
EasyChair Preprint
№ 3086

A Case Study for Blockchain in Contract:
FutureText Prototype for Electronic Contracts
Signing and Data Recording

Qing Zhang, Jian Gao, Qiqiang Qin, Chenyu Wang and Keting Yin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 31, 2020

A Case Study for Blockchain in Contract:
FutureText prototype for electronic contracts

signing and data recording
Qing Zhang1,2, Jian Gao1,2, Qiqiang Qin1,2, Chenyu Wang1,2, Keting Yin3*

1 China Financial Futures Exchange
2 Shanghai Financial Futures Information Technology Co., Ltd

3 College of Software Technology, Zhejiang University
zhangqing@cffex.com.cn, gaojian@cffex.com.cn, qinqq@cffex.com.cn, wangcy1@cffex.com.cn,

yinkt@zju.edu.cn

Abstract
This paper proposes a convenient, economical and environmentally friendly way to

complete the Privately Offered Fund contracts based on shared permission blockchain.
There are three main contributions of applying blockchain technology into the contracts.
First, in order to reduce the CO2 emission from printing, delivery and mostly for the sake
of security, we present an electronic procedure for signing and keeping the Privately
Offered Fund Contracts. Second, we design and implement FutureText prototype using
Hyperchain, which helps us share privacy information among stakeholders while keeping
forged signature, counterfeited seal and twin-contracts away. Finally, to follow the
legitimacy and compliance, we put forward methods for both authentication and signature
of tripartite contracts. Besides, we put encrypted contracts on blockchain while keeping
original contracts on local hosts using heterogeneous storage, and that helps to alleviate
the storage pressure on blockchain.

Key words-blockchain, electronic contract, authentication, tripartite signature,

heterogeneous storage

1 Introduction
With China’s rapid economic development and deepening of reform and opening-up, the Privately

Offered Fund has grown into a huge market: by November 2018, the number of registered private fund
managers exceeded 24,418 with the number of registered private equity funds reached 75,220;

* Corresponding author: Keting Yin; Email:yinkt@zju.edu.cn

mailto:zhangqing@cffex.com.cn
mailto:gaojian@cffex.com.cn
mailto:qinqq@cffex.com.cn,%20wangcy1@cffex.com.cn
mailto:yinkt@zju.edu.cn

meanwhile the market scale was 12.79 trillion Chinese Yuan†. However, with the rising of the market,
the paper print contracts are revealing more and more defects, such like the huge paper consumption
and costly delivery as well as the risk in missing contracts and counterfeit contracts. Considering the
scale and complexity of the business, traditional paper print contracts become unsuitable and
unmanageable for the business.

Our paper aims to solving the problems by introducing an electronic signing and data recording
system named FutureText based on a shared permission blockchain.

Overall, the main contributions of the paper can be summarized as follows:
-First, we introduce blockchain into the Privately Offered Fund business, making business process

convenient and contract signing trustable.
-Second, we put up an authentication way to identify the contractors for compliance with relevant

laws and regulations.
-Last but not the least, we propose a method to sign tripartite contracts. Through this method, our

system can protect contractors’ privacy while achieving consensus.
The rest of paper is divided into following parts. In section 2, we define the problem of the Privately

Offered Fund business and several key concepts. We will illustrate the advantages of using blockchain
in contracts. In Section 3, related work on electronic contract is introduced. Most work concentrates on
model building and legal issues. In Section 4, we give an overview of our system design. In Section 5,
the specific program about FutureText is given. More details on FutureText is discussed such as how
to solve the authentication problem and how to complete a tripartite contract’s consensus. In Section 6,
the performance and latency of FutureText are presented. Finally, we conclude with discussions in
section 7.

2 Motivation
The Privately Offered Fund (POF) is a securities investment fund that raises money from specific

investors in a non-public manner and bases on specific underlying assets. In recent years, POF market
in China has been growing rapidly. Typically, managers, custodians and investors ensure their
respective rights and obligations by signing a POF contract. While, as the first step of the whole process,
getting real market quotes and seeking the counterparty become a time consuming task since POF works
in a non-public manner and information asymmetry for specific underlying assets.

Even though we get a reasonable quote and reliable counterparty, there is still hundreds of pages
legal terms and conditions to read and modify among managers, custodians and investors. Under this
circumstance, it is inconvenient and hard to manage the life cycle of a tripartite contract. Here is a case:
A manager is in charge of drafting, printing and delivering the contract. The investor is probably on
vocation or a business trip. The custody might find defaced contracts or faked signature and ask for re-
signing. All reasons above could lead to paper consumption and time out in contract signing.

According to regulations, filing of POF in China Securities Investment Fund Association is
necessary. The regulatory authorities have privileges on tracking business operations. Archived
contracts will benefit in conducting pre-product, in-product, and ex-product supervision. The regulatory
authorities can figure out problems such as fraud, insider trading and illegal agency holding in the first
place.

In the end, after the signatures of contracts among managers, custodians and investors, the contracts
are required to preserve for another decade after they are expired. Obviously, the long range of
preserving need large resource consumption, including the space and people for caring without
considering the paper aging, loss and leaking. Besides, if needed, searching among bunches of papers
is inefficient in most cases.

† Data comes from China Securities Investment Fund Association

To solve the problems above, we put forward a shared permission blockchain based electronic
contract signing and data recording system named FutureText. FutureText will help us in the following
aspects.

Firstly, FutureText supports online signing of electronic contracts, which means the reduction of
the cost in printing, delivering and preserving. Besides, FutureText enhances the trust and safety on
tripartite contracts.

Secondly, with decentralization, non-tamperability and traceability of blockchain, FutureText is
good at information sharing and procedure tracing.

Finally, FutureText is access to the regulatory authorities for supervision.

3 Related Work
In recent years, many scholars have researched the application of electronic contracts from the

perspective of both law and technology. Y. K. Zhou[1] demonstrates the legitimacy of electronic
contracts in the form of data, and proposes that the validity of electronic contracts should be based on
functions, not the uniformity of forms. T. Ge[2] denoted the necessary conditions for an electronic
contract to be legally valid evidence. It should satisfy the pre-preparation, the clear record of the matter,
and it is able to trace the whole process of signing the contract afterwards. X. M. Zhen[3] discussed the
legal issues faced by electronic contracts, from the withdrawal and revocation of electronic
commitments, electronic signatures and the use of electronic contracts as evidence.

Besides the law and technology, many scholars also studied the application of cryptography to
achieve electronic contract signing. R. Xu, et al[4] designed an electronic contract service platform
based on tamper-resistant technology. The platform ensured the uniqueness of the user identity, the
integrity of the transmitted data, and the immutability of signatures on contracts by combining user
identity authentication, electronic contract encryption transmission, and notarization participation. J. L.
Cai, et al[5] created a multi-party cross-regional and all-weather contract signing platform. The platform
combined functions including identification, digital certificate management, electronic signing of
contracts, and electronic deposit of contracts. Z. C. Yin, et al[6] explored the feasibility of using
blockchain technology in electronic contract signing, and implemented the electronic contract signing
system based on the Hyperledger blockchain platform. J. T. Gu, et al[7] analyzed the development of
e-commerce in China, as well as the current status of e-contract, electronic signature and online
negotiation in China. J. T. Gu, et al[7] also proposed an electronic contract signing system based on
electronic signature to realize the electronic life cycle of the signing process, including signing, saving
and verification. A. Burunova et al[8] compared four different electronic contract models. Different
models were designed for different application scenarios

Along this line, this paper will continue to study electronic contracts signing and data recording and
propose another solution to the issues for the Privately Offered Fund business.

4 System Design Overview
4.1 System Architecture

The system architecture is divided into four layers as shown in Figure 1:

Figure 1: System Architecture of FutureText

1) First Layer: Physical Layer. The first layer is the Physical Layer, which consists of physical
machines at local and virtual machines offered by Cloud Service Providers. The system uses a
hybrid deployment mode combining physical machines and cloud hosts. In order to satisfy
byzantine fault tolerance, the system deploys at least four blockchain nodes. In addition, an extra
machine is needed to provide external access and deploy web applications.

2) Second Layer: Blockchain Layer. The second layer is Blockchain Layer, which means blockchain
as a service (BaaS). The blockchain platform support virtual machines such as EVM (Ethereum
Virtual Machine) and JVM (Java Virtual Machine). The Smart Contract and Transaction Executor
support solidity language and Java language. The key information, such as contract hash, signing
body is shared on blockchain with privacy protecting among related parties. We can interact with
Smart Contract via Java API. Besides, message publication and subscription is essential for
communication with outsiders.

3) Third Layer: Interface Layer. The third layer is Interface Layer, which mainly provides a way to
interact with the application. FutureText can call methods in Smart Contract through Java program.
Besides, if the blockchain platform provides a variety of interfaces for querying blockchain data,
this layer can be used to obtain data stored on blockchain through block hash or transaction hash.

4) Fourth Layer: Application Layer. The fourth layer is Application Layer, which is the core part of
the FutureText. The Application Layer mainly consists of electronic contracts signing and data
recording management model. We will discuss that model later in this section.

4.2 Shared Permission Blockchain: Hyperchain
Our work is based on the shared permission blockchain platform: Hyperchain. Hyperchain is a

leading enterprise-level blockchain platform developed by Hangzhou Qulian Technology. As shown in
Figure 1, Hyperchain provides a package of solutions: Privacy Protect and Multi-level Encryption help
improve safety; Message Publication and Subscription guarantee the interactivity; Smart Contract and

Physical Machines or Cloud such as AliYun, Tencent Cloud etc.

Consensus
Algorithm

Peer to Peer
Network

Transaction
Executor

Interface
Layer

Multi-level
Encryption

Application
Layer

Physical
Layer

Ledger

Smart
Contract

Application Interface(API)

Privacy
Protect

Message Publication & Subscription Message Queue WebSocket

Virtual Machine

JVMEVM

Blockchain
Layer

Electronic contracts signing and data recording management model

Virtual Machines allow users to update the Ledger and write details onto blockchain. The Consensus
Algorithm is robust byzantine fault tolerance (RBFT). RBFT makes sure nodes in blockchain network
process transactions submitted from clients in the same sequence. The consensus process of RBFT is
shown in Figure 2.

Figure 2: Procedure of RBFT Consensus Algorithm

Suppose there are 3f+1 nodes in blockchain network, where f is the node number. RBFT can tolerate
errors of f nodes. In Figure 2, Primary node is selected dynamically. Primary node manages the package
of clients’ transactions in sequence. Replica nodes are only for backup, which consist with Primary
node in transaction. Once the Primary node is out of service, one of the Replica nodes will automatically
become the new Primary node.

As the case showed in Figure 2, RBFT procedure has six stages. In Transaction stage, Client sends
transaction via its connected node. In Batch stage, Replica 3 receives the transaction and broadcasts the
transaction to Primary 1 instead of all nodes. Primary 1 receives the transaction and verifies it. Once
verified, Primary 1 batch processes all transactions and package them in sequence. In PrePrepare Stage,
Primary 1 broadcasts the packaged transactions to all nodes. In Prepare Stage, all Replicas receive the
packaged transactions and send Prepare message to other nodes, if Replica agrees with the batching and
ordering result of Primary 1. In Commit stage, if Replica receives 2f Prepare messages and verifies the
legality from Primary 1 the Replica will send Commit messages to other nodes. In Write Back stage, if
Replica receives 2f+1 Commit messages, it means all nodes reach a consensus. Replicas will call
transaction executor and compare it with the result from Primary. Once verified, the results are written
into the ledger.

The benefits of adopting RBFT has two main aspects. First, when receiving a new transaction,
Replica forwards it to Primary instead of the entire network and that reduces the bandwidth
consumption. Second, the illegal transactions will be removed if the Primary finishes validation. It
makes sure that illegal transactions do not consume the blockchain network computing power.
Therefore, by applying RBFT, Hyperchain can effectively alleviate the burden of the whole network.

According to practice, Hyperchain has a high-performance of at most 10000 transactions per second
and its best transaction execution time is around 300 milliseconds.

4.3 Electronic Contracts Signing And Data Recording Model
The electronic contracts signing and data recording model used in FutureText consists of four

modules as shown in Figure 3.

Client

Primary 1

Replica 2

Replica 3

Replica 4

Transaction Batch PrePrepare Prepare Commit Write Block

Figure 3: Contracts signing and data recording management model

(1)The General Module. In this module, Permission is responsible for controlling who has the right to
see full details of the contract. In FutureText, only the involved parties and the supervisory authority
have access to privacy details. Archiving step will package the encrypted contracts and remove it away
from current blockchain.
(2)The Account Module. In this module, we have Register and Login service. Register allows personal
users and agencies to submit identification information. Login provides access to the certificated users
and agencies.
(3)The Contract Module. In this module, we have Certification, Sign, Signature and Audit. Certification
checks the identification of personal users and agencies using EID (electronic identity) or EBL
(electronic business license). Sign uses their signature to get the contracts into effect. Signature is
responsible for managing users’ signature. Audit is to validate the contracts.
(4)The Supervisor Module. This module includes Contract Query, Contract Download, Contract
Verification and Contract Record. By Contract Query, users can see the history records of the contracts.
Users can download the contracts using Contract Download. Contract Verification is used to compare
the uncertain contracts with its fingerprint. Contract Record is used to send the completed contracts to
the supervisory authority.

All the four modules contributes to our final system.

5 The Specific program
5.1 Network Topology

Figure 4 shows the network topology. All nodes together form a shared permission blockchain.
Institutional participants have choices to become either a full node or a trading node. A full node stores
all data, while a trading node chooses to store its own data. All nodes participate in consensus process.
Personal users and other institutional investors are connected to shared permission blockchain through
gateway provided by Agencies.

The organizational governance of the rest institutions is as follows. Banks act as fund custodian in
the business; Law Authority witnesses the transaction and save essential evidence; Market Regulation
and Supervisory Authority are in charge of supervision.

Contract
Module

Certification

Sign

Signature

Account
Module
Register

Login

General
Module
Permission

Archiving

Supervisor
Module
Contract Query

Contract Download

Contract Verification

Audit Contract Record

Figure 4: FutureText network topology

5.2 Authentication
Authentication is extremely important in FutureText. It is the key to access the system and service.

Most services provided including contract signing, fund transfer and judicial disputes depends on
authentication. There are two ways for participants to show self-certificated identity:

 For Personal users, electronic identification (EID) is essential when he or she wants to join
FutureText. The First Institute of Public Security develops EID. Thus, EID has incomparable
advantages over other technologies in terms of authority, security, universality and privacy for it is
uniqueness. It perfectly meets our security and undeniable needs in the Privately Offered Fund market.

For institutional users, Electronic Business License (EBL) is essential to identify themselves. The
EBL is issued by the Market Regulation. It is also the legal certificate for the market subject to obtain
the subject qualification.

The process of authentication is divided into four main steps and is shown in Figure 5:

Figure 5: Authentication flow

Step1: Personal user submits EID while institutional user submit EBL.
Step2: FutureText forwards the request to the corresponding authority. EID is sent to the Ministry

of Public Security while EBL is sent to the State Administration for Market Regulation.
Step3: The Ministry of Public Security and the State Administration for Market Regulation offer

interfaces to validate EIDs and EBLs to see whether they are real or forged. Corresponding results will
be sent back to FutureText.

Shared
Permission
blockchain

A

L

M

B

A

S

Agency 1 Agency2

Bank

Supervisory AuthorityMarket Regulation

Law Authority

Personal
user

gateway

Personal
user Shared

Permission
blockchain

2. Submit authentication request

(1)Submit register
request using EBL

4.Return pass or not

3.Return authentication result

1.Submit register
request using EID

(4)Return pass or not

I

L

M

B

M

S

FutureText

Institutional
user

(2)Submit certification request

(3)Return certification result

Step4: According to the results, FutureText will generate accounts for those approved. Otherwise,
it will close the register request before new information is submitted. Meanwhile, FutureText will
inform appliers the results.

5.3 Transaction Data Structure
Blockchain is sequentially linked from the back to the front by blocks containing transaction

information. The block containing transaction information is pivotal in FutureText. As shown in Figure
6, the block is divided into Head Info and Transaction List. Some fixed size block metadata is recorded
in the Head Info while transactions is recorded in Transaction List.

Figure 6: Shared permission block

In Head info, Father Block means the previous block’s Ledger Hash. Ledger Hash stands for the
hash value of the block. Status Hash represents the status of contract account. Transaction Hash stands
for the hash of transaction list included in the block. Receipt Hash is the hash generated by transaction
executor.

As for Transaction List, the definition is shown in Table 1.

Sequence No:100 Head Info

Father Block: 0xaf2c8dcc43f215c3e
Ledger Hash: 0x4db56bc8ec23727a
Status Hash: 0x07e06cd36318dfb1d
Transaction Hash: 0xb39121c853f893208
Receipt Hash: 0x78444b02bdf9131fa

Transaction List

Sequence No:101 Head Info
Father Block: 0x4db56bc8ec23727a
Ledger Hash: 0x87991da9cad2cd3a
Status Hash: 0x30fe37a90cc2a7b1a
Transaction Hash: 0x32a4c1a1825ea314b
Receipt Hash: 0x3dbe34166552a00a

Transaction List

Shared Permission Block

Table 1: Transaction List definition
Filed name Description bytes
Version Transaction structure definition version information 3
Transaction Hash Hash identifier produced according to the transaction content 32
Tx Initiator Address Used to identify the initiator 20
Tx Receiver Address Used to identify the receiver 20
Smart Contract Call Call the contract function flag variable
Timestamp Approximate time of the transaction 8
Random Randomly generated integer 8
Signature Signature information generated by the user 65

5.4 Signature of Tripartite Contracts
In this section, we will discuss how a tripartite contract is completed. Suppose there are three users

named A, B and C. A is the manager; B is an investor while C is the custodian. Each user has its own
private key and public key. For privacy and safety, the private key is encrypted and saved locally. Users
can only decrypted their private key using password. Users’ public keys are open across blockchain.

In FutureText, we use two kinds of encryption methods. One is symmetric encryption and the other
is asymmetric encryption. Symmetric encryption requires the same key for both encryption and
decryption. Asymmetric encryption have two keys in pair. One is public key and the other is private
key. We usually use the public key to encrypt and the private key to decrypt.

To denote the workflow of FutureText, here is a case in Figure 7. User A prepares a template contract
D. Due to privacy considerations, the contract needs to be encrypted before putting on blockchain. We
use symmetric encryption method and the key is generated randomly. The encrypted contract file is
ciphertext M. User A hopes User B and C can get the content of the contract. So he encrypts the random
number with A’s, B’s and C’s public key to generate three encrypted keys. User A need to sign on the
ciphertext M using his private key. After that, user A uploads three encrypted keys, the ciphertext M
and File with signature of user A on the blockchain.

Figure 7: Signature with A’s fingerprint

Contract D

Encrypted private key
En(Pri(A)) Signature of A

Shared Permission Blockchain

Upload

File with Signature of A

Symmetric encryption Ciphertext M

Random number

A’s Public key Pub(A)

B’s Public key Pub(B)

C’s Public key Pub(C) Random password encrypted with Pub(C)

Random password encrypted with Pub(B)

Random password encrypted with Pub(A)

Ciphertext M

A Enters password

private key Pri(A)

As another contractor of contract D, user B needs to verify the signature of user A after receiving
the contract. If the signature is correct, user B will trust that the contract reflects the true will of user A
and the contract is not tampered. By using user B’s private key, he can get the random number to decrypt
the verified ciphertext M. The procedure is shown in Figure 8.

Figure 8: B verifies A’s signature

If user B agrees with the content of contract D, then user B will do the similar thing as user A did
before, shown in Figure 9. The specific process only needs to be done once again. Finally, we get a file
with signature of user A and B, which means both of them have completed the process of signing.

Figure 9: Signature with B’s fingerprint

Contract D

Encrypted private key
En(Pri(B))

Signature of B

Shared Permission Blockchain

Upload

File with Signature of ARandom number

Verified Ciphertext M
A’s Public key Pub(A)

Random password encrypted with Pub(B)

Ciphertext M

B Enters password

private key Pri(B)

File with Signature of B

Decrypt

Decrypt

Encrypted private key
En(Pri(B)) Signature of B

Shared Permission Blockchain

Upload

File with Signature of A

Symmetric encryption

Ciphertext M1

Random number

A’s Public key Pub(A)

B’s Public key Pub(B)

C’s Public key Pub(C) Random password encrypted with Pub(C)

Random password encrypted with Pub(B)

Random password encrypted with Pub(A)

Ciphertext M1

A Enters password

private key Pri(B)

File with Signature of A and B

Next, User C signs on the contract. He or she just need to sign the ciphertext M with the private
key and add the signature to the file already signed by of A and B. The practice is similar to Figure 8
and Figure 9. For short, we will not discuss with repetition.

At last, we have completed the tripartite contract.

5.5 Contracts Storage
As mentioned in Section 5.4, all contracts are encrypted on blockchain to protect the privacy.

Stakeholders may want to search, analysis and review the contract in plaintext. Thus, a heterogeneous
storage is designed, as shown in Figure 10. There are six steps to store the contracts.

Figure 10: Data storage Flow

Step1: Manager uploads the document via client.
Step2: FutureText generates a random number to encrypt the contract file, and it is synchronized on

blockchain.
Step3: FutureText sends back encrypted random number, block ID, transaction ID, and timestamp.
Step4: FutureText forwards the returned information to participants.
Step5: Both encrypted contract and unencrypted contract are stored on local database.
Step6: Database returns the written result.
Through writing on blockchain and the database heterogeneously, FutureText makes sure that data

is consistent and stakeholders search the contracts though the local database. All contracts will be
submitted to the supervisory authority and kept for another decade even after contacts are expired.
Contract details are only available for the signature parties, as well as the supervisory authority.

6 Experiment Evaluation
In this section, we test the efficiency and latency of FutureText. Our experiments use 5 servers, with

4 servers form the shared permission blockchain and 1 server acts as application server. All servers are
the same in configuration. All of them have 8 core, 16G memory and 500G hard drive. The shared
permission blockchain is Hyperchain 1.6.15. The application server is MySQL 14.14.

The experiments conducted can be divided in two perspectives: transaction per second (TPS) and
the latency. The results are as bellows in figure 11. TPS is among 1000 to 2000 pre second and the
system latency is around from 400 to 500 milliseconds. Considering the signing frequency of the

6. Return
success or not

Participant Parties

FutureText

B

B

BShared Permission
Blockchain

Database

4. Return block ID,
transaction ID, timestamp
and random number

1. Manager uploads
contract via client

2. Generate random number,
using the number to encrypt
the contract 3. Return block ID, transaction ID,

timestamp and random number

5. Encrypted and
plaintext contract
written into local
database

Privately Offered Fund contracts, we think it can meet the daily needs. Besides, the delay of FutureText
is acceptable.

Figure 11: Performance and latency of FutureText

7 Conclusion and Future Work
This paper presents an economical and convenient way for the Privately Offered Fund business

based on shared permission blockchain. By introducing an electronic contracts signing and data
recording model in FutureText, it alleviates the inefficient problems caused in signing paper printed
tripartite contracts in traditional methods. Our system largely reduced the natural and human resource
consumption by replacing the paper work with online synchronous cooperation contracts. Meanwhile,
we raise an operable authentication method to validate the identification of participants. Finally, a
heterogeneous data storage method is applied to provide immediate search and record of signed
contracts. The heterogeneous data storage model also relieves the intense query and reply of FutureText.

Never the less, there are still future works for improving. We encountered little problems of storing
files on blockchain. It seems becoming a bottleneck for FutureText. Considering the scale and contracts
of the Privately Offered Fund market, it implies that large amount of storage usages will be required in
the near future. Besides, Hyperchain claims it can reach 10000 TPS in different complexity of the
business logic. The performance of FutureText is only one tenth of it.

To solve the potential problems, we may consider partial synchronization and put specific structured
data instead of completely raw files onto blockchain. We will also consider optimizing our smart
contract to achieve better performance and lower latency.

References
[1]Y. K. Zhou, “On the Formal Issues of Electronic Contract Data Messages,” China Academic

Journal Electronic Publishing House, 2019, 06, pp.95.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20

Tr
an

sa
ct

io
n

Pe
r S

ec
on

d/
M

ill
ise

co
nd

Number of Experiments

Performance

Latency

[2]T. Ge, “Analysis of the burden of proof of online electronic contract signing,” Technology and
law, 2018(01), pp.38-44.

[3]X. M. Zhen, “Research on Several Legal Issues of Electronic Contract,” China Academic Journal
Electronic Publishing House, 2018, 10, pp.227.

[4]R. Xu, X. J. Meng, F. Ma, et al, “Electronic signing service platform based on tamper-resistant
technology,” Computer system application, 2018, 27(4), pp.39-46.

[5]J. L. Cai, W. C. Wang, “Electronic contract signing system,” Information Technology and
Standardization, 2018(09), pp.77-80.

[6]Z. C. Yin, H. Li, “Electronic contract solution based on Hyperledger technology,” Modern
computer, 2018(04), pp.86-89.

[7]J. T. Gu, X. D. Zhu, “Designing and Implementation of an Online System for Electonic Contract
Negotiation Based on Electronic Signature,” Journal of Software, 2014, 9(12), pp.3020-3027.

[8]A. Burunova, A Ponomarev, N. Teslya, “Enactable Electronic Contracts In E-Commerce: Models,
Technologies And Architectures,” Proceeding of the 24th Conference of FRUCT Association.

	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 System Design Overview
	4.1 System Architecture
	4.2 Shared Permission Blockchain: Hyperchain
	4.3 Electronic Contracts Signing And Data Recording Model

	5 The Specific program
	5.1 Network Topology
	5.2 Authentication
	5.3 Transaction Data Structure
	5.4 Signature of Tripartite Contracts
	5.5 Contracts Storage

	6 Experiment Evaluation
	7 Conclusion and Future Work
	References

