ M.

(MVS1)

The basic theory of semistrictly quasiconvex programming will be presented
later in Section 3.3. In this section, there are some propositions related to
semistrictly quasiconvexity that can be inferred from the proposed model.

Recall that if φ1(x) is concave and φ2(x) is convex defined on C ⊂ Rn sat-

isfied φ1(x) ≥ 0, φ2(x) > 0, then ϕ =
φ1

φ2
is semistrictly quasiconcave function

on C (see [11], table 5.4, page 165). Therefore, we have the propositions below.

Proposition 1 The Sharpe Ratio function S(x) is semistrictly quasiconcave on Rn.

Proposition 2 Problem (MVS1) is a semistrictly quasiconvex programming.

In actuality, there are some inaccuracies in the parameters, as well as some
errors in estimating the expected profit and the risk of the portfolio. If we
continue to work on the original objective function, we may not be able to find
a satisfactory optimal solution. Furthermore, fuzzicating constraints expands
the feasible set, increasing the likelihood of obtaining a satisfied solution with a
better optimal value. Therefore, considering the Problem (MVS1) in the fuzzy
context is reasonable. In the next section, we will go over some fundamental
concepts in fuzzy optimization, the procedure for converting Problem (MVS1)
to a fuzzy form, and how to solve the fuzzy problem.

3 Fuzzy portfolio problem

3.1 Fuzzy optimization

In this article, we use the fuzzy optimization model with fuzzy components
in which the variables and parameters are crisp numbers, which is also called
flexible optimization (see [12]). There are two types of fuzzy components. The

first component is associated with the objective function (m̃in, m̃ax), while the
second component is a fuzzy relation (⪯,≃,⪰). Without loss the generality, a
fuzzy optimization problem with fuzzy components can be formulated as

m̃in f(c,x)
s.t. zi(x) ⪯ 0, i = 1, . . . , k,

x ∈ X,

(Pf )
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where X ⊂ Rn is a set that is not empty. The symbol ”m̃in” and ”⪯” stand for
a fuzzy version of ”minimize” and ”≤”, respectively, indicating ”the objective
function should be reduced as much as feasible” and ”the constraints should
be possibly well acceptable.”

In the following, we review the fundamentals of fuzzy theory.

Definition 1 (Fuzzy set ([10])) Given an universal set X. To define a fuzzy set Ã
of X, a function µ is used.

µÃ : X −→ [0, 1]

It is called membership function, which sets a real number µÃ to each x ∈ X in order

to represent the level of membership of x in Ã.

In general case, a membership function has the form as

µi(zi(x)) =


0 if zi(x) ≥ z0i ,

di(x) if z0i ≥ zi(x) ≥ z1i ,

1 if zi(x) ≤ z1i ,

where di(x) is a monotonic non-increasing function with respect to zi, z
0
i and

z1i represents the value of zi such that the grade of µi(zi(x)) is 0 or 1. There-
fore, membership functions are decreasing functions. Membership function for
objective function and constraints present the grade that the objective function
is minimized and the constraints are satisfied, respectively.

In many other previous studies, researchers propose solving methods for
only some particular types of membership functions, but our approach can be
used for arbitrary strictly decreasing functions.

3.2 Fuzzy portfolio problem

In this paper, we adopt vagueness and transform Problem (MVS1) to its fuzzy
version as

m̃in f(x) = −S(x) = −E(x)− rf√
V(x)

s.t. E∗(x) = −E(x) = −
∑n

j=1 Ljxj ⪯ −α,

V(x) = xTQx ⪯ β,
x ∈ M.

(MVS2)

By applying arbitrary strictly decreasing membership functions µi, i =
0, 1, 2 (*) and following the fuzzy decision of Bellman and Zadeh, Problem
(MVS2) is transformed to Problem (FP1).

max min
{
µ0(f(x)), µ1(E∗(x)), µ2(V(x))

}
s.t. x ∈ M.

(FP1)
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Because f(x) is not convex, Problem (FP1) is a nonconvex program-
ming problem. However, it belongs to the class of semistrictly quasiconvex
programming problems. The reason will be presented in Subsection 3.3.

3.3 Semistrictly quasiconvex programing

Definition 2 (Semistrictly quasiconvex function (see [11])) Let X ⊂ Rn be a convex
set, f is defined on X. For all x1 ∈ X,x2 ∈ X, 0 < λ < 1, if

f(x1) > f(x2) implies that f(λx1 + (1− λ)x2) < f(x1),

then f is semistrictly quasiconvex on X.

Definition 3 (Semistrictly quasiconvex programming problem) Given a convex set
X ⊂ Rn, X ̸= ∅. Then the formulation of a semistrictly quasiconvex programming
problem is

min f(x)
s.t. x ∈ X,

(SQP)

where f(x) is semistrictly quasiconvex on X.

Proposition 3 Any local minimum of (SQP) is a global minimum (see [11]).
Therefore, (SQP) can be solved by proper convex programming algorithms.

Let’s return to Problem (FP1). By Proposition 2, f(x) is a semistrictly
quasiconvex function. In addition, E∗(x) is linear and V(x) is convex because
of the positive symmetric definite matrix Q. So we have f(x), E∗(x) and V(x)
are semistrictly quasiconvex functions (**).

Set operator ηi(y) = 1− µi(y), then Problem (FP1) is equivalent to

min g(x) = max
{
η0(f(x)), η1(E∗(x)), η2(V(x))

}
s.t. x ∈ M.

(FP2)

By assumption (*), ηi(y), i = 0, . . . , 2 are strictly increasing functions.
Combining with (**), then, η0(f(x)), η1(E∗(x)), η2(V(x)) are semistrictly qua-
siconvex functions (see [11], Proposition 5.1, page 154). After that, we have
Proposition 4, which can be proven by using Definition 2. And finally, all the
reasons stated lead to Proposition 5.

Proposition 4 The objective function g(x) of Problem (FP2) is semistrictly
quasiconvex on Rn.

Proposition 5 Problem (FP2) is a semistrictly quasiconvex programming problem
and is solved efficiently by using available convex programming algorithms.

The proposed method simplifies the computation process significantly. This
approach is different from the other approach of the previous articles which
use genetic algorithms.
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4 Computational Experiment

This section uses two examples to describe the performance of our proposal in
the application of fuzzy portfolio optimization.

The first example uses stock prices from 1/23/2015 to 6/12/2017 of five
stocks with symbols such as ULTA, MLM, NFLX, AMZN and NVDA. The
expected profits and covariance matrix of five assets are given in Table 1.

Table 1: Data of the Example 1

Stock L Q

ULTA 0.15672 4.41513 1.12491 2.31042 1.44398 1.39347
MLM 0.15874 1.12491 4.07482 1.96306 1.28708 1.53560
NFLX 0.20462 2.31042 1.96306 9.13912 2.33831 1.98378
AMZN 0.21693 1.44398 1.28708 2.33831 4.43169 1.67068
NVDA 0.34876 1.39347 1.53560 1.98378 1.67068 5.31435

The deterministic problem is (MVS1) model with α = 2.5 , β = 0.25 . Then,
the membership functions applied for objective function and constraints are
piecewise-linear membership functions which are strictly decreasing functions
on the range of f(x), E∗(x),V(x).

Fig. 1: Piecewise-linear membership function

The fuzzy portfolio problem is solved using Matlab’s convex programming
tool, and the results are presented in Table 2. From Table 2, the optimal value
for the fuzzy portfolio problem is 1% greater than the optimal value for the
deterministic problem. Flexible optimization that expands the feasible set can
look to produce a better objective function value than the initial problem’s
optimal value.

The second example uses five stocks ticker symbols such as ALB, AVGO,
CHTR, ULTA and MLM. And Table 3 displays the data’s expected profits
and covariance matrix of stocks cost from 2/2/2015 to 1/25/2017.

To analyze the discovered solutions, we conduct the following: after deter-
mining the optimal solution x of the portfolio selection problem, we utilize it



8 Fuzzy Portfolio Selection via Quasiconvex Programming

Table 2: Value of (MVS1) and (MVS2) with α = 0.25 and β = 2.5

Function S(x) E(x) V(x)

Deterministic (x) 0.14649 0.25363 2.49999

Fuzzy (x∗) 0.14795 0.26151 2.62045

Table 3: Data of the second example

Stock L Q

ALB 0.15540 3.72379 1.53106 1.11161 1.05120 1.35014
AVGO 0.15881 1.53106 5.29711 1.08504 1.69505 1.57479
CHTR 0.16339 1.11161 1.08504 4.00362 1.03543 1.20725
ULTA 0.16504 1.05120 1.69505 1.03543 4.39397 1.11849
MLM 0.17814 1.35014 1.574787 1.20725 1.11849 4.06780

to compute the optimal solution x∗ of the fuzzy portfolio problem by apply-
ing piecewise-linear membership functions. Then, we calculate the average of
Sharpe ratio, mean, and variance values in the next 100 days with each solu-
tion x and x∗. Table 4 displays the results. The SR value of the fuzzy problem
is not as good as it is for the deterministic problem, as seen in Table 4. How-
ever, When applied to data over the next 100 days, the average of S(x∗) is
1.12% better than S(x), demonstrating the second meaning of fuzzy.

Table 4: Result of the second example

Function S(x) S(x∗) E(x) E(x∗) V(x) V(x∗)

500 days 0.10576 0.10521 0.16574 0.16426 1.84720 1.82834

Mean of 100 data sets 0.10276 0.10391 0.15802 0.15855 1.75269 1.72776

5 Conclusion

In conclusion, this work proposes a portfolio model, in which we optimize
the Sharpe ratio and control the value of return and risk, and consider the
model in the fuzzy environment. We have stated that the deterministic problem
is a (SQP), and proposed a method, which can use just arbitrary strictly
decreasing membership functions, to convert it to the flexible version that
then was proven to be a (SQP). As the result, the fuzzy portfolio problem
can be addressed by just using convex programming methods, which takes less
computing effort than genetic algorithms in previous workarounds. Because of
its advantages in practical experiments compared to other methods and the
appearance of semistrictly quasiconvex functions in many problems in the real
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world, this approach may be used in a variety of different mathematical models
that contain semistrictly quasiconvex functions.
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