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Abstract. We generalize intuitionistic tense logics to the multi-modal
case by placing grammar logics on an intuitionistic footing. We provide
axiomatizations for a class of base intuitionistic grammar logics as well
as provide axiomatizations for extensions with combinations of seriality
axioms and what we call intuitionistic path axioms. We show that each
axiomatization is sound and complete with completeness being shown
via a typical canonical model construction.
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1 Introduction

Having been introduced in 1988 by Fariñas del Cerro and Penttonen [5], grammar
logics form a prominent class of normal, multi-modal logics that extend classical
propositional logic with a set of modalities indexed by characters from an alpha-
bet. Such logics obtain their name due to the incorporation of axioms which can
be viewed as production rules in a context-free grammar, and which generate
sequences of edges (which can be viewed as words) in a relational model. More
significantly however, the class of grammar logics includes many well-known log-
ics that have practical value in computer science; e.g. description logics [17],
epistemic logics [11], information logics [27], temporal logics [4], and standard
modal logics (e.g. K, S4, and S5) [8].

Another logical paradigm that is useful within computer science is that of
constructive reasoning (e.g. [18, 22]), that is, reasoning where the claimed exis-
tence of an object implies its constructibility [3]. One of the most renowned logics
for formalizing constructive reasoning is intuitionistic logic, which employs a ver-
sion of implication that is stronger than its classical counterpart. Resting on the
philosophical work of L.E.J. Brouwer, propositional intuitionistic logic was pro-
vided axiomatizations in the early 20th century by Kolmogorov [19], Orlov [21],
and Glivenko [15], with a first-order axiomatization given by Heyting [16].

The interest in modal and intuitionistic logics naturally gave rise to com-
binations of the two, thus giving birth to the paradigm of intuitionistic modal
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logics. A diverse set of intuitionistic modal logics have been proposed in the liter-
ature [1, 2, 9, 14, 24, 13, 25], though the class of logics introduced by Plotkin and
Stirling [24] has become (most notably through the work of Simpson [25]) one of
the most popular formulations. In the same year that Plotkin and Stirling [24] in-
troduced their intuitionistic modal logics, Ewald introduced intuitionistic tense
logic [10], which not only includes modalities that make reference to the future
in a relational model (♦ and �), but also includes modalities that make reference
to the past (� and �). As with (multi-)modal and intuitionistic logics, intuition-
istic modal logics have proven useful in computer science; e.g. such logics have
been used to design verification techniques [12], in reasoning about functional
programs [23], and in the definition of programming languages [7].

Due to the practical import of the aforementioned logics, it seems both natu-
ral and worthwhile to formulate intuitionistic versions of grammar logics. Hence,
the main goal of this paper will be to axiomatize intuitionistic context-free gram-
mar logics with converses, thus generalizing the work of [5, 10, 24]. In the follow-
ing section (Sect. 2), we axiomatize and provide a semantics for intuitionistic
grammar logics. Afterward (in Sect. 3), we prove the soundness and complete-
ness of our logics, with completeness being shown on the basis of a standard
canonical model construction (adapting techniques provided in [10]). In the final
section (Sect. 4), we briefly conclude and discuss future work.

2 Intuitionistic Grammar Logics

We define our languages for intuitionistic grammar logics relative to an alphabet
Σ consisting of a non-empty countable set of characters, which will be used
to index modalities. Following [8], we stipulate that each alphabet Σ can be
partitioned into a forward part Σ+ := {a, b, c, . . .} and a backward part Σ− :=
{a, b, c, . . .} such that each part has the same cardinality and the following is
satisfied:

Σ := Σ+ ∪ Σ− where Σ+ ∩ Σ− = ∅ and a ∈ Σ+ iff a ∈ Σ−

We use a, b, c, . . . (possibly annotated) to denote the forward characters con-
tained in the forward part Σ+, and a, b, c, . . . (possibly annotated) to denote the
backward characters contained in the backward part Σ−. Both forward and back-
ward characters are referred to as characters more generally, and we use x, y,
z, . . . (possibly annotated) to denote them. Intuitively, modalities indexed with
forward characters make reference to future states within a relational model, and
modalities indexed with backward characters make reference to past states. The
converse operation · is defined to be a function mapping each forward character
a ∈ Σ+ to its converse a ∈ Σ− and vice versa; hence, the converse operation is
its own inverse, i.e. for any x ∈ Σ, x = x.

Each of our languages includes propositional atoms from the denumerable
set Φ := {p, q, r, . . .}. Each language L(Σ) is defined via the following grammar
in BNF:

A ::= p | ⊥ | A ∨A | A ∧A | A ⊃ A | 〈x〉A | [x]A
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where p ranges over the set of propositional atoms Φ and x ranges over the
alphabet Σ. We use A, B, C, . . . to range over formulae in L(Σ), define ∼A :=
A ⊃ ⊥, and define A ⊃⊂ B := (A ⊃ B) ∧ (B ⊃ A). We interpret formulae on
bi-relational Σ-models, which are inspired by the models for intuitionistic modal
and tense logics presented in [2, 9, 10, 24]:

Definition 1 (Bi-relational Σ-Model). We define a bi-relational Σ-model to
be a tuple M = (W,≤, {Rx | x ∈ Σ}, V ) such that:

– W is a non-empty set of worlds {w, u, v, . . .};
– The intuitionistic relation ≤ ⊆W ×W is a preorder, i.e. it is reflexive and

transitive;
– The accessibility relation Rx ⊆W ×W satisfies:

(F1) For all w, v, v′ ∈ W , if wRxv and v ≤ v′, then there exists a w′ ∈ W
such that w ≤ w′ and w′Rxv

′;
(F2) For all w,w′, v ∈ W , if w ≤ w′ and wRxv, then there exists a v′ ∈ W

such that w′Rxv
′ and v ≤ v′;

(F3) wRxu iff uRxw;

– V : W → 2Φ is a valuation function satisfying the monotonicity condition:
for each w, u ∈W , if w ≤ u, then V (w) ⊆ V (u).

The (F1) and (F2) conditions ensure the monotonicity of complex formulae
(see Lem. 1) in our models, which is a property characteristic of intuitionistic
logics.1 We note that we interpret accessibility relations indexed with forward
characters as relating worlds to future worlds, and accessibility relations indexed
with backward characters as relating worlds to past worlds. Such an interpreta-
tion shows that our models have a tense character, and additionally, shows that
our logics generalize the intuitionistic tense logics of [10].

We interpret formulae from L(Σ) over bi-relational models via the following
clauses.

Definition 2 (Semantic Clauses). Let M be a bi-relational Σ-model with w ∈
W . The satisfaction relation M,w Σ A between w ∈ W of M and a formula
A ∈ L(Σ) is inductively defined as follows:

– M,w Σ p iff p ∈ V (w), for p ∈ Φ;
– M,w 6Σ ⊥;
– M,w Σ A ∨B iff M,w Σ A or M,w Σ B;
– M,w Σ A ∧B iff M,w Σ A and M,w Σ B;
– M,w Σ A ⊃ B iff for all w′ ∈ W , if w ≤ w′ and M,w′ Σ A, then

M,w′ Σ B;
– M,w Σ 〈x〉A iff there exists a v ∈W such that wRxv and M,v Σ A;
– M,w Σ [x]A iff for all w′, v′ ∈W , if w ≤ w′ and w′Rxv

′, then M,v′ Σ A.

Lemma 1. Let M be a bi-relational Σ-model with w, u ∈W of M . If w ≤ u and
M,w Σ A, then M,u Σ A.

1 For a discussion of these conditions and their encompassing literature, see [25, Ch. 3].
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Proof. By induction on the complexity of A. ut

As will be shown in the subsequent section, given an alphabet Σ, the set of
formulae valid with respect to the class of bi-relational Σ-models is axiomatizable.
We refer to the axiomatization as HIKm(Σ) (with H denoting the fact that the
axiomatization is a Hilbert calculus), and call the corresponding logic that it
generates IKm(Σ). We note that IKm(Σ) is taken to be the base intuitionistic
grammar logic relative to Σ; below, we will also consider extensions of IKm(Σ)
by extending its axiomatization with common modal axioms.

Definition 3 (Axiomatization). We define our axiomatization HIKm(Σ) be-
low, where we have an axiom and inference rule for each x ∈ Σ.

A0 Any axiomatization for intuitionis-
tic propositional logic

A1 [x](A ⊃ B) ⊃ ([x]A ⊃ [x]B)
A2 [x](A ∧B) ⊃⊂ ([x]A ∧ [x]B)
A3 〈x〉(A ∨B) ⊃⊂ (〈x〉A ∨ 〈x〉B)
A4 [x](A ⊃ B) ⊃ (〈x〉A ⊃ 〈x〉B)
A5 [x]A ∧ 〈x〉B ⊃ 〈x〉(A ∧B)

A6 ∼〈x〉⊥
A7 (A ⊃ [x]〈x〉A) ∧ (〈x〉[x]A ⊃ A)

A8 (〈x〉A ⊃ [x]B) ⊃ [x](A ⊃ B)

A9 〈x〉(A ⊃ B) ⊃ ([x]A ⊃ 〈x〉B)

R1
A (nec)

[x]A

We define the logic IKm(Σ) to be the smallest set of formulae from L(Σ)
closed under substitutions of the axioms and applications of the inference rules.
A formula A is defined to be a theorem of IKm(Σ) iff A ∈ IKm(Σ).

We also consider logics that are extensions of IKm(Σ) with sets A of the
following axioms.

Dx : [x]A ⊃ 〈x〉A IPA : (〈x1〉 · · · 〈xn〉A ⊃ 〈x〉A) ∧ ([x]A ⊃ [x1] · · · [xn]A)

We refer to axioms of the form shown above left as seriality axioms, and axioms
of the form shown above right as intuitionistic path axioms (IPAs). We use A to
denote any arbitrary collection of axioms of the above forms. Moreover, we note
that the collection of IPAs includes multi-modal variants of standard axioms
such as Tx, Bx, 4x, and 5x, which are shown below.

Tx : (A ⊃ 〈x〉A) ∧ ([x]A ⊃ A) 4x : (〈x〉〈x〉A ⊃ 〈x〉A) ∧ ([x]A ⊃ [x][x]A)

Bx : (〈x〉A ⊃ 〈x〉A) ∧ ([x]A ⊃ [x]A) 5x : (〈x〉〈x〉A ⊃ 〈x〉A) ∧ ([x]A ⊃ [x][x]A)

In the next section, we show that any extension of HIKm(Σ) with a set A of
axioms is sound and complete relative to a specified sub-class of the bi-relational
Σ-models. For each axiom we extend HIKm(Σ) with, we impose a frame condition
on our class of bi-relational Σ-models. Axioms and related frame conditions are
displayed in Fig. 1, and extensions of HIKm(Σ) with seriality and IPA axioms,
along with their corresponding models, are defined below.



A Framework for Intuitionistic Grammar Logics 5

Axiom [x]A ⊃ 〈x〉A (〈x1〉 · · · 〈xn〉A ⊃ 〈x〉A) ∧ ([x]A ⊃ [x1] · · · [xn]A)

Condition ∀w∃u(wRxu) ∀w0, . . . , wn(w0Rx1w1 ∧ · · · ∧ wn−1Rxnwn ⊃ w0Rxwn)

Fig. 1. Axioms and their related frame conditions. We note that when n = 0, the
related frame condition is taken to be wRxw.

Definition 4 (Terminology for Extensions). We define the axiomatization
HIKm(Σ,A) to be HIKm(Σ)∪A, and define the logic IKm(Σ,A) to be the smallest
set of formulae from L(Σ) closed under substitutions of the axioms and applica-
tions of the inference rules. A formula A is defined to be an IKm(Σ,A)-theorem,
written `ΣA A, iff A ∈ IKm(Σ,A), and a formula A is said to be derivable from
a set of formulae A ⊆ L(Σ), written A `ΣA A, iff for some B1, . . . , Bn ∈ A ,
`ΣA B1 ∧ · · · ∧Bn ⊃ A.

Moreover, we define a bi-relational (Σ,A)-model to be a bi-relational Σ-model
satisfying each frame condition related to an axiom A ∈ A. A formula A is
defined to be globally true on a bi-relational (Σ,A)-model M , written M Σ

A A,
iff M,u Σ A for all worlds u ∈ W of M . A formula A is defined to be (Σ,A)-
valid, written Σ

A A, iff A is globally true on every bi-relational (Σ,A)-model.
Last, we say that a set A of formulae semantically implies a formula A, written
A Σ

A A, iff for all bi-relational (Σ,A)-models M and each w ∈ W of M , if
M,w Σ B for each B ∈ A , then M,w Σ A.

Remark 1. Note that the axiomatization HIKm(Σ) = HIKm(Σ, ∅) and that a bi-
relational (Σ, ∅)-model is a bi-relational Σ-model.

Let us now move on to the next section and prove the soundness and com-
pleteness results for our logics.

3 Soundness and Completeness

In this section, we show that the `ΣA and Σ
A relations coincide, that is to say, we

show that each intuitionistic grammar logic IKm(Σ,A) is sound and complete.
As usual, soundness is straightforward to prove:

Theorem 1 (Soundness). If A `ΣA A, then A Σ
A A.

Proof. One can prove that if `ΣA A, then Σ
A A by showing that each axiom is

valid and each inference rule preserves validity. Then, if we assume that A `ΣA A,
it follows that for some B1, . . . , Bn ∈ A , `ΣA B1 ∧ · · · ∧ Bn ⊃ A, which further
implies that Σ

A B1 ∧ · · · ∧ Bn ⊃ A. The last fact permits us to conclude that
A Σ

A A. ut

To establish completeness we combine techniques used for establishing the
completeness of intuitionistic logic [6] and intuitionisitc tense logic [10]. Our
strategy is rather standard and consists of constructing a canonical model where
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worlds are pairs of the form (A ω,Bω) with A ω and Bω sets of formulae. If one
assumes that A 6`ΣA A, then one can show that a pair exists in the canonical
model satisfying A , but not A, thus establishing completeness (see Thm. 2
below). We begin by defining two useful notions, viz. the notion of an IKm(Σ,A)-
consistent set and the notion of an IKm(Σ,A)-saturated pair.

Definition 5 (IKm(Σ,A)-Consistent). We define a pair of sets of formulae
(A ,B) to be IKm(Σ,A)-consistent iff for no finite subsets A0 ⊆ A and B0 ⊆ B
we have `ΣA

∧
A0 ⊃

∨
B0.

Definition 6 (IKm(Σ,A)-Saturated). We define a pair (A ,B) to be IKm(Σ,A)-
saturated iff

1. (A ,B) is IKm(Σ,A)-consistent;
2. if A `ΣA A, then A ∈ A ;
3. if A `ΣA A ∨B, then A ∈ A or B ∈ A ;
4. A ∩B = ∅;
5. A ∪B = L(Σ).

Lemma 2. Suppose that (A ,B) is IKm(Σ,A)-consistent. Then, there exists a
saturated pair (A ω,Bω) such that A ⊆ A ω and B ⊆ Bω.

Proof. Let us enumerate all disjunctions from L(Σ) where each disjunction oc-
curs infinitely often: 〈B0,i ∨ B1,i〉i∈N. We set (A0,B0) := (A ,B) and define an
infinite sequence of pairs as follows: An+1 := An ∪ {Bj,n} and Bn+1 := Bn, if
(An∪{Bj,n},Bn) is IKm(Σ,A)-consistent (and if (An∪{Bj,n},Bn) is IKm(Σ,A)-
consistent for both j = 0 and j = 1, then we set An+1 := An ∪ {B0,n}), and
An+1 := An and Bn+1 := Bn ∪ {B0,i, B1,i} otherwise.

Let A ω :=
⋃

i∈N Ai and Bω :=
⋃

i∈N Bi. We now argue that (A ω,Bω) is
saturated. It is straightforward to show that for each n, (An,Bn) is IKm(Σ,A)-
consistent and that An ∩Bn = ∅ from which the saturation properties 1 and
4 can be deduced (see Def. 6 above). We note that saturation properties 3 and
5 follow from the above construction procedure, and 2 follows from 3 since if
A `ΣA A, then A `ΣA A ∨A (cf. [6, Lem. 5.3.8]). ut

Definition 7 (Canonical Model). We define the canonical model MC(Σ,A) :=
(WC ,≤C , {RC

x | x ∈ Σ}, V C) as shown below, and let w, u ∈ WC with w :=
(A ,B) and u := (A ′,B′).

– WC := {(C ,D) | (C ,D) is saturated.};
– w ≤C u iff A ⊆ A ′;
– wRC

x u iff (i) for all A ∈ L(Σ), if [x]A ∈ A , then A ∈ A ′, and (ii) for all
A ∈ L(Σ), if A ∈ A ′, then 〈x〉A ∈ A ;

– w ∈ V C(p) iff p ∈ A .

The following two lemmas are proven in an almost identical fashion to Lem. 3
and 5 of [10].
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Lemma 3. Let w := (A0,B0) ∈ WC . Then, 〈x〉A ∈ A0 iff there exists a u :=
(A1,B1) ∈WC such that wRC

x u and A ∈ A1.

Lemma 4. Let w := (A0,B0) ∈ WC . Then, [x]A ∈ A0 iff for each u :=
(A1,B1) and v := (A2,B2) in WC , if w ≤C u and uRC

x v, then A ∈ A2.

Lemma 5. The canonical model MC(Σ,A) is a bi-relational (Σ,A)-model.

Proof. It is straightforward to show that MC is a bi-relational (Σ,A)-model.
The proof that MC satisfies properties (F1)–(F3) uses axioms A8, A9, and A7,
respectively (cf. [10]), and the fact that the valuation function V C is monotonic
follows from its definition and the definition of ≤C . Below, we show that MC

satisfies each frame property associated with an axiom from A.

Dx We show that if the seriality axiom [x]A ⊃ 〈x〉A is included in our axiom-
atization, then Rx is serial. Let w := (A ,B) ∈ WC and observe that the
formula [x](p ⊃ p) ∈ A since if it were in B, w would not be IKm(Σ,A)-
consistent (and hence, not saturated). Therefore, by applying the seriality
axiom Dx, we may conclude that 〈x〉(p ⊃ p) ∈ A , from which it follows that
there exists a u := (C ,D) ∈WC such that wRC

x u by Lem. 3.
IPA We show that if (〈x1〉 · · · 〈xn〉A ⊃ 〈x〉A) ∧ ([x]A ⊃ [x1] · · · [xn]A) is included

in our axiomatization, then for any w0, . . . , wn ∈ WC , if wiR
C
xi+1

wi+1 for

each i ∈ {0, . . . , n − 1}, then w0R
C
x wn. Let w0, . . . , wn be arbitrary worlds

in WC and suppose that wiR
C
xi+1

wi+1 for each i ∈ {0, . . . , n − 1}. We aim

to show that w0R
C
x wn, where w0 := (A0,B0) and wn := (An,Bn). First,

assume that [x]A ∈ A0. Then, by the above axiom, [x1] · · · [xn]A ∈ A0, and
by our assumption and the definition of the RC

x relation, A ∈ An. Second,
assume that A ∈ An. Then, by our assumption and the definition of the RC

x

relation, 〈x1〉 · · · 〈xn〉A ∈ A0, so by the above axiom, 〈x〉A ∈ A0. Therefore,
w0R

C
x wn.

ut

Lemma 6 (Truth Lemma). Let w := (A ,B) be saturated. Then, we have
MC(Σ,A), w Σ A iff A ∈ A .

Proof. We prove the result by induction on the complexity of A and argue the
∨, ⊃, 〈x〉, and [x] cases since the other cases are simple.

B ∨C. MC(Σ,A), w Σ B ∨C iff MC(Σ,A), w Σ B or MC(Σ,A), w Σ C
iff B ∈ A or C ∈ A iff B ∨C ∈ A . We note that the second ‘iff ’ follows from
IH an the third follows from the fact that w is saturated (see Def. 6).

B ⊃ C. The right-to-left direction is straightforward, so we show the left-
to-right direction by contraposition. Suppose that B ⊃ C 6∈ A . It follows that
A ∪ {B} 6`ΣA C, implying that the pair (A ∪ {B}; {C}) is IKm(Σ,A)-consistent,
and so, we may extend it to a saturated pair u := (C ,D). Observe that A ⊆ C ,
B ∈ C , and C 6∈ C . By the definition of ≤C and IH, it follows that u ∈
WC with w ≤C u, MC(Σ,A), u Σ B, and MC(Σ,A), u 6Σ C, entailing that
MC(Σ,A), w 6Σ B ⊃ C.
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〈x〉B. The left-to-right direction is straightforward, so we show the right-
to-left direction. Suppose that 〈x〉B ∈ A . Then, by Lem. 3 we know that
there exists a u := (C ,D) ∈ WC such that wRC

x u and B ∈ C . Therefore,
MC(Σ,A), u Σ B by IH, implying that MC(Σ,A), w Σ 〈x〉B.

[x]B. Follows from Lem. 4 and IH. ut

Theorem 2 (Completeness). If A Σ
A A, then A `ΣA A.

Proof. Suppose A 6`ΣA A. Then, (A , {A}) is IKm(Σ,A)-consistent and can be
extended to a saturated pair w := (A ω,Bω). By Lem. 6, MC , w Σ B for each
B ∈ A ω, but MC , w 6Σ C for each C ∈ Bω. Hence, A 6Σ

A A. ut

4 Conclusion

This paper provided sound and complete axiomatizations for intuitionistic gram-
mar logics. We defined a base intuitionistic grammar logic IKm(Σ), for each alpha-
bet Σ, and provided axiomatizations for extensions of IKm(Σ) with combinations
of seriality axioms and intuitionistic path axioms. In future work, we aim to
provide nested sequent systems in the style of [26] for the logics discussed here
by making use of the structural refinement methodology of [20]. The goal will be
to identify decidable fragments of intuitionistic grammar logics via proof-search.
Moreover, due to the connection between modal logics and description logics, it
could be worthwhile to investigate the use of intuitionistic grammar logics (or
close variants thereof) in knowledge representation.
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