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Abstract. Let’s define δ(x) = (
∑

q≤x
1
q
− log log x−B), where B ≈ 0.2614972128 is the

Meissel-Mertens constant. The Robin theorem states that δ(x) changes sign infinitely

often. Let’s also define S(x) = θ(x) − x, where θ(x) is the Chebyshev function. It is

known that S(x) changes sign infinitely often. Using the Nicolas theorem, we prove that
when the inequalities δ(x) ≤ 0 and S(x) ≥ 0 are satisfied for some number x ≥ 127,

then the Riemann Hypothesis should be false. However, the Mertens second theorem

states that limx→∞ δ(x) = 0. Moreover, we know that limx→∞ S(x) = 0. In this way,
this work could mean a new step forward in the direction for finally solving the Riemann

Hypothesis.

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part 1

2 [1]. Let Nn = 2× 3× 5× 7× 11× · · · × pn denotes

a primorial number of order n such that pn is the nth prime number. Say
Nicolas(pn) holds provided∏

q|Nn

q

q − 1
> eγ × log logNn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the nat-
ural logarithm, and q | Nn means the prime number q divides to Nn. The
importance of this property is:

Theorem 1.1 [6], [7]. Nicolas(pn) holds for all prime number pn > 2 if
and only if the Riemann Hypothesis is true.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

where p ≤ x means all the prime numbers p that are less than or equal to x.
We use the following property of the Chebyshev function:

Theorem 1.2 [10]. For x > 1:

θ(x) = (1 + ε(x))× x
where ε(x) < 1

2×log x .
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Let’s define S(x) = θ(x)− x. We know this:

Theorem 1.3 [3].

lim
x→∞

θ(x)

x
= 1,

which it could be restated as:

lim
x→∞

S(x) = 0.

Nicolas also proves that

Theorem 1.4 [7]. For x ≥ 121:

log log θ(x) ≥ log log x+
S(x)

x× log x
− S(x)2

x2 × log x
.

It is a known result that:

Theorem 1.5 [8]. S(x) changes sign infinitely often.

The famous Mertens paper provides the statement:

Theorem 1.6 [5].

log

∏
q≤x

q

q − 1

 =
∑
q≤x

1

q
+ γ −B −

∞∑
k=2

(
1

k
×
∑
q>x

1

qk

)

where B ≈ 0.2614972128 is the Meissel-Mertens constant.

Let’s define:

δ(x) =

∑
q≤x

1

q
− log log x−B

 .

Robin theorem states the following result:

Theorem 1.7 [9]. δ(x) changes sign infinitely often.

In addition, the Mertens second theorem states that:

Theorem 1.8 [5].

lim
x→∞

δ(x) = 0.

Putting all together yields the proof that when the inequalities δ(x) ≤ 0
and S(x) ≥ 0 are satisfied for some number x ≥ 127, then the Riemann
Hypothesis should be false.
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2 Central Lemma

Lemma 2.1 For x ≥ 127:

S(x)

x
< 1.

Proof By the theorem 1.2, ∀x ≥ 127:

S(x)

x
=
θ(x)− x

x

=
(1 + ε(x))× x− x

x

=
x× ((1 + ε(x))− 1)

x
= (1 + ε(x)− 1)

= ε(x)

<
1

2× log x

< 1.

3 Main Theorem

Theorem 3.1 If the inequalities δ(x) ≤ 0 and S(x) ≥ 0 are satisfied for
some number x ≥ 127, then the Riemann Hypothesis should be false.

Proof For some number x ≥ 127, suppose that simultaneously Nicolas(p)
holds and the inequalities δ(x) ≤ 0 and S(x) ≥ 0 are satisfied, where p is the
greatest prime number such that p ≤ x. If Nicolas(p) holds, then∏

q≤x

q

q − 1
> eγ × log θ(x).

We apply the logarithm to the both sides of the inequality:

log

∏
q≤x

q

q − 1

 > γ + log log θ(x).

We use that theorem 1.6:

log

∏
q≤x

q

q − 1

 =
∑
q≤x

1

q
+ γ −B −

∞∑
k=2

(
1

k
×
∑
q>x

1

qk

)
.

Besides, we use that theorem 1.4:

log log θ(x) ≥ log log x+
S(x)

x× log x
− S(x)2

x2 × log x
.
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Putting all together yields the result:∑
q≤x

1

q
+ γ −B −

∞∑
k=2

(
1

k
×
∑
q>x

1

qk

)
> γ + log log θ(x)

≥ γ + log log x+
S(x)

x× log x
− S(x)2

x2 × log x
.

Let distribute it and remove γ from the both sides:∑
q≤x

1

q
− log log x−B −

∞∑
k=2

(
1

k
×
∑
q>x

1

qk

)
>

1

log x
×
(
S(x)

x
− S(x)2

x2

)
.

We know that δ(x) =
∑
q≤x

1
q − log log x−B. Moreover, we know that(
S(x)

x
− S(x)2

x2

)
≥ 0.

Certainly, according to the lemma 2.1, we have that S(x)
x < 1. Consequently,

we obtain that S(x)
x ≥ S(x)2

x2 under the assumption that S(x) ≥ 0, since for

every real number 0 ≤ x < 1, the inequality x ≥ x2 is always satisfied. To
sum up, we would have that

δ(x)−
∞∑
k=2

(
1

k
×
∑
q>x

1

qk

)
> 0

because of
1

log x
×
(
S(x)

x
− S(x)2

x2

)
≥ 0.

However, the inequality

δ(x)−
∞∑
k=2

(
1

k
×
∑
q>x

1

qk

)
> 0

is never satisfied when δ(x) ≤ 0. By contraposition, Nicolas(p) does not hold
when δ(x) ≤ 0 and S(x) ≥ 0 are satisfied for some number x ≥ 127, where
p is the greatest prime number such that p ≤ x. In conclusion, if Nicolas(p)
does not hold for some prime number p ≥ 127, then the Riemann Hypothesis
should be false due to the theorem 1.1.

4 Discussion

The Riemann Hypothesis has been qualified as the Holy Grail of Mathemat-
ics [4]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US 1,000,000 prize for the first correct so-
lution [2]. In the theorem 3.1, we show that if the inequalities δ(x) ≤ 0 and
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S(x) ≥ 0 are satisfied for some number x ≥ 127, then the Riemann Hypothesis
should be false. Nevertheless, the well-known theorem 1.8 states that

lim
x→∞

δ(x) = 0.

In addition, the theorem 1.3 states that

lim
x→∞

S(x) = 0.

Indeed, we think this work could help to the scientific community in the global
efforts for trying to solve this outstanding and difficult problem.
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