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Abstract: Floods are among the most destructive natural disasters, which are highly 

complex to model. The research on the advancement of flood prediction models 

contributed to risk reduction, policy suggestion, minimization of the loss of human life, 

and reduction the property damage associated with floods. To mimic the complex 

mathematical expressions of physical processes of floods, during the past two decades, 

machine learning (ML) methods contributed highly in the advancement of prediction 

systems providing better performance and cost-effective solutions. Due to the vast 

benefits and potential of ML, its popularity dramatically increased among hydrologists. 

Researchers through introducing novel ML methods and hybridizing of the existing ones 

aim at discovering more accurate and efficient prediction models. The main contribution 

of this paper is to demonstrate the state of the art of ML models in flood prediction and 

to give insight into the most suitable models. In this paper, the literature where ML 

models were benchmarked through a qualitative analysis of robustness, accuracy, 

effectiveness, and speed are particularly investigated to provide an extensive overview 

on the various ML algorithms used in the field. The performance comparison of ML 

models presents an in-depth understanding of the different techniques within the 

framework of a comprehensive evaluation and discussion. As a result, this paper 

introduces the most promising prediction methods for both long-term and short-term 

floods. Furthermore, the major trends in improving the quality of the flood prediction 

models are investigated. Among them, hybridization, data decomposition, algorithm 

mailto:amir.mosavi@ntnu.no


 

ensemble, and model optimization are reported as the most effective strategies for the 

improvement of ML methods. This survey can be used as a guideline for hydrologists as 

well as climate scientists in choosing the proper ML method according to the prediction 

task. 
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1. Introduction 

Among the natural disasters, floods are the most destructive, causing massive 

damage to human life, infrastructure, agriculture, and the socioeconomic system. 

Governments, therefore, are under pressure to develop reliable and accurate maps of flood 

risk areas and further plan for sustainable flood risk management focusing on prevention, 

protection, and preparedness [1]. Flood prediction models are of significant importance 

for hazard assessment and extreme event management. Robust and accurate prediction 

contribute highly to water recourse management strategies, policy suggestions and 

analysis, and further evacuation modeling [2]. Thus, the importance of advanced systems 

for short-term and long-term prediction for flood and other hydrological events is strongly 

emphasized to alleviate damage [3]. However, the prediction of flood lead time and 

occurrence location is fundamentally complex due to the dynamic nature of climate 

condition. Therefore, today’s major flood prediction models are mainly data-specific and 

involve various simplified assumptions [4]. Thus, to mimic the complex mathematical 

expressions of physical processes and basin behavior, such models benefit from specific 



 

techniques e.g., event-driven, empirical black box, lumped and distributed, stochastic, 

deterministic, continuous, and hybrids [5].  

Physically based models [6] were long used to predict hydrological events, such as 

storm [7,8], rainfall/runoff [9,10], shallow water condition [11], hydraulic models of flow 

[12,13], and further global circulation phenomena [14], including the coupled effects of 

atmosphere, ocean, and floods [15]. Although physical models showed great capabilities 

for predicting a diverse range of flooding scenarios, they often require various types of 

hydro-geomorphological monitoring datasets, requiring intensive computation, which 

prohibits short-term prediction [16]. Furthermore, as stated in Reference [17], the 

development of physically based models often requires in-depth knowledge and expertise 

regarding hydrological parameters, reported to be highly challenging. Moreover, 

numerous studies suggest that there is a gap in short-term prediction capability of physical 

models (Costabile and Macchione [15]). For instance, on many occasions, such models 

failed to predict properly [18]. Van den Honert and McAneney [18] documented the failure 

in the prediction of floods accrued in Queensland, Australia in 2010. Similarly, numerical 

prediction models [19] were reported in the advancement of deterministic calculations, 

and were not reliable due to systematic errors [20]. Nevertheless, major improvements in 

physically based models of flood were recently reported through the hybridization of 

models [21], as well as advanced flow simulations [22,23]. 

In addition to numerical and physical models, data-driven models also have a long 

tradition in flood modeling, which recently gained more popularity. Data-driven methods 

of prediction assimilate the measured climate indices and hydro-meteorological 

parameters to provide better insight. Among them, statistical models of autoregressive 

moving average (ARMA) [24], multiple linear regression (MLR) [25], and autoregressive 

integrated moving average (ARIMA) [26] are the most common flood frequency analysis 

(FFA) methods for modeling flood prediction. FFA was among the early statistical 

methods for predicting floods [27]. Regional flood frequency analyses (RFFA) [28], more 

advanced versions, were reported to be more efficient when compared to physical models 

considering computation cost and generalization. Assuming floods as stochastic processes, 



 

they can be predicted using certain probability distributions from historical streamflow 

data [29]. For instance, the climatology average method (CLIM) [28], empirical orthogonal 

function (EOF) [30], multiple linear regressions (MLR), quantile regression techniques 

(QRT) [31], and Bayesian forecasting models [32] are widely used for predicting major 

floods. However, they were reported to be unsuitable for short-term prediction, and, in 

this context, they need major improvement due to the lack of accuracy, complexity of the 

usage, computation cost, and robustness of the method. Furthermore, for reliable long-

term prediction, at least, a decade of data from measurement gauges should be analyzed 

for a meaningful forecast [32]. In the absence of such a dataset, however, FFA can be done 

using hydrologic models of RFFA, e.g., MISBA [33] and Sacramento [34], as reliable 

empirical methods with regional applications, where streamflow measurements are 

unavailable. In this context, distributed numerical models are used as an attractive solution 

[35]. Nonetheless, they do not provide quantitative flood predictions, and their forecast 

skill level is “only moderate” and they lack accuracy [36].  

The drawbacks of the physically based and statistical models mentioned above 

encourage the usage of advanced data-driven models, e.g., machine learning (ML). A 

further reason for the popularity of such models is that they can numerically formulate the 

flood nonlinearity, solely based on historical data without requiring knowledge about the 

underlying physical processes. Data-driven prediction models using ML are promising 

tools as they are quicker to develop with minimal inputs. ML is a field of artificial 

intelligence (AI) used to induce regularities and patterns, providing easier implementation 

with low computation cost, as well as fast training, validation, testing, and evaluation, with 

high performance compared to physical models, and relatively less complexity [37]. The 

continuous advancement of ML methods over the last two decades demonstrated their 

suitability for flood forecasting with an acceptable rate of outperforming conventional 

approaches [38]. A recent investigation by Reference [39], which compared performance 

of a number of physical and ML prediction models, showed a higher accuracy of ML 

models. Furthermore, the literature includes numerous successful experiments of 

quantitative precipitation forecasting (QPF) using ML methods for different lead-time 



 

predictions [40,41]. In comparison to traditional statistical models, ML models were used 

for prediction with greater accuracy [42]. Ortiz-García et al. [43] described how ML 

techniques could efficiently model complex hydrological systems such as floods. Many ML 

algorithms, e.g., artificial neural networks (ANNs) [44], neuro-fuzzy [45,46], support 

vector machine (SVM) [47], and support vector regression (SVR) [48,49], were reported as 

effective for both short-term and long-term flood forecast. In addition, it was shown that 

the performance of ML could be improved through hybridization with other ML methods, 

soft computing techniques, numerical simulations, and/or physical models. Such 

applications provided more robust and efficient models that can effectively learn complex 

flood systems in an adaptive manner. Although the literature includes numerous 

evaluation performance analyses of individual ML models [49–52], there is no definite 

conclusion reported with regards to which models function better in certain applications. 

In fact, the literature includes only a limited number of surveys on specific ML methods in 

specific hydrology fields [53–55]. Consequently, there is a research gap for a 

comprehensive literature review in the general applications of ML in all flood resource 

variables from the perspective of ML modeling and data-driven prediction systems. 

Nonetheless, ML algorithms have important characteristics that need to be carefully 

taken into consideration. The first is that they are as good as their training, whereby the 

system learns the target task based on past data. If the data is scarce or does not cover 

varieties of the task, their learning falls short, and hence, they cannot perform well when 

they are put into work. Therefore, using robust data enrichment is essential through, e.g., 

implementing a distribution function of sums of weights [56], invariance assessments to 

retain the group characteristics [57], or recovering the missing variables using causally 

dependent coefficients [58]. 

The second aspect is the capability of each ML algorithm, which may vary across 

different types of tasks. This can also be called a “generalization problem”, which indicates 

how well the trained system can predict cases it was not trained for, i.e., whether it can 

predict beyond the range of the training dataset. For example, some algorithms may 

perform well for short-term predictions, but not for long-term predictions. These 



 

characteristics of the algorithms need to be clarified with respect to the type and amount 

of available training data, and the type of prediction task, e.g., water level and streamflow. 

In this review, we look into examples of the use of various ML algorithms for various types 

of tasks. At the abstract level, we decided to divide the target tasks into short-term and 

long-term prediction. We then reviewed ML applications for flood-related tasks, where we 

structured ML methods as single methods and hybrid methods. Hybrid methods are those 

that combine more than one ML method.  

Here, we should note that this paper surveys ML models used for predictions of 

floods on sites where rain gauges or intelligent sensing systems used. Our goal was to 

survey prediction models with various lead times to floods at a particular site. From this 

perspective, spatial flood prediction was not involved in this study, as we did not study 

prediction models used to estimate/identify the location of floods. In fact, we were 

concerned only with the lead time for an identified site.  

2. Method and Outline 

This survey identifies the state of the art of ML methods for flood prediction where 

peer-reviewed articles in top-level subject fields are reviewed. Among the articles 

identified, through search queries using the search strategy, those including the 

performance evaluation and comparison of ML methods were given priority to be 

included in the review to identify the ML methods that perform better in particular 

applications. Furthermore, to choose an article, four types of quality measure for each 

article were considered, i.e., source normalized impact per paper (SNIP), CiteScore, 

SCImago journal rank (SJR), and h-index. The papers were reviewed in terms of flood 

resource variables, ML methods, prediction type, and the obtained results. 

The applications in flood prediction can be classified according to flood resource 

variables, i.e., water level, river flood, soil moisture, rainfall–discharge, precipitation, river 

inflow, peak flow, river flow, rainfall–runoff, flash flood, rainfall, streamflow, seasonal 

stream flow, flood peak discharge, urban flood, plain flood, groundwater level, rainfall 

stage, flood frequency analysis, flood quantiles, surge level, extreme flow, storm surge, 



 

typhoon rainfall, and daily flows [59]. Among these key influencing flood resource 

variables, rainfall and the spatial examination of the hydrologic cycle had the most 

remarkable role in runoff and flood modeling [60]. This is the reason why quantitative 

rainfall prediction, including avalanches, slush flow, and melting snow, is traditionally 

used for flood prediction, especially in the prediction of flash floods or short-term flood 

prediction [61]. However, rainfall prediction was shown to be inadequate for accurate 

flood prediction. For instance, the prediction of streamflow in a long-term flood prediction 

scenario depends on soil moisture estimates in a catchment, in addition to rainfall [62]. 

Although, high-resolution precipitation forecasting is essential, other flood resource 

variables were considered in the [63]. Thus, the methodology of this literature review aims 

to include the most effective flood resource variables in the search queries.  

A combination of these flood resource variables and ML methods was used to 

implement the complete list of search queries. Note that the ML methods for flood 

prediction may vary significantly according to the application, dataset, and prediction 

type. For instance, ML methods used for short-term water level prediction are significantly 

different from those used for long-term streamflow prediction. Figure 1 represents the 

organization of the search queries and further describes the survey search methodology. 

The search query included three main search terms. The flood resource variables were 

considered as term 1 of the search (<Flood resource variable1-n>), which included 25 

keywords for search queries mentioned above. Term 2 of search (<ML method1-m>) 

included the ML algorithms. The collection of the references [16,26,28,37,38,42,44] provides 

a complete list of ML methods, from which the 25 most popular algorithms in engineering 

applications were used as the keywords of this search. Term 3 included the four search 

terms most often used in describing flood prediction, i.e., “prediction”, “estimation”, 

“forecast”, or “analysis”. The total search resulted in 6596 articles. Among them, 180 

original research papers were refined through our quality measure included in the survey. 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the search queries. 

Section 3 presents the state of the art of ML in flood prediction. A technical description 

on the ML method and a brief background in flood applications are provided. Section 4 

presents the survey of ML methods used for short-term flood prediction. Section 5 presents 

the survey of ML methods used for long-term flood prediction. Section 6 presents the 

conclusions. 

3. State of the Art of ML Methods in Flood Prediction 

For creating the ML prediction model, the historical records of flood events, in 

addition to real-time cumulative data of a number of rain gauges or other sensing devices 

for various return periods, are often used. The sources of the dataset are traditionally 

rainfall and water level, measured either by ground rain gauges, or relatively new remote-

sensing technologies such as satellites, multisensor systems, and/or radars [62]. 

Nevertheless, remote sensing is an attractive tool for capturing higher-resolution data in 

real time. In addition, the high resolution of weather radar observations often provides a 

more reliable dataset compared to rain gauges [63]. Thus, building a prediction model 

based on a radar rainfall dataset was reported to provide higher accuracy in general [64]. 

Whether using a radar-based dataset or ground gauges to create a prediction model, the 

historical dataset of hourly, daily, and/or monthly values is divided into individual sets to 
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construct and evaluate the learning models. To do so, the individual sets of data undergo 

training, validation, verification, and testing. The principle behind the ML modeling 

workflow and the strategy for flood modeling are described in detail in the literature 

[48,65]. Figure 2 represents the basic flow for building an ML model. The major ML 

algorithms applied to flood prediction include ANNs [66], neuro-fuzzy [67], adaptive 

neuro-fuzzy inference systems (ANFIS) [68], support vector machines (SVM) [69], wavelet 

neural networks (WNN) [70], and multilayer perceptron (MLP) [71]. In the following 

subsections, a brief description and background of these fundamental ML algorithms are 

presented.  

 

Figure 2. Basic flow for building the machine learning (ML) model. 

3.1. Artificial Neural Networks (ANNs) 

ANNs are efficient mathematical modeling systems with efficient parallel processing, 

enabling them to mimic the biological neural network using inter-connected neuron units. 

Among all ML methods, ANNs are the most popular learning algorithms, known to be 

versatile and efficient in modeling complex flood processes with a high fault tolerance and 

accurate approximation [39]. In comparison to traditional statistical models, the ANN 



 

approach was used for prediction with greater accuracy [72]. ANN algorithms are the most 

popular for modeling flood prediction since their first usage in the 1990s [73]. Instead of a 

catchment’s physical characteristics, ANNs derive meaning from historical data. Thus, 

ANNs are considered as reliable data-driven tools for constructing black-box models of 

complex and nonlinear relationships of rainfall and flood [74], as well as river flow and 

discharge forecasting [75]. Furthermore, a number of surveys (e.g., Reference [76]) suggest 

ANN as one of the most suitable modeling techniques which provide an acceptable 

generalization ability and speed compared to most conventional models. References 

[77,78] provided reviews on ANN applications in flood. ANNs were already successfully 

used for numerous flood prediction applications, e.g., streamflow forecasting [79], river 

flow [80,81], rainfall–runoff [82], precipitation–runoff modeling [83], water quality [55], 

evaporation [56], river stage prediction [84], low-flow estimation [85], river flows [86], and 

river time series [57]. Despite the advantages of ANNs, there are a number drawbacks 

associated with using ANNs in flood modeling, e.g., network architecture, data handling, 

and physical interpretation of the modeled system. A major drawback when using ANNs 

is the relatively low accuracy, the urge to iterate parameter tuning, and the slow response 

to gradient-based learning processes [87]. Further drawbacks associated with ANNs 

include precipitation prediction [88,89] and peak-value prediction [90]. 

The feed-forward neural network (FFNN) [25] is a class of ANN, whereby the 

network’s connections are not in cyclical form. FFNNs are the simplest type of ANN, 

whereby information moves in a forward direction from input nodes to the hidden layer 

and later to output nodes. On the other hand, a recurrent neural network (RNN) [91] is a 

class of ANN, whereby the network’s connections form a time sequence for dynamic 

temporal behavior. Furthermore, RNNs benefit from extra memory to analyze input 

sequences. In ANNs, backpropagation (BP) is a multi-layered NN where weights are 

calculated using the propagation of the backward error gradient. In BP, there are more 

phases in the learning cycle, using a function for activation to send signals to the other 

nodes. Among various ANNs, the backpropagation ANN (BPNN) was identified as the 

most powerful prediction tool suitable for flood time-series prediction [26]. Extreme 



 

learning machine (ELM) [92] is an easy-to-use form of FFNN, with a single hidden layer. 

Here, ELM was studied under the scope of ANN methods. ELM for flood prediction 

recently became of interest for hydrologists and was used to model short-term streamflow 

with promising results [93,94]. 

3.2. Multilayer Perceptron (MLP) 

The vast majority of ANN models for flood prediction are often trained with a BPNN 

[95]. While BPNNs are today widely used in this realm, the MLP—an advanced 

representation of ANNs— recently gained popularity [96]. The MLP [97] is a class of FFNN 

which utilizes the supervised learning of BP for training the network of interconnected 

nodes of multiple layers. Simplicity, nonlinear activation, and a high number of layers are 

characteristics of the MLP. Due to these characteristics, the model was widely used in flood 

prediction and other complex hydrogeological models [98]. In an assessment of ANN 

classes used in flood modeling, MLP models were reported to be more efficient with better 

generalization ability. Nevertheless, the MLP is generally found to be more difficult to 

optimize [99]. Back-percolation learning algorithms are used to individually calculate the 

propagation error in hidden network nodes for a more advanced modeling approach. 

Here, it is worth mentioning that the MLP, more than any other variation of ANNs 

(e.g., FFNN, BPNN, and FNN), gained popularity among hydrologists. Furthermore, due 

to the vast number of case studies using the standard form of MLP, it diverged from 

regular ANNs. In addition, the authors of articles in the realm of flood prediction using 

the MLP refer to their models as MLP models. From this perspective, we decided to devote 

a separate section to the MLP. 

3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The fuzzy logic of Zadeh [100] is a qualitative modeling scheme with a soft computing 

technique using natural language. Fuzzy logic is a simplified mathematical model, which 

works on incorporating expert knowledge into a fuzzy inference system (FIS). An FIS 

further mimics human learning through an approximation function with less complexity, 



 

which provides great potential for nonlinear modeling of extreme hydrological events 

[101,102], particularly floods [103]. For instance, Reference [104] studied river level 

forecasting using an FIS, as did Lohani et al. (2011) [4] for rainfall–runoff modeling for 

water level. As an advanced form of fuzzy-rule-based modeling, neuro-fuzzy presents a 

hybrid of the BPNN and the widely used least-square error method [46]. The Takagi–

Sugeno (T–S) fuzzy modeling technique [4], which is created using neuro-fuzzy clustering, 

is also widely applied in RFFA [28].  

Adaptive neuro-FIS, or so-called ANFIS, is a more advanced form of neuro-fuzzy 

based on the T–S FIS, first coined [67,77]. Today, ANFIS is known to be one of the most 

reliable estimators for complex systems. ANFIS technology, through combining ANN and 

fuzzy logic, provides higher capability for learning [101]. This hybrid ML method 

corresponds to a set of advanced fuzzy rules suitable for modeling flood nonlinear 

functions. An ANFIS works by applying neural learning rules for identifying and tuning 

the parameters and structure of an FIS. Through ANN training, the ANFIS aims at catching 

the missing fuzzy rules using the dataset [67]. Due to fast and easy implementation, 

accurate learning, and strong generalization abilities, ANFIS became very popular in flood 

modeling. The study of Lafdani et al. [60] further described its capability in modeling 

short-term rainfall forecasts with high accuracy, using various types of streamflow, 

rainfall, and precipitation data. Furthermore, the results of Shu and [67] showed easier 

implementation and better generalization capability, using the one-pass subtractive 

clustering algorithm, which led several rounds of random selection being avoided. 

3.4. Wavelet Neural Network (WNN) 

Wavelet transform (WT) [46] is a mathematical tool which can be used to extract 

information from various data sources by analyzing local variations in time series [50]. In 

fact, WT has significantly positive effects on modeling performance [105]. Wavelet 

transforms supports the reliable decomposition of an original time series to improve data 

quality. The accuracy of prediction is improved through discrete WT (DWT), which 

decomposes the original data into bands, leading to an improvement of flood prediction 



 

lead times [106]. DWT decomposes the initial data set into individual resolution levels for 

extracting better-quality data for model building. DWTs, due to their beneficial 

characteristics, are widely used in flood time-series prediction. In flood modeling, DWTs 

were widely applied in, e.g., rainfall–runoff [51[, daily streamflow [106], and reservoir 

inflow [107]. Furthermore, hybrid models of DWTs, e.g., wavelet-based neural networks 

(WNNs) [108], which combine WT and FFNNs, and wavelet-based regression models 

[109], which integrate WT and multiple linear regression (MLR), were used in time-series 

predictions of floods [110]. The application of WNN for flood prediction was reviewed in 

Reference [70], where it was concluded that WNNs can highly enhance model accuracy. In 

fact, most recently, WNNs, due to their potential in enhancing time-series data, gained 

popularity in flood modeling [50], for applications such as daily flow [111], rainfall–runoff 

[112], water level [113], and flash floods [114]. 

3.5. Support Vector Machine (SVM) 

Hearst et al. [115] proposed and classified the support vector (SV) as a nonlinear 

search algorithm using statistical learning theory. Later, the SVM [116] was introduced as 

a class of SV, used to minimize over-fitting and reduce the expected error of learning 

machines. SVM is greatly popular in flood modeling; it is a supervised learning machine 

which works based on the statistical learning theory and the structural risk minimization 

rule. The training algorithm of SVM builds models that assign new non-probabilistic 

binary linear classifiers, which minimize the empirical classification error and maximize 

the geometric margin via inverse problem solving. SVM is used to predict a quantity 

forward in time based on training from past data. Over the past two decades, the SVM was 

also extended as a regression tool, known as support vector regression (SVR) [117].  

SVMs are today know as robust and efficient ML algorithms for flood prediction [118]. 

SVM and SVR emerged as alternative ML methods to ANNs, with high popularity among 

hydrologists for flood prediction. They use the statistical learning theory of structural risk 

minimization (SRM), which provides a unique architecture for delivering great 

generalization and superior efficiency. Most importantly, SVMs are both suitable for linear 



 

and nonlinear classification, and the efficient mapping of inputs into feature spaces [119]. 

Thus, they were applied in numerous flood prediction cases with promising results, 

excellent generalization ability, and better performance, compared to ANNs and MLRs, 

e.g., extreme rainfall [120], precipitation [43], rainfall–runoff [121], reservoir inflow [122], 

streamflow [123], flood quantiles [48], flood time series [124], and soil moisture [125]. 

Unlike ANNs, SVMs are more suitable for nonlinear regression problems, to identify the 

global optimal solution in flood models [126]. Although the high computation cost of using 

SVMs and their unrealistic outputs might be demanding, due to their heuristic and semi-

black-box nature, the least-square support vector machine (LS-SVM) highly improved 

performance with acceptable computational efficiency [127]. The alternative approach of 

LS-SVM involves solving a set of linear tasks instead of complex quadratic problems [128]. 

Nevertheless, there are still a number of drawbacks that exist, especially in the application 

of seasonal flow prediction using LS-SVM [129]. 

3.6. Decision Tree (DT) 

The ML method of DT is one of the contributors in predictive modeling with a wide 

application in flood simulation. DT uses a tree of decisions from branches to the target 

values of leaves. In classification trees (CT), the final variables in a DT contain a discrete 

set of values where leaves represent class labels and branches represent conjunctions of 

features labels. When the target variable in a DT has continuous values and an ensemble 

of trees is involved, it is called a regression tree (RT) [130]. Regression and classification 

trees share some similarities and differences. As DTs are classified as fast algorithms, they 

became very popular in ensemble forms to model and predict floods [131]. The 

classification and regression tree (CART) [132,133], which is a popular type of DT used in 

ML, was successfully applied to flood modeling; however, its applicability to flood 

prediction is yet to be fully investigated [134]. The random forests (RF) method [69,135] is 

another popular DT method for flood prediction [136]. RF includes a number of tree 

predictors. Each individual tree creates a set of response predictor values associated with 

a set of independent values. Furthermore, an ensemble of these trees selects the best choice 



 

of classes [69]. Reference [137] introduced RF as an effective alternative to SVM, which 

often delivers higher performance in flood prediction modeling. Later, Bui et al. [138] 

compared the performances of ANN, SVM, and RF in general applications to floods, 

whereby RF delivered the best performance. Another major DT is the M5 decision-tree 

algorithm [139]. M5 constructs a DT by splitting the decision space and single attributes, 

thereby decreasing the variance of the final variable. Further DT algorithms popular in 

flood prediction include reduced-error pruning trees (REPTs), Naïve Bayes trees (NBTs), 

chi-squared automatic interaction detectors (CHAIDs), logistic model trees (LMTs), 

alternating decision trees (ADTs), and exhaustive CHAIDs (E-CHAIDs). 

3.7. Ensemble Prediction Systems (EPSs) 

A multitude of ML modeling options were introduced for flood modeling with a 

strong background [140]. Thus, there is an emerging strategy to shift from a single model 

of prediction to an ensemble of models suitable for a specific application, cost, and dataset. 

ML ensembles consist of a finite set of alternative models, which typically allow more 

flexibility than the alternatives. Ensemble ML methods have a long tradition in flood 

prediction. In recent years, ensemble prediction systems (EPSs) [141] were proposed as 

efficient prediction systems to provide an ensemble of N forecasts. In EPS, N is the number 

of independent realizations of a model probability distribution. EPS models generally use 

multiple ML algorithms to provide higher performance using an automated assessment 

and weighting system [140]. Such a weighting procedure is carried out to accelerate the 

performance evaluation process. The advantage of EPS is the timely and automated 

management and performance evaluation of the ensemble algorithms. Therefore, the 

performance of EPS, for flood modeling in particular, can be improved. EPSs may use 

multiple fast-learning or statistical algorithms as classifier ensembles, e.g., ANNs, MLP, 

DTs, rotation forest (RF) bootstrap, and boosting, allowing higher accuracy and 

robustness. The subsequent ensemble prediction systems can be used to quantify the 

probability of floods, based on the prediction rate used in the event [142,143,144]. 

Therefore, the quality of ML ensembles can be calculated based on the verification of 



 

probability distribution. Ouyang et al [145] and Zhang et al. [146] presented a review of 

the applications of ensemble ML methods used for floods. EPSs were demonstrated to have 

the capability for improving model accuracy in flood modeling [140-146] 

To improve the accuracy of import data and to achieve better dataset management, 

the ensemble mean was proposed as a powerful approach coupled with ML methods 

[140,141]. Empirical mode decomposition (EMD) [142], and ensemble EMD (EEMD) [143] 

are widely used for flood prediction [144]. Nevertheless, EMD-based forecast models are 

also subject to a number of drawbacks [145]. The literature includes numerous studies on 

improving the performance of decomposition and prediction models in terms of additivity 

and generalization ability [146]. 

3.8. Classification of ML Methods and Applications 

The most popular ML modeling methods for flood prediction were identified in the 

previous section, including ANFIS, MLP, WNN, EPS, DT, RF, CART, and ANN. Figure 3 

presents the major ML methods used for flood prediction, and the number of 

corresponding articles in the literature over the last decade. This figure was designed to 

communicate to the readers which ML methods increased in popularity among 

hydrologists for flood modeling within the past decade. 



 

 

Figure 3. Major ML methods used for flood prediction in the literature. Reference year: 

2008 (source: Scopus). 

Considering the ML methods for application to floods, it is apparent that ANNs, 

SVMs, MLPs, DTs, ANFIS, WNNs, and EPSs are the most popular. These ML methods can 

be categorized as single and hybrid methods. In addition to the fundamental hybrid ML 

methods, i.e., ANFIS, WNNs, and basic EPSs, several different research strategies for 

obtaining better prediction evolved [137]. The strategies involved developing hybrid ML 

models using soft computing techniques, statistical methods, and physical models rather 

than individual ML approaches, whereby the extra components complement each other 

with respect to their drawbacks and shortcomings. The success of such hybrid approaches 

motivated the research community to explore more advanced hybrid models. Figure 4 

presents the progress of single vs. hybrid ML methods for flood prediction in the literature 

over the past decade. The figure shows an apparent continuous increase and notable 

progress in using novel hybrid methods. Through Figure 4, the taxonomy of our research 

was justified, based on distinguishing hybrid and single ML prediction models. 

0

20

40

60

80

100

120

140

160

180

200

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
u
m

b
er

 o
f 

ar
ti

cl
es

 

Year

Machine Learning Methods in 

Literature   

ANFIS

MLP

WNNs

EPS

DT & RF & CART

ANNs

SVM & SVR



 

 

Figure 4. The progress of single vs. hybrid ML methods for flood prediction in the 

literature. Reference year: 2008 (source: Scopus). 

Furthermore, the types of prediction are often studied with different lead-time 

predictions due to the flood. Real-time, hourly, daily, weekly, monthly, seasonal, annual, 

short-term, and long-term are the terms most often used in the literature. Real-time 

prediction is concerned with anywhere between few minutes and an hour preceding the 

flood. Hourly predictions can be 1–3 h ahead of the flood forecasting lead time or, in some 

cases, 18 h or 24 h. Daily predictions can be 1–6 days ahead of the forecast. Monthly 

forecasts can be, for instance, up to three months. In hydrology, the definitions of short-

term and long-term in studying the different phenomena vary. Short-term predictions for 

floods often refer to hourly, daily, and weekly predictions, and they are used as warning 

systems. On the other hand, long-term predictions are mostly used for policy analysis 

purposes. Furthermore, if the prediction leading time to flood is three days longer than the 

confluence time, the prediction is considered to be long-term [37,58]. From this perspective, 

in this study, we considered a lead time greater than a week as a long-term prediction. It 
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was observed that the characteristics of the ML methods used varied significantly 

according to the period of prediction. Thus, dividing the survey on the basis of short-term 

and long-term was essential. 

Here, it is also worth emphasizing that, in this paper, the prediction lead-time was 

classified as “short-term” or “long-term”. Although flash floods happen in a short period 

of time with great destructive power, they can be predicted with either “short-term” or 

“long-term” lead times to the actual flood. In fact, this paper is concerned with the lead 

times instead of the duration or type of flood. If the lead-time prediction to a flash flood 

was short-term, then it was studied as a short-term lead time. However, sometimes flash 

floods can be predicted with long lead times. In other words, flash floods might be 

predicted one month ahead. In this case, the prediction was considered as long-term. 

Regardless of the type of flood, we only focused on the lead time. 

In this study, the ML methods were reviewed using two classes—single methods and 

hybrid methods. Figures 5 and 6 represent the taxonomy of the research. 

 

Figure 5. Taxonomy of the survey—ML methods for flood prediction. 
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Figure 6. Taxonomy of the survey. 

Step 1 involved running the queries one by one; step 2 involved checking the results 

of the search, and initiating the next search; step 3 involved identifying the comparative 

studies on ML models of prediction, refining the results and building the database; step 4 

involved identifying whether it was a long-term or short-term prediction; steps 5 and 6 

involved identifying if it was a single or hybrid method, constructing Table 1, and step 7 

involved constructing the other Tables. The four tables provide the list of studies on 

different prediction techniques, which entail the organized comprehensive surveys of the 

literature. 
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management. Even with the recent improvements in numerical weather prediction (NWP) 

models, artificial intelligence (AI) methods, and ML, short-term prediction remains a 

challenging task [147-152]. This section is divided into two subsections—single and hybrid 

methods of ML—to individually investigate each group of methods. 

4.1. Short-Term Flood Prediction Using Single ML Methods 

To gain insight into the performance of ML methods, a comprehensive comparison 

was required to investigate ML methods. Table 1 presents a summary of the major ML 

methods, i.e., ANNs, MLP, nonlinear autoregressive network with exogenous inputs 

(NARX), M5 model trees, DTs, CART, SVR, and RF, followed by a comprehensive 

performance comparison of single ML methods in short-term flood prediction. A revision 

and discussion of these methods follow so as to identify the most suitable methods 

presented in the literature. 

Table 1. Short-term predictions using single machine learning (ML) methods. 

Modeling Technique Reference 
Flood Resource 

Variable 
Prediction Type Region 

ANN vs. statistical [1] 
Streamflow and 

flash food 
Hourly USA 

ANN vs. traditional [44] 
Water and surge 

level 
Hourly Japan 

ANN vs. statistical [149] Flood Real-time UK 

ANN vs. statistical [150] Extreme flow Hourly Greece 

FFANN vs. ANN [151] Water level Hourly India 

ANN vs. T–S  [4] Flood  Hourly India 

ANN vs. AR [153] 
Stage level and 

streamflow 
Hourly Brazil 

MLP vs. Kohonen NN [154] 
Flood frequency 

analysis 
Long-term China 



 

BPANN [155] 
Peak flow of 

flood 
Daily Canada 

BPANN vs. DBPANN [156] Rainfall–runoff 
Monthly and 

daily 
China 

BPANN [157] Flash flood Real-time Hawaii 

BPANN [158] Runoff Daily India 

ELM vs. SVM [159] Streamflow Daily China 

BPANN vs. NARX [160,161] Urban flood Real-time Taiwan 

FFANN vs. Functional 

ANN  
[162] River flows Real-time Ireland 

Recurrent NN vs. Z–R 

relation 
[163] 

Rainfall 

prediction 
Real-time Taiwan 

ANN vs. M5 model tree [164] Peak flow Hourly India 

NBT vs. DT vs. 

Multinomial regression 
[165] Flash flood Real-time, hourly Austria 

DTs vs. NBT vs. ADT vs. 

LMT, and REPT 
[166] Flood Hourly/daily Iran 

MLP vs. MLR [167,168] 
River flow and 

rainfall–runoff 
Daily Algeria 

MLP vs. MLR [98] River runoff Hourly Morocco 

MLP vs. WT vs. MLR vs. 

ANN 
[169] 

River flood 

forecasting 
Daily Canada 

ANN vs. MLP [170] River level Hourly Ireland 

MLP vs. DT vs. CART vs. 

CHAID 
[171] 

Flood during 

typhoon 
Rainfall–runoff China 

SVM vs. ANN [120] 
Rainfall extreme 

events 
Daily India 

ANN vs. SVR [48] Flood Daily Canada 



 

RF vs. SVM [69] Rainfall Hourly Taiwan 

Kim and Barros [148] modified an ANN model to improve flood forecasting short-

term lead time through consideration of atmospheric conditions. They used satellite data 

from the ISCCP-B3 dataset [172]. This dataset includes hourly rainfall from 160 rain gauges 

within the region. The ANN was reported to be considerably more accurate than the 

statistical models. In another similar work, Reference [44] developed an ANN forecast 

model for hourly lead time. In their study, various datasets were used, consisting of 

meteorological and hydrodynamic parameters of three typhoons. Testing of the ANN 

forecast models showed promising results for 5-h lead time. In another attempt, Danso-

Amoako [1] provided a rapid system for predicting floods with an ANN. They provided a 

reliable forecasting tool for rapidly assessing floods. An R2  value of 0.70 for the ANN 

model proved that the tool was suitable for predicting flood variables with a high 

generalization ability. The results of [149] provides similar conclusions. Furthermore, 

Panda, Pramanik, and Bala [151] compared the accuracy of ANN with FFANN, and the 

results were benchmarked with the physical model of MIKE 11 for short-term water level 

prediction. This dataset includes the hourly discharge and water level between 2006 and 

2009. The data of the year 2006 was used for testing root-mean-square error (RMSE). The 

results indicated that the FFANN performed faster and relatively more accurately than the 

ANN model. Here, it is worth mentioning that the overall results indicated that the neural 

networks were superior compared to the one-dimensional model MIKE 11. Nevertheless, 

there were great advancements reported in the implementation of two-dimensional MIKE 

11 [8]. 

Kourgialas, Dokou, and Karatzas [150] created a modeling system for the prediction 

of extreme flow based on ANNs 3 h, 12 h, and 19 h ahead of the flood. They analyzed five 

years of hourly data to investigate the ANN effectiveness in modeling extreme flood 

events. The results indicated it to be highly effective compared to conventional 

hydrological models. Lohani, Goel, and Bhatia [4] improved the real-time forecasting of 

rainfall–runoff of foods, and the results were compared to the T–S fuzzy model and the 



 

subtractive-clustering-based T–S (TSC-T–S) fuzzy model. They, however, concluded that 

the fuzzy model provided more accurate predictions with longer lead time. The hourly 

rainfall data from 1989 to 1995 of a gauge site, in addition to the rainfall during a monsoon, 

was used. Pereira Filho and dos Santos [153] compared the AR model with an ANN in 

simulating forecast stage level and streamflow. The dataset was created from independent 

flood events, radar-derived rainfall, and streamflow rain gauges available between 1991 

and 1995. The AR and ANN were employed to model short-term flood in an urban area 

utilizing streamflow and weather data. They showed that the ANN performed better in its 

verification and it was proposed as a better alternative to the AR model. 

Ahmad and Simonovic [155] used a BPNN for predicting peak flow utilizing causal 

meteorological parameters. This dataset included daily discharge data for 1958–1997 from 

gauging stations. BPNN proved to be a fast and accurate approach with the ability of 

generalization for application to other locations with similar rivers. Furthermore, to 

improve the simulation of daily streamflow using BPNN, Reference [156] used division-

based backpropagation to obtain satisfying results. The raw data of local evaporation and 

rainfall gauges of six years were used for the short-term flood prediction of a streamflow 

time series. The dataset of one decade from 1988 was used for training and the dataset of 

five subsequent years was used for testing. The BPNN model provided promising results; 

however, it lacked efficiency in using raw data for the time-series prediction of streamflow. 

In addition, Reference [157] showed the application of BPNN for assessing flash floods 

using measured data. This dataset included 5-min-frequency water quality data and 15-

min-frequency rainfall data of 20 years from two rain gauge stations. Their experiments 

introduced ANN models as simple ML methods to apply, while simultaneously requiring 

expert knowledge by the user. In addition, their ANN prediction model showed great 

ability to deal with a noisy dataset. Ghose [158] predicted the daily runoff using a BPNN 

prediction model. The data of daily water level of two years from 2013–2015 were used. 

The accurate BPNN model was reported with an efficiency of 96.4% and an R2 of 0.94 for 

flood prediction. 



 

Pan, Cheng, and Cai [159] compared the performances of ELM and SVM for short-

term streamflow prediction. Both methods demonstrated a similar level of accuracy. 

However, ELM was suggested as a faster method for parameter selection and learning 

loops. Reference [154] also conducted a comparison between fuzzy c-means, ANN, and 

MLP using a common dataset of sites to investigate ML method efficiency and accuracy. 

The MLP and ANN methods were proposed as the best methods. Chang, Chen, Lu, Huang, 

and Chang [160] and Reference [161] modeled multi-step urban flood forecasts using 

BPNN and a nonlinear autoregressive network with exogenous input (NARX) for hourly 

forecasts. The results demonstrated that NARX worked better in short-term lead-time 

prediction compared to BPNN. The NARX network produced an average R2 value of 0.7. 

This study suggested that the NARX model was effective in urban flood prediction. 

Furthermore, Valipour et al. [24] showed how the accuracy of ANN models could be 

increased through integration with autoregressive (AR) models. 

Bruen and Yang [162] modeled real-time rainfall–runoff forecasting for different lead 

times using FFNN, ARMA, and functional networks. Here, functional networks [173] were 

compared with an FFNN model. The models were tested using a storm time-series dataset. 

The result was that functional networks allowed quicker training in the prediction of 

rainfall–runoff processes with different lead times. The models were able to predict floods 

with short lead times. Reference [164] estimated water level–discharge using M5 trees and 

ANN. This dataset was collected from the period of 1990 to 1998, and the inputs were 

supplied by computing the average mutual information. The ANN and M5 model tree 

performed similar in terms of accuracy. Reference [166] tested four DT models, i.e., 

alternating decision trees (ADTs), reduced-error pruning trees (REPTs), logistic model 

trees (LMTs), and NBTs, using a dataset of 200 floods. The ADT model was reported to 

perform better for flash-flood prediction for a speedy determination of flood-susceptible 

areas. In other research, Reference [165] compared the performance of an NBT and DT 

prediction model, using geomorphological disposition parameters. Both models and their 

hybrids were compared in terms of prediction accuracy in a catchment. The advanced DTs 

were found to be promising for flood assessment in prone areas. They concluded that an 



 

independent dataset and benchmarking of other ML methods were required for judgment 

of the accuracy and efficiency of the method. Reference [171] worked on a dataset 

including more than 100 tropical cyclones (TCs) affecting a watershed for the hourly 

prediction of precipitation. The performances of MLP, CART, CHAID, exhaustive CHAID, 

MLR, and CLIM were compared. The evaluation results showed that MLP and DTs 

provided better prediction. Reference [163] applied a dynamic ANN, as well as a Z–R 

relation approach for constructing a one-hour-ahead prediction model. This dataset 

included three-dimensional radar data of typhoon events and rain gauges from 1990 to 

2004, including various typhoons. The results indicated that the ANN performed better. 

Aichouri, Hani, Bougherira, Djabri, Chaffai, and Lallahem [167] implemented an MLP 

model for flood prediction, and compared the results with the traditional MLR model. The 

rainfall–runoff daily data from 1986 to 2003 were used for model building. The results and 

comparative study indicated that the MLP approach performed with better yield for river 

rainfall–runoff. In a similar research, Reference [98] modeled and predicted the river 

rainfall–runoff relationship through training six years of collected daily rainfall data using 

MLP and MLR (1990 to 1995). Furthermore, the data of 1996 were used for testing to select 

the best performing network model. The R2 values for the ANN and MLR models were 

0.888 and 0.917, respectively, showing that the MLP approach gave a much better 

prediction than MLR. Reference [169] proposed a number of data-based flood predictions 

for daily stream flows models using MLP, WT, MLR, ARIMA, and ANN. This dataset 

included two time series of streamflow and a meteorological dataset including records 

from 1970 to 2001. The results showed that MLP, WT, and ANN performed generally 

better. However, the proposed WT prediction model was evaluated to be not as accurate 

as ANN and MLP for a one-week lead time. Reference [170] designed optimal models of 

ANN and MLP for the prediction of river level. This study indicated that an optimization 

tool for the ANN network can highly improve prediction quality. The candidate inputs 

included river levels and mean sea-level pressure (SLP) for the period of 2001–2002. The 

MLP was identified as the most accurate model for short-term river flood prediction. 



 

Nayak and Ghosh [120] used SVM and ANN to predict hourly rainfall–runoff using 

weather patterns. A model of SVM classifier for rainfall prediction was used and the results 

were compared to ANN and another advanced statistical technique. The SVM model 

appeared to predict extreme floods better than the ANN. Furthermore, the SVM model 

proved to function better in terms of uncertainty. Gizaw and Gan [48] developed SVR and 

ANN models for creating RFFA to estimate regional flood quantiles and to assess climate 

change impact. This dataset included daily precipitation data obtained from gauges from 

1950 to 2016. RMSE and R2 were used for the evaluation of the models. The SVR model 

estimated regional flood more accurately than the ANN model. SVR was reported to be a 

suitable choice for predicting future flood under the uncertainty of climate change 

scenarios [118]. In a similar attempt, Reference [69] provided effective real-time flood 

prediction using a rainfall dataset measured by radar. Two models of RF and SVM were 

developed and their prediction performances were compared. Their performance 

comparison revealed the effectiveness of SVM in real-time flood forecasting. 

Table 2 represents a comparative analysis of single ML models for the prediction of 

short-term floods, considering the complexity of the algorithm, ease of use, running speed, 

accuracy, and input dataset. This table was created based on the revisions that were made 

on the articles of Table 1 and also the accuracy analysis of Figure 3, where the values of R2 

and RMSE of the single ML methods were considered. The quality of ML model prediction, 

in terms of speed, complexity, accuracy, and ease of use, was continuously improved 

through using ensembles of ML methods, hybridization of ML methods, optimization 

algorithms, and/or soft computing techniques. This trend of improvement is discussed in 

detail in the discussion. 

Table 2. Comparative analysis of single ML models for the prediction of short-term 

floods. 

Modeling 

Technique 

Complexity 

of Algorithm 

Ease of 

Use 
Speed Accuracy 

Input 

Dataset 

ANN High Low Fair  Fair Historical 



 

BPANN Fairly high Low Fairly high  Fairly high Historical 

MLP Fairly high Fair High Fairly high Historical 

ELM Fair 
Fairly 

high 
Fairly high Fair Historical 

CART Fair  Fair Fair Fairly high Historical 

SVM Fairly high Low Low Fair Historical 

ANFIS Fair 
Fairly 

high 
Fair Fairly high Historical 

4.2. Short-Term Flood Prediction Using Hybrid ML Methods 

To improve the quality of prediction, in terms of accuracy, generalization, 

uncertainty, longer lead time, speed, and computation costs, there is an ever increasing 

trend in building hybrid ML methods. These hybrid methods are numerous, including 

more popular ones, such as ANFIS and WNN, and further novel algorithms, e.g., SVM–

FR, HEC–HMS–ANN, SAS–MP, SOM–R-NARX, wavelet-based NARX, WBANN, WNN–

BB, RNN–SVR, RSVRCPSO, MLR–ANN, FFRM–ANN, and EPSs. Table 3 presents these 

methods; a revision of the methods and applications follows along with a discussion on 

the ML methods.  

 

 

 

Table 3. Short-term flood prediction using hybrid ML methods. 

Modeling Technique Reference 
Flood resource 

Variable 

Prediction 

Type 
Region 

ANFIS vs. ANN [174] Flash floods Real-time Spain 

ANFIS vs. ANN [175,176] Water level  Hourly Taiwan 

ANFIS vs. ANN  [46] Watershed rainfall  Hourly Taiwan 

ANFIS vs. ANN  [67] Flood quantiles Real-time Canada 



 

ANN vs. ANFIS  [177] Daily flow Daily Iran 

CART vs. ANFIS vs. 

MLP vs. SVM 
[134] 

Sediment 

transport 
Daily Iran 

MLP vs. GRNNM vs. 

NNM 
[96] Flood prediction  Daily Korea 

SVM-FR vs. DT [178] Rainfall–runoff Real-time Malaysia 

HEC–HMS–ANN vs. 

HEC–HMS-SVR 
[179] Rainfall–runoff Hourly  Taiwan  

SAS–MP vs. W-SAS–MP [180] 
Flash flood and 

streamflow 
Daily Turkey 

SOM–R-NARX vs. R-

NARX  
[181] Regional flood  Hourly Taiwan 

Wavelet-based NARX vs. 

ANN, vs. WANN 
[182] 

Streamflow 

forecasting 
Daily India 

WBANN vs. WANN vs. 

ANN vs. BANN 
[105] Flood Hourly India 

ANN–hydrodynamic 

model 
[183] 

Flood prediction: 

tidal surge  
Hourly  UK 

RNN–SVR, RSVRCPSO [184] 
Flash flood: 

rainfall forecasting 
Hourly Taiwan 

AME and SSNN vs. 

ANN 
[185] 

Rainfall 

forecasting 
Hourly  Taiwan 

Hybrid of FFNN with 

linear model 
[186] 

Flood forecasting: 

daily flows 
Daily India 

FFNN vs. FBNN vs. 

FFRM–ANN 
[187] Flash floods Hourly Taiwan 

ANN–NLPM vs. ANN [188] Rainfall–runoff  Daily China 



 

EPS of MLP vs. SVM vs. 

RF 
[189] 

Runoff 

simulations 
Real-time Germany 

EPS of ANNs [190] Flood Daily Canada 

Jimeno-Sáez, et al. [174] modeled flash floods using ANN and ANFIS, applying a 

dataset collected from 14 different streamflow gauge stations. RMSE and R2 were used as 

evaluation criteria. The results showed that ANFIS demonstrated a considerably superior 

ability to estimate real-time flash floods compared to ANN. Chang and Chang [175] 

constructed an accurate water level forecasting system based on ANFIS for 1–3 h ahead of 

the flood. The ANFIS successfully provided accurate water level prediction. The hourly 

water level of five gauges from 1971 to 2001 was used. They concluded that the ANFIS 

model could efficiently deal with a big dataset [176] through fast learning and reliable 

prediction. A further comparison showed that the ANFIS hybrid model tuned by SVR 

provided superior prediction accuracy and good cost-effective computation for nonlinear 

and real-time flood prediction. In addition, the model with human interaction could 

provide better performance. In another similar research, Reference [46] developed an 

ANFIS model based on a precipitation dataset, which provided reliable hourly predictions 

with an R2 more than 0.85. The results were reported as highly satisfactory for the typhoon 

season. Reference [67] used ANFIS for ungauged sites of 151 catchments; the results were 

evaluated and compared to the ANN, NLR, NLR-R modes using a Jackknife procedure. 

The evaluation showed that the ANFIS model provided higher generalization capability 

compared to the NLR and ANN models. The ANFIS model implemented an efficient 

mechanism for forecasting the flood region, and providing insight from the data, leading 

to prediction. Rezaeianzadeh (2014) [177] presented a number of forecasting systems for 

daily flow prediction using ANN, ANFIS, MLR, and MNLR. Furthermore, the 

performances of the models were calculated with RMSE and R2. This dataset included 

precipitation data from various meteorological stations. Furthermore, the evaluation 

showed that MNLR models with lower RMSE values had a better performance than the 

ANFIS, MLR, and ANN models. Furthermore, MNLR was suggested as a low-cost and 



 

efficient model for the daily prediction of flow. In a similar attempt, Choubin, Darabi et al. 

(2018) [133] evaluated the accuracy of ANFIS, considering three common ML modeling 

tools—CART, SVM, and MLP. The evaluation suggested that the CART model performed 

best. Therefore, CART was strongly suggested as a reliable prediction tool for hydro-

meteorological datasets. Kim and Singh [96] developed three models, namely generalized 

regression ANN (GRNNM), Kohonen self-organizing feature maps ANN (KSOFM–

NNM), and MLP, for flood prediction. Furthermore, the prediction performance was 

evaluated, showing that KSOFM–NNM performed accurately compared to MLP and 

GRNNM in forecasting flood discharge. The hybrid models, overall, were shown to 

overcome the difficulties when using single ANN models. Reference [178] proposed an 

advanced ensemble model through combining FR and SVM to build spatial modeling in 

flood prediction. The results were compared with DT. This dataset included an inventory 

map of flood prediction in various locations. To build the model, up to 100 flood locations 

were used for training and validation. The evaluation results showed a high success rate 

for the ensemble model. The results proved the efficiency, accuracy, and speed of the 

model in the susceptibility assessment of floods. 

Young, Liu, and Wu [179] developed a hybrid physical model through integrating the 

HEC–HMS model with SVM and ANN for accurate rainfall–runoff modeling during a 

typhoon. The hybrid models of HEC–HMS–SVR and HEC–HMS–ANN had acceptable 

capability for hourly prediction. However, the SVR model had much better generalization 

and accuracy ability in runoff discharge predictions. It was concluded that the predictions 

of HEC–HMS were improved through ML hybridization. Reference [180] proposed SAS–

MP, which is a hybrid of wavelet and season multilayer perceptron for daily rainfall 

prediction. The season algorithm is a novel decomposition technique used to improve data 

quality. The resulting hybrid model was referred to as the W-SAS–MP model. This dataset 

included the daily rainfall data of three decades since 1974. The W-SAS–MP model was 

reported as highly efficient for enhancing daily rainfall prediction accuracy and lead time. 

Chang, Shen, and Chang [181] developed a hybrid ANN model for real-time 

forecasting of regional floods in an urban area. The advanced hybrid model of SOM–R-



 

NARX was an integration of the NARX network with SOM. Their big dataset included 55 

rainfall events of daily rainfall. The evaluation suggested that SOM–R-NARX was accurate 

with small values of RMSE and high R2. Furthermore, compared to the cluster-based 

hybrid inundation model (CHIM), it provided hourly prediction accuracy. Reference [182] 

proposed a model of wavelet-based NARX (WNARX) for the daily forecasting of rainfalls 

on a dataset of gauge-based rainfall data for the period from 2000 to 2010. The prediction 

performance was further benchmarked with ANN, WANN, ARMAX, and NARX models, 

whereby WNARX was reported as superior. 

Partal [110] developed a model for the daily prediction of precipitation with ANN 

and WNN models. In their case, WNN showed significantly better results with an average 

value of 0.79 at various stations. In Reference [60], they compared WNN with ANFIS for 

daily rainfall. The results showed that the hybrid algorithm of WNN performed better with 

an R2 equal to 0.9 for daily lead time. Reference [105] proposed a hybrid model of wavelet, 

bootstrap technique, and ANN, which they called WBANN. It improved the accuracy and 

reliability of the ANN model short-term flood prediction. The performance of WBANN 

was compared with bootstrap-based ANNs (BANNs) and WNN. The wavelet 

decomposition significantly improved the ANN models. In addition, the bootstrap 

resampling produced consistent results. French, Mawdsley, Fujiyama, and Achuthan [183] 

proposed a novel hybrid model of ANN and a hydrodynamic model for the accurate short-

term prediction of extreme storm surge water. The ANN–hydrodynamic model generated 

realistic flood extents and a great improvement in model accuracy. Reference [184] 

proposed a hybrid forecasting technique called RSVRCPSO to accurately estimate the 

rainfall. RSVRCPSO is an integration of RNN, SVR, and a chaotic particle swarm 

optimization algorithm (CPSO). This dataset was obtained from three rain gauges from the 

period of 1985 to August 1997, which included the data of nine typhoon events. The results 

suggested that the proposed model yielded better performance for rainfall prediction. The 

RSVRCPSO model, in comparison with SVRCPSO, resulted in less RMSE learning and 

testing, which gave way to superiority in prediction. 



 

Pan et al. [185] proposed a monsoon rainfall enhancement (AME) based on ANNs, 

which was a hybrid form of linear regression and a state-space neural network (SSNN). 

The performance of the proposed model was benchmarked against the hybrid method of 

MLR–ANN. This dataset included the total rain, wind, and humidity measures from 1989–

2008 based on 371 rain gauge stations of six typhoons. The results indicated that the 

method was highly robust with a better prediction accuracy in terms of R2, peak discharge, 

and total volume. Rajurkar et al. [186] modeled rainfall–runoff by integrating ANN and a 

simplified linear model. Furthermore, this dataset included the daily measurements of 

rainfall in the period of 1963–1990. The hybrid model was found to be better for providing 

a theoretical forecasting representation of floods with R2 equal to 0.728. 

Hsu et al. [187] proposed a hybrid model from the integration of a flash-flood routing 

model (FFRM) and ANN, called the FFRM–ANN model, to predict hourly river stages. 

The ANN algorithms used in this study were the FFNN and FBNN. Data from eight 

typhoon events between 2004 and 2005 of rainfall and river stage pairs were selected for 

model training. The results indicated that the hybrid model of FFRM–ANN provided an 

efficient FFRM for accurate flood forecasting. The comparison of the hybrid method 

against each algorithm used in the study proved the effectiveness of the proposed method. 

Reference [188] developed a hybrid prediction model by integrating ANN and a nonlinear 

perturbation model (NLPM), defined as NLPM–ANN, to improve the efficiency and 

accuracy of rainfall–runoff prediction. The model of NLPM–ANN was benchmarked 

against two models of nonlinear perturbation model (LPM), and NLPM integrated with 

antecedent precipitation index (API) i.e., NLPM–API, on a dataset of daily rainfall–runoff 

in the period of 1973–1999. They reported that the NLPM–ANN worked better than the 

models of LPM and NLPM–API. The results of the case studies of various watersheds 

proved the model accuracy. 

Through an EPS model, Reference [189] aimed at limiting the range of the 

uncertainties in runoff simulations and flood prediction. The classifier ensembles included 

MLP, SVM, and RF. Note that the ensemble of MLP was a novel approach in flood 

prediction. The proposed EPS presented a number of integrated models and simulation 



 

runs. The model validation was successfully performed using a dataset from various rain 

gauges of precipitation data during the 2013–2014 storm season. Using the EPS model 

decreased uncertainty in forecasting, which resulted in the prediction system being 

evaluated as reliable and robust in estimating flood duration and destructive power. In 

another case, Reference [190] developed an EPS model of six ANNs for daily streamflow 

prediction based on daily high-flow data from the storm season of 2013–2014. The 

proposed model had a fast development time, which also provided probabilistic forecasts 

to deal with uncertainties in prediction. The ensemble prediction system was reported as 

highly useful and robust.  

4.3. Comparative Performance Analysis  

To evaluate a reliable prediction, the accuracy, reliability, robustness, consistency, 

generalization, and timeliness are suggested as the basic criteria (Singh 1989). The 

timeliness is one of the most important criteria, and it is only achieved through using 

robust yet simple models. Furthermore, the performance of the prediction models is often 

evaluated through root-mean-square error (RMSE), mean error (ME), mean squared error 

(MSE), Nash coefficients (E), and R2, also known as the correlation coefficient (CC). In this 

survey, the values of R2 and RMSE were considered for performance evaluation. CC (Eq.1) 

and RMSE (Eq.2) can be defined as follow:  

 

𝐶𝐶 =
∑ (𝑥𝑖−�̄�)(𝑦𝑖−�̄�)𝑁

𝑖=1

√[∑ (𝑥𝑖−�̄�)2𝑁
𝑖=1 ][∑ (𝑦𝑖−�̄�)2𝑁

𝑖=1 ]

                       Eq.1 

 

where xi and yi are the observed and predicted values and the i-th residue; x and y are 

their means, respectively. 

 

     𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑜𝑏𝑠,𝑖 −𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)
2𝑛

𝑖=1

𝑛
                      Eq.2 

 



 

where Xobs defines observed variables and Xmodel prediction values for year i, where 

generally R2 > 0.8 is considered as an acceptable prediction. However, a lower value for 

RMSE suggests a better prediction. Overall, forecasting models of floods are reported as 

accurate if RMSE values are close to 0, and R2 values are close to 1. The specific intended 

purpose, computational cost, and dataset would be our major consideration criteria. 

Furthermore, the generalization ability, speed and cost of implementation and operation, 

ease of use, low-cost maintenance, robustness, and accuracy of the simulation are other 

important criteria for evaluation of the methods.  

Here, it is worth mentioning that the value of RMSE can be different across various 

studies. In addition, the values of RMSE in some studies were calculated for various sites. 

To present a fair evaluation of RMSE, we made sure that the unit of RMSE was the same, 

and, for the multiple RMSEs, the average was calculated. We also double-checked for any 

possible error. The comparative performance analysis of single and hybrid ML methods 

for short-term flood prediction using R2 and RMSE are presented in Figures 7 and 8 

respectively.  



 

 

Figure 7. Comparative performance analysis of single methods of ML for short-term flood 

prediction using R2 and root-mean-square error (RMSE). 
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Figure 8. Comparative performance analysis of hybrid methods of ML for short-term 

flood prediction, using R2 and RMSE. 

Generally, ANNs are suggested as promising means for short-term prediction. 

Despite performing weakly in a few early studies, especially in the generalization aspect, 

better methodologies for higher-performance ANNs in handling big datasets yielded 

better results. In this context, the BPNN and functional networks are suggested as being 

difficult to be implemented by the user. However, the models were shown to be reasonably 

accurate, efficient, and fast with the ability to deal with noisy datasets. However, the 

NARX network performed better compared to BPNN. Nevertheless, accuracy could be 

enhanced through integration with autoregressive models. MLP and DTs provide equally 

acceptable prediction yields with ANNs. Among DTs, the ADT model provided the fastest 

and most accurate prediction capability in determining floods. Although not as popular as 

ANNs, the rotation forest (RF) and M5 model tree (MT) were reported as efficient and 

robust. References e.g. [69,136] proposed RF-based models that were as effective as ANNs 

and suitable for long lead times. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W
-S

A
S-

M
P

  (
A

lt
u

n
ka

yn
ak

…

W
-M

LP
 (

A
lt

u
n

ka
yn

ak
 a

n
d

…

 S
A

S-
M

LP
 (

A
lt

u
n

ka
yn

ak
 a

n
d

…

D
B

P
A

N
N

 (
Ju

, Y
u

 e
t 

al
. 2

0
0

9
)

A
N

FI
S 

(K
is

i, 
N

ia
 e

t 
al

. 2
0

1
2

)

TS
C

-T
–

S 
(L

o
h

an
i, 

G
o

el
 e

t 
al

. …

A
N

FI
S 

(J
im

en
o

-S
áe

z,
…

A
N

FI
S 

(C
h

an
g 

an
d

 C
h

an
g…

A
N

FI
S 

(C
h

an
g,

 C
h

ia
n

g 
et

 a
l.…

A
N

FI
S 

(S
h

u
 a

n
d

 O
u

ar
d

a…

A
N

FI
S 

(R
ez

ae
ia

n
za

d
eh

, 2
0

1
4

)

A
N

FI
S 

(C
h

o
u

b
in

, D
ar

ab
i e

t…

H
EC

-H
M

S-
A

N
N

 (
Yo

u
n

g,
 L

iu
…

H
EC

-H
M

S-
SV

R
 (

Yo
u

n
g,

 L
iu

…

SO
M

-R
 (

C
h

an
g,

 S
h

en
 e

t 
al

.…

SO
M

–R
-N

A
R

X
 (

C
h

an
g,

 S
h

en
 …

R
-N

A
R

X
 (

C
h

an
g,

 S
h

en
 e

t 
al

.…

W
B

A
N

N
 (

Ti
w

ar
i a

n
d

…

W
A

N
N

 (
Ti

w
ar

i a
n

d
…

B
A

N
N

 (
Ti

w
ar

i a
n

d
…

A
N

N
-h

yd
ro

d
yn

am
ic

…

R
SV

R
C

P
SO

 (
H

o
n

g 
2

0
0

8
)

SS
N

N
 (

P
an

, Y
an

g 
et

 a
l. 

2
0

1
3

)

H
yb

ri
d

 o
f 

FF
N

N
 (

R
aj

u
rk

ar
,…

FF
R

M
–A

N
N

 (
H

su
, L

in
 e

t 
al

. …

N
LP

M
-A

N
N

 (
P

an
g,

 G
u

o
 e

t…

EP
S 

o
f 

M
LP

 (
D

o
yc

h
ev

a,
…

EP
S 

o
f 

A
N

N
 (

Fl
em

in
g,

…

M
LP

-N
N

M
 (

K
im

 a
n

d
 S

in
gh

 …

G
R

N
N

M
 (

K
im

 a
n

d
 S

in
gh

…

K
SO

FM
-N

N
M

 (
K

im
 a

n
d

 …

A
R

M
A

X
 (

N
an

d
a,

 S
ah

o
o

 e
t…

W
A

N
N

 (
N

an
d

a,
 S

ah
o

o
 e

t 
al

.…

W
N

A
R

X
 (

N
an

d
a,

 S
ah

o
o

 e
t…

W
N

N
-B

B
 (

K
as

iv
is

w
an

at
h

an
,…

A
N

N
-B

B
 (

K
as

iv
is

w
an

at
h

an
,…

Comparative performance analysis of hybrid methods for short-term 

flood prediction 

RMSE R2



 

Along with ANNs, the SVM was also seen as a relatively effective ML tool for rainfall–

runoff modeling and classification with better generalization ability and performance. In 

many cases, SVM performed even better, especially for very short lead times [122,125]. In 

particular, SVM-based models provided promising performances for hourly prediction. 

Nevertheless, the prediction ability decreased for longer lead times. This issue was 

addressed using the LS-SVM model, which also showed better generalization ability [127]. 

Generally, SVM was reported to be a suitable choice to evaluate the uncertainty in 

predicting hazardous flood quantiles, which revealed the effectiveness of SVM in real-time 

flood forecasting. 

Overall, the reviewed single prediction models could provide relatively accurate 

short-term forecasts. However, for predictions longer than 2 h, hybrid models such as 

ANFIS, and WNN performed better. The performance comparisons of the ANFIS model 

with BPNN and AR models, with average correlation coefficients higher than 0.80, showed 

the superiority of ANFIS in a wide range of short-term flood prediction applications, e.g., 

water level, rainfall–runoff, and streamflow (for up to 24 h). ANFIS demonstrated a 

considerably superior ability for estimating real-time flash flood estimation compared to 

most ANN-based models, particularly 1–3 h ahead of flood, providing high accuracy and 

reliability. More advanced ANFIS hybrid models tuned by SVR provided even better 

prediction accuracy and good cost-effective computation for nonlinear and real-time flood 

prediction. Furthermore, ANFIS models presented higher generalization ability. However, 

by increasing the prediction lead time, R2 decreased. For daily flow, MNLR was suggested 

with a superior performance over the ANN, ANFIS, and MLR models. In cases where 

hydro-meteorological data are readily available, CART was superior to ANFIS, SVM, and 

MLP; T–S fuzzy was also a good choice. On the other hand, WNN performed significantly 

better than MLP, ANNs, and ANFIS for daily predictions. For accurate longer lead-time 

predictions, decomposition techniques such as DWT, autoregression, and the season 

algorithm provided great advantages. 

Overall, the novel hybrid models designed using ML, soft computing, and statistical 

methods, e.g., KSOFM–NNM, SOM–R-NARX, WNARX, HEC–HMS–SVR, HEC–HMS–



 

ANN, W-SAS–MP, WBANN, RSVRCPSO, and the ANN–hydrodynamic model, were 

shown to overcome the drawbacks of most ML methods by enhancing the prediction 

accuracy and lead time, leading to more realistic flood models with even better 

susceptibility assessment. On the other hand, novel ensemble methods not only improved 

the accuracy robustness of predictions, but also contributed to limiting the range of 

uncertainties in models. Among the EPS methods, the ensembles of ANN, MLP, SVM, and 

RF showed promising results. 

5. Long-Term Flood Prediction with ML 

Long-term flood prediction is of significant importance for increasing knowledge and 

water resource management potential over longer periods of time, from weekly to monthly 

and annual predictions [191]. In the past decades, many notable ML methods, such as 

ANN [74], ANFIS [68,192], SVM [193], SVR [193], WNN [51], and bootstrap–ANN [51], 

were used for long lead-time predictions with promising results. Recently, in a number of 

studies (e.g., References [55,194-198]), the performances of various ML methods for long 

lead-time flood predictions were compared. However, it is still not clear which ML method 

performs best in long-term flood prediction. In this section, Tables 4 and 5 represent a 

summary of these investigations, and we review the performance of the ML models in 

dealing with long-term predictions. 

5.1. Long-Term Flood Prediction Using Single ML Methods 

This section presents a comprehensive comparison on ML methods. Table 4 presents 

a summary of the major single ML methods used in long-term flood prediction, i.e., MLP, 

ANNs, SVM, and RT, followed by a comprehensive performance comparison. A revision 

and discussion of these methods follow, identifying the most suitable methods presented 

in the literature. 

 

 

 



 

Table 4. Long-term flood prediction using single ML methods. 

Modeling 

Technique  
Reference  

Flood Resource 

Variable 

Prediction 

Type 
Region 

ANNs [197] Water levels Seasonal Sudan  

ANNs [87] Precipitation Monthly Australia 

BPNNs [199] Heavy rainfall Seasonal India 

BPNNs vs. 

BFGSNN  
[200] Reservoir levels Monthly Turkey  

BPNN vs. MLP [201] Discharge Monthly Iran 

ANNs vs. HBI [202] Stream Weekly Canada  

SVM vs. ANN  [203] Streamflow  Monthly China 

RT [204]  Floodplain forests Annually  Australia 

For seasonal flood forecasting, Elsafi [197] proposed numerous ANNs and compared 

the results. The water level data from different stations from 1970–1985 were selected for 

training, and the data from 1986–1987 were used for verification. The ANNs worked well, 

especially where the dataset was not complete, providing a viable choice for accurate 

prediction. ANNs provided the possibility of reducing the analytical costs through 

reducing the data analysis time that used to face in e.g., [198]. Similarly, reference [87] used 

ANNs to develop a prediction model for precipitation. A historical dataset of 1900–2001 of 

different stations was considered and the ANN model was applied to various stations to 

evaluate prediction performance. The authors summarized that the ANN models offered 

great forecasting skills for predicting long-term evapotranspiration and precipitation. 

Reference [202] used an ANN model for stream assessment for long-term floods. This 

dataset was collected from more than 100 sites of numerous flood streams. They concluded 

that the ANN model, compared to Hilsenhoff’s biotic index (HBI), significantly improved 

the prediction ability using geomorphic data. However, the ANN had generalization 

problems. Nevertheless, the ANN in this case proved useful to water managers. 



 

Singh [199] used a number of BPNNs to build prediction models of heavy rains and 

floods. This dataset included the period of 1871–2010 on a monthly time scale. The results 

indicated that the BPNN models were fast and robust with simple networks, which made 

them great for forecasting nonlinear floods. Reference [200] aimed to better analyze 

nonlinear floods through modeling with BPNN and local linear regression (LLR)-based 

models for long-term flood forecasting. This dataset included almost two decades of 

rainfall, outflow, inflows, evaporation, and water level since 1988. Their evaluation 

concluded that LLR showed better prediction than the Broyden Fletcher Goldfarb Shanno 

neural network (BFGSNN) model in terms of performance and accuracy with bigger 

values of R2 and lower values of RMSE. However, BPNN outperformed the other methods 

with relatively good results. Among the ANN variations, [151] proposed a BPNN model 

as the most reliable ANN for long-term flood prediction. Reference [201] also compared 

the performances of ANNs with BPNN and MLP in the long-term prediction of flood 

discharge. Promising results were obtained when using MLP. However, generalization 

remained an issue. 

Lin, Cheng, and Chau [203] applied an SVM model for estimating streamflow and 

reservoir inflow for a long lead time. To benchmark, they used ANNs and ARMA. The 

prediction models were built using monthly river flow discharges from the period of 1974–

1998 for training, and 1999–2003 for testing. Through a comparison of model performance, 

SVM was demonstrated as a potential candidate for the prediction of long-term discharges, 

outshining the ANN. In a similar approach, Reference [205] proposed an SVM-based 

model for estimating soil moisture using remote-sensing data, and the results were 

compared to predictive models based on BPNN and MLR. Training was performed on the 

data of the period of 1998 to 2002, and testing used data from 2003 to 2005. The SVM model 

was shown to be more accurate and easier to build compared to BPNN and MLR. 

Reference [204], employed RT to model forest flood. Data from 2009–2012 at 50 sites were 

used for model building. The prediction of annual forest floods was reported through a 

combination of quantitative ground surveys, satellite imagery, hybrid machine learning 

tools, and future validation. 



 

Table 5 presents a comparative analysis of single ML models for the prediction of 

long-term floods considering the complexity of algorithm, ease of use, running speed, 

accuracy, and input dataset. This table was created based on revisions that were made on 

articles of Table 4, as well as the accuracy analysis in Figure 9, where values of R2 and 

RMSE for the single ML methods were considered. The quality of the ML model 

prediction, in terms of speed, complexity, accuracy, and ease of use, improved 

continuously through the use of ensembles of ML methods, hybridization of ML methods, 

optimization algorithms, and/or soft computing techniques. This trend of improvement is 

discussed in detail in the discussion. 

Table 5. Comparative analysis of single ML models for the prediction of long-term 

floods. 

Modeling 

Technique 

Complexity 

of Algorithm 
Ease of Use Speed  Accuracy  

Input 

Dataset 

ANN Fairly high Low Fair  High  Historical 

BPNN Fairly high Low Fairly high  Fairly high Historical 

MLP high Fair High Fairly high Historical 

SVR Fairly high Low Low High Historical 

RT Fair  Fair Fair Fairly high Historical 

SVM Fairly high Low Low High Historical 

M5 tree Fair Low Fair Fair Historical 

5.2. Long-Term Flood Prediction Using Hybrid ML Methods 

A critical review on the long-term flood prediction using hybrid methods is presented 

in Table 6. Valipour, Banihabib, and Behbahani [26] used a hybrid method of 

autoregressive ANN integrated with sigmoid and radial activity functions. The proposed 

hybrid method outperformed the conventional statistical methods of ARMA and ARIMA 

with lower values of RMSE. They reported that ARIMA was suitable for the prediction of 

monthly and annual inflow, while the dynamic autoregressive ANN model with a sigmoid 



 

activity function could be used for even longer lead time. This dataset included monthly 

discharge from the period of 1960 to 2007.  

Table 6. Long-term flood prediction using hybrid methods. 

Modeling Technique Reference 
Flood Resource 

Variable 

Prediction 

Type 
Region 

Autoregressive ANN vs. ARMA 

vs. ARIMA 
[26] River inflow 

Monthly and 

yearly 
Iran  

Hybrid WNN vs. M5 model tree [206] 
Streamflow 

water level 
Monthly Australia  

WNN vs. ANN [207,208] Rainfall–runoff  Monthly Italy 

WNN-BB vs. WNN vs. ANN [50] Streamflow  
Weekly and 

few days 
Canada 

WNN vs. ANN [25] Urban water Monthly Canada 

WNN vs. ANN [209] Peak flows Seasonal India 

WNN vs. ANN [210] Rainfall Monthly India 

WARM vs. AR  [211] Rainfall  Yearly Thailand 

ANFIS vs. ANNs [212] Rainfall  Seasonal Australia 

ANFIS vs. ARMA vs. ANNs vs. 

SVM 
[213] Discharge  Monthly China 

ANFIS, ANNs vs. SVM vs. LLR [214]  Streamflow Short-term Turkey 

NLPM–ANN [215] 
Flood 

forecasting 
Yearly China 

M-EMDSVM vs. ANN vs. SVM [216] Streamflow  Monthly China 

SVR–DWT–EMD [217] Streamflow  Monthly China  

Surrogate modeling–ML vs. 

ANN–Kriging model vs. ANN–

PCA 

[218] Rainfall–runoff Yearly USA 

EPS of ANNs: K-NN vs. MLP vs. 

MLP–PLC vs. ANNE 
[219] Streamflow  Seasonal Canada 

EEMD–ANN vs. SVM vs. ANFIS [220] Runoff forecast Monthly China 



 

WNN vs. ANN vs. WLGP [51] Streamflow Monthly Iran 

Adamowski [25] developed models based on ANN and WNN, and compared their 

prediction performances with statistical methods. WNN was proposed as the most 

accurate prediction model, as previously confirmed by Cannas et al. (2005) [207] for 

monthly rainfall–runoff forecasting, and also for further engineering application [208]. In 

a similar work, Reference [209] compared the performances of ANN and WNN for the 

prediction of peak flows. They also reported WNN as most reliable for simulating extreme 

event streams, whereby decomposition improved the results considerably. Higher levels 

of wavelet decomposition further improved the testing results. The statistical performance 

evaluation of RMSE showed considerable improvement in the testing results. Venkata 

Ramana [210] also combined the wavelet technique with ANN for long-term flood 

prediction. They considered 74 years of data for the period of 1901 to 1975. A dataset of 44 

years was used for calibration, and the remainder was used for validation of the model. 

Their results showed a relatively lower performance for ANNs compared WNN models 

in modeling rainfall–runoffs. Cannas et al. [207] proposed WNN for monthly rainfall–

runoff prediction, which showed significant improvement over ANNs. In a similar 

attempt, Kasiviswanathan, He, Sudheer, and Tay [50] used WNN and WNN–BB, which is 

an ensemble of WNN utilizing the block bootstrap (BB) sampling technique, to identify a 

robust modeling approach among ANN and WNN, by assessing accuracy and precision. 

This dataset included measurements from 1912 to 2013 at several flow gauge stations. The 

results suggested WNN–BB as a robust model for long-term streamflow prediction for 

longer lead times of up to one year. Tantanee et al. [211] proposed a hybrid of wavelet and 

autoregressive models, called WARM, which performed more effectively for long lead 

times. Prasad [206] proposed another similar hybrid model with the integration of WNN 

and iterative input selection (IIS). The hybrid model was called IIS–W-ANN, and was 

benchmarked with the M5 model tree. Their dataset included streamflow water level 

measurements from 40 years. The IIS–W-ANN hybrid model outperformed the M5 tree. 

This study advocated that the novel IIS–W-ANN method should be considered as an 



 

excellent flood forecasting model. Nevertheless, the model could be further optimized for 

better performance using optimization methods introduced in references [221–225]. In fact, 

such optimizers can complement IIS–W-ANN for fine-tuning the hidden-layer weights 

and biases for better prediction. Mekanik [212] used ANFIS to forecast seasonal rainfall. A 

comparison of the performance and accuracy of the ANN model and a physical model 

showed promising results for ANFIS. Rainfall measurements of 1900–1999 were used for 

training and validation, and the following decade was used for testing. The results showed 

that ANFIS outperformed the ANN models in all cases, comparable to Predictive Ocean 

Atmosphere Model for Australia (POAMA), and better than climatology. Furthermore, the 

study demonstrated the accuracy of ANFIS compared to global climate models. In 

addition, the study suggested ANFIS as an alternative tool for long-term predictions. 

ANFIS was reported as being easy to implement with low complexity and minimal input 

requirements, as well as less development time. Reference [213] compared the 

performances of ANFIS, ANNs, and SVM. This dataset included monthly flow data from 

1953 to 2004, where the period of 2000–2004 was used for validation. ANFIS and SVM were 

evaluated as being better for long-term predictions. References [224,226] compared the 

performances of ANFIS, ANNs, and SVM for the monthly prediction of floods. The 

comparison results indicated that the ML models provided more accuracy than the 

statistical models in predicting streamflow. Furthermore, ANN and ANFIS presented 

more accuracy vs. SVM. However, for low-flow predictions, the SVM and ANN models 

outperformed ANFIS. Reference [215] proposed a modified variation of a hybrid model of 

NLPM–ANN to predict wetness and flood. To do so, the seasonal rainfall and wetness data 

of various stations were considered. The NLPM–ANN model was reported as being 

significantly superior to the models of previous studies. In another hybrid model, 

Reference [216] investigated the performance of a modified EMD–SVM (M-EMDSVM) 

model for long lead times, and comparedits accuracy with ANN and SVM models. The M-

EMDSVM model was created through modification of EMD–SVM. The evaluation results 

showed that the M-EMDSVM model was a better alternative to ANN, SVM, and EMD–



 

SVM models for long lead-time streamflow prediction. The M-EMDSVM model also 

presented better stability, representativeness, and precision.  

Zhu, Zhou, Ye, and Meng [217] contributed to the integration of ML with time-series 

decomposition to predict monthly streamflow through estimation and comparison of 

accuracy of a number of models. For that matter, they integrated SVM with discrete 

wavelet transform (DWT) and EMD. The hybrid models were called DWT–SVR and EMD–

SVR. The results indicated that decomposition improved the accuracy of streamflow 

prediction, yet DWT performed even better. Further comparisons of SVR, EMD–SVR, and 

DWT–SVR models showed that EMD and DWT were significantly more accurate than SVR 

for monthly streamflow prediction. 

Araghinejad [219] presented the applicability of ensembles for probabilistic flood 

prediction in real-life cases. He utilized the K-nearest neighbor regression for the purpose 

of combining individual networks and improving the performance of prediction. As an 

EPS of ANNs, the hybrid model of K-NN was proposed to increase the generalization 

ability of neural networks, and was further compared with the results using MLP, MLP–

PLC, and ANN. The hourly water level data of the reservoir from 132 typhoons in the 

period of 1971–2001 were used. The proposed EPS had a promising ability of 

generalization and prediction accuracy.  

Bass and Bedient [218] proposed a hybrid model of surrogate–ML for long-term flood 

prediction suitable for TCs. The methods used included ANN integrated with principal 

component analysis (PCA), Kriging integrated with PC, and Kriging. The models were 

reported as efficient and fast to build. The results demonstrated that the methodology had 

an acceptable generalization ability suitable for urbanized and coastal watersheds. 

Reference [220] contributed to improving decomposition ensemble prediction models by 

developing an EEMD–ANN model for monthly prediction. The performance comparison 

with SVM, ANFIS, and ANNs showed a significant improvement in accuracy.  

Ravansalar [51] compared the performances of the prediction models of WNN, ANN, 

and a novel hybrid model called wavelet linear genetic programming (WLGP) in dealing 

with the long-term prediction of streamflow. The results showed an accuracy of 0.87 for 



 

the WLGP model. The comparison of the performance evaluation showed that WLGP 

significantly increased the accuracy for the monthly approximation of peak streamflow. 

6. Comparative Performance Analysis and Discussion 

In this section, the comparative performance analysis of ML methods for long-term 

prediction is presented. Figure 9 represents the values of RMSE and R2 for single methods 

of ML, where ANNs, SVMs, and SVRs show better results. Figure 10 represents the values 

of RMSE and R2 for hybrid methods of ML, where decomposition and ensemble methods 

outperformed the more traditional methods. 

ANNs are the most widely used ML method due to their accuracy, high fault 

tolerance, and powerful parallel processing in dealing with complex flood functions, 

especially where datasets are not complete. However, generalization remains an issue with 

ANN. In this context, ANFIS, MLP, and SVM performed better than ANNs. However, 

wavelet transforms were reported to be useful for decompositions of original time series, 

improving the ability of most ML methods by providing insight into datasets on various 

resolution levels as appropriate data pre-processing. For instance, WNNs generally 

produce more consistent results compared to traditional ANNs. 



 

 

Figure 9. Comparative performance analysis of single methods of ML for long-term 

prediction. 

Either in short-term [227] or long-term rainfall–runoff modeling [50], overall, the 

accuracy, precision, and performance of most decomposed ML algorithms (e.g., WNN) 

were reported as better than those which were trained using un-decomposed time series. 

However, despite the achievement of WNNs, the predictions were not satisfactory for long 

lead times. To increase the accuracy of the longer-lead-time predictions up to one year, 

novel hybrids such as WARM, which is a hybrid of WNN and an autoregressive model, 

and wavelet multi-resolution analysis (WMRA) were proposed. In other cases, it was seen 

that the performance of models improved greatly through decomposition to produce 

cleaner inputs. For example, wavelet–neuro-fuzzy models [228] were significantly more 

accurate and faster than single ANFIS and ANNs. However, with an increase in the lead 

time, the uncertainty in prediction increased. Thus, the evaluation of model precision 

should come into consideration in future studies. 

Data decomposition methods, e.g., autoregressive, wavelet transforms, wavelet–

autoregressive, DWT, IIS, and EMD, contributed highly to developing hybrid methods for 
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longer prediction lead time, good stability, great representativeness, and higher accuracy. 

These data decomposition methods were integrated with ANNs, SVM, WNN, and FR, and 

they are expected to gain more popularity among researchers. The other trend in 

improvement of prediction accuracy and generalization capability involves EPS. In fact, 

recent ensemble methods contributed to good improvements in speed, accuracy, and 

generalization. The EPS of ANNs and WNNs, using BB sampling, genetic programming, 

simple average, stop training, Bayesian, data fusion, regression, and other soft computing 

techniques, showed promising results and better performances than traditional ML 

methods. In ensembles, however, it is noted that human decision as the input variable 

provided superior performance than models without this important input. However, the 

most significant hybrid models were novel decomposition–ensemble prediction models 

suitable for monthly prediction. Their performance comparisons with SVM, ANFIS, and 

ANNs showed significant improvements in accuracy and generalization. Figure 10 

represents the comparative performance analysis of hybrid methods of ML for short-term 

prediction. Here, it is also worth mentioning the importance of further signal processing 

techniques (e.g., Reference [228]) for both long-term and short-term floods. 



 

 

Figure 10. Comparative performance analysis of hybrid methods of ML for short-term 

prediction. 

This paper suggests that the drawbacks to major ML methods in terms of accuracy, 

uncertainty, performance, and robustness were improved through the hybridization of ML 

methods, as well as using an ensemble variation of the ML method. It is expected that this 

trend represents the future horizon of flood prediction.  

5. Conclusions 

The current state of ML modeling for flood prediction is quite young and in the early 

stage of advancement. This paper presents an overview of machine learning models used 
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in flood prediction, and develops a classification scheme to analyze the existing literature. 

The survey represents the performance analysis and investigation of more than 6000 

articles. Among them, we identified 180 original and influential articles where the 

performance and accuracy of at least two machine learning models were compared. To do 

so, the prediction models were classified into two categories according to lead time, and 

further divided into categories of hybrid and single methods. The state of the art of these 

classes was discussed and analyzed in detail, considering the performance comparison of 

the methods available in the literature. The performance of the methods was evaluated in 

terms of R2 and RMSE, in addition to the generalization ability, robustness, computation 

cost, and speed. Despite the promising results already reported in implementing the most 

popular machine learning methods, e.g., ANNs, SVM, SVR, ANFIS, WNN, and DTs, there 

was significant research and experimentation for further improvement and advancement. 

In this context, there were four major trends reported in the literature for improving the 

quality of prediction. The first was novel hybridization, either through the integration of 

two or more machine learning methods or the integration of a machine learning method(s) 

with more conventional means, and/or soft computing. The second was the use of data 

decomposition techniques for the purpose of improving the quality of the dataset, which 

highly contributed in improving the accuracy of prediction. The third was the use of an 

ensemble of methods, which dramatically increased the generalization ability of the 

models and decreased the uncertainty of prediction. The fourth was the use of add-on 

optimizer algorithms to improve the quality of machine learning algorithms, e.g., for better 

tuning the ANNs to reach optimal neuronal architectures. It is expected that, through these 

four key technologies, flood prediction will witness significant improvements for both 

short-term and long-term predictions. Surely, the advancement of these novel ML methods 

depends highly on the proper usage of soft computing techniques in designing novel 

learning algorithms. This fact was discussed in the paper, and the soft computing 

techniques were introduced as the main contributors in developing hybrid ML methods of 

the future. 



 

Here, it is also worth mentioning that the multidisciplinary nature of this work was 

the most challenging difficulty to overcome in this paper. Having contributions from the 

coauthors of both realms of ML and hydrology was the key to success. Furthermore, the 

novel search methodology and the creative taxonomy and classification of the ML methods 

led to the original achievement of the paper. 

For future work, conducting a survey on spatial flood prediction using machine 

learning models is highly encouraged. This important aspect of flood prediction was 

excluded from our paper due to the nature of modeling methodologies and the datasets 

used in predicting the location of floods. Nevertheless, the recent advancements in 

machine learning models for spatial flood analysis revolutionized this particular realm of 

flood forecasting, which requires separate investigation. 
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Nomenclatures 

WMO World meteorological organization 

GCM Global circulation models 

SPOTA Seasonal Pacific Ocean temperature analysis 

ANN Artificial neural networks 

POTA Pacific Ocean temperature analysis  

QPE Quantitative precipitation estimation 

CLIM Climatology average method 

EOF Empirical orthogonal function 

MLR Multiple linear regressions 

QPF Quantitative precipitation forecasting 

MNLR Multiple nonlinear regressions 

ML Machine learning 

MLR Multiple linear regression 

ANN Neural networks 

WNN Wavelet-based neural network 

ARIMA Auto regressive integrated moving average 

USGS United States Geological Survey 

FFA Flood frequency analyses 

QRT Quantile regression techniques 

SPOTA Seasonal Pacific Ocean temperature analysis 

SVM Support vector machines 

LS-SVM Least-square support vector machines 

AI Artificial intelligence 

VRM Vector Regression Machine 

FFNN Feed-forward neural network 

FBNN Feed-backward networks 

MLP Multilayer perceptron 

ANFIS Adaptive neuro-fuzzy inference system 

BPNN Backpropagation neural network 

SVR Support vector regression 



 

LR Linear regression 

FIS Fuzzy inference system 

CART Classification and regression tree 

LMT Logistic model trees 

NWP Numerical weather prediction 

NBT Naive Bayes trees 

ARMA Autoregressive moving averaging 

REPT Reduced-error pruning trees 

DT Decision tree 

ELM Extreme learning machine 

EPS Ensemble prediction systems 

SNIP Source normalized impact per paper 

SRM Structural risk minimization 

AR Autoregressive 

SJR SCImago journal rank 

ARMAX Linear autoregressive moving average with exogenous inputs 

LMT Logistic model trees 

ARMA Autoregressive moving averaging 

ADT Alternating decision trees 

NARX network Nonlinear autoregressive network with exogenous inputs 

RMSE Root-mean-square error 

RFFA Regional flood frequency analysis 

NLR Nonlinear regression 

AR Autoregressive 

WARM Wavelet autoregressive model 

NLR-R Nonlinear regression with regionalization approach 

E Nash Sutcliffe index 

FR Frequency ratio 

SOM Self-organizing map 

CHIM Cluster-based hybrid inundation model 

FFRM Flash flood routing model 

KGE Kling-Gupta efficiency 



 

AME ANN-based monsoon rainfall enhancement 

SSNN State-space neural network 

SSL Suspended sediment load 

NSE Nash–Sutcliffe efficiency 

E-CHAID Exhaustive CHAID 

CHAID Chi-squared automatic interaction detector 

CLIM Climatology average model 

HEC–HMS Hydrologic engineering center–hydrologic modeling system 

SOM Self-organizing map 

PBIAS Percent bias 

NLPM Nonlinear perturbation model 

RF Rotation forest 

KSOFM-NNM Kohonen self-organizing feature maps neural networks model 

DBP Division-based backpropagation 

DBPANN DBP neural network 

NLPM-ANN Nonlinear perturbation model based on neural network 

GRNNM Generalized regression neural networks model 

IIS Iterative input selection 

EEMD Ensemble empirical mode decomposition 

ANNE Artificial neural network ensembles 

DWT Discrete wavelet transform 

SFF Seasonal flood forecasting 

MP Water monitoring points 

WBANN Wavelet–bootstrap–ANN 

HBI Hilsenhoff’s biotic index 

RT Regression trees 

EMD Empirical mode decomposition 

LLR Local linear regression 

BFGS Broyden Fletcher Goldfarb Shanno 

M-EMD Modified empirical mode decomposition 

IIS Iterative input selection 

SAR Seasonal first-order autoregressive 



 

BFGSNN Broyden Fletcher Goldfarb Shanno neural network 

GRNN Artificial neural networks including generalized regression network 

T–S Takagi–Sugeno 

WLGP Wavelet linear genetic programming 

E Nash coefficients 

TSC-T–S Clustering based Takagi–Sugeno 

TCs Tropical cyclones 

PCA Principal component analysis 
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