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Abstract. Blockchain technology has been gaining popularity as a plat-
form for developing decentralized applications and executing cross-orga-
nisational processes. However, extracting data that allows analysing the
process view from blockchains is surprisingly hard. Therefore, blockchain
data are rarely used for process mining. In this paper, we propose a
framework for alleviating that pain. The framework comprises three main
parts: a manifest specifying how data is logged, an extractor for retriev-
ing data (structured according to the XES standard), and a generator
that produces logging code to support smart contract developers. Among
others, we propose a convenient way to encode logging data in a compact
form, to achieve relatively low cost and high throughput for on-chain log-
ging. The proposal is evaluated with logs created from generated logging
code, as well as with existing blockchain applications that do not make
use of the proposed code generator.
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1 Introduction

Blockchain technology has been gaining popularity as a platform for developing
decentralized applications (DApp) [14] that are, amongst others, used to exe-
cute cross-organisational processes [13,3,10,7]. In such cases, process mining [1]
can assist developers in (i) understanding the actual usage of the DApp, (ii)
comparing it to the intended usage, and (iii) adapting the DApp accordingly. A
prerequisite for the application of process mining technology is the availability
of event data, e.g., stored in the form of XES logs. Yet, extracting such data
from DApps is surprisingly hard, as demonstrated by Di Ciccio et al. [2] on the
attempt of extracting meaningful logs from the Caterpillar on-chain BPMS [5].
The challenges derive from a mismatch between the logged data and the event
data required for analysis, e.g., minimising logged information keeps the cost and
data volume manageable. Challenges also arise from the underlying technology
itself, e.g., Ethereum’s block timestamps refer to the time when mining started,
not to the block production. Moreover, as the DApp’s source code is by default
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not shared, process participants are potentially left with cryptic information that
is hard to decode.

To alleviate this pain, we propose a framework for extracting process event
data from Ethereum-based DApps that utilize Ethereum’s transaction log as a
storage for logged data. The framework comprises three main parts:

– The manifest enables users to capture and share their view of how data
logged by a DApp should be interpreted from a process perspective. It is
input to all other parts and is processed without access to the source code.
Thus, our framework eliminates the need to share DApp code. To support
users in developing a manifest, our framework includes a validator, which
checks if a particular manifest adheres to the rules outlined in this paper.

– The extractor retrieves logged data from the Ethereum transaction log, ap-
plies the rules from the manifest to transform the logged data into event
data, and formats this data according to the XES standard [4]. As a con-
sequence, the extracted data can readily be imported into process mining
tools from academia and industry (e.g., ProM, Celonis, ProcessGold, Disco,
Minit, QPR, Apromore, and RapidProM).

– The generator automatically creates logging functionality from the mani-
fest. It further includes proposals for several optimisations, such as a means
for encoding logged data in the compact form of a bitmap, which helps in
achieving relatively low cost and high throughput for on-chain logging.

The proposal is evaluated with logs created from generated logging code, as well
as with an existing DApp. It was created by developers other than the authors of
this paper and thus demonstrates the universal applicability of the framework.

In the following, we first introduce relevant background information on pro-
cess mining, blockchain and logging in Section 2. The approach is introduced in
Section 3 and evaluated in Section 4, before Section 5 concludes.

2 Background

2.1 Process Mining and Process Event Data

Process Mining. The roots of process mining lie in the Business Process Man-
agement (BPM) discipline where it was introduced as a way to infer workflows
and to effectively use the audit trails present in modern information systems.
Evidence-based BPM powered by process mining helps to create a common
ground for business process improvement and information systems development.
The uptake of process mining is reflected by the growing number of commercial
tools including Celonis, Disco, ProcessGold, Minit, myInvenio and QPR. Exam-
ples like Siemens where over 6,000 people are using process mining to improve
operations in many areas attest the value of process mining for businesses.

Process mining is widely used to diagnose and address compliance and per-
formance problems. There are three main types: (i) process discovery, (ii) con-
formance checking, and (iii) model enhancement. Starting from raw event data
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Fig. 1: XES meta-model (cf. [4])

process discovery creates process models that reflect reality and that include all
or only the most frequent behavior. Conformance checking combines modeled
and observed behavior. By replaying event data on a process model (modeled
or automatically learned) one can diagnose and quantify deviations, e.g., to find
root causes for non-compliance. Model enhancement is used to improve or extend
a process model using event data. Process mining can also be used in an online
setting and to predict compliance or performance problems before they occur.
There are hundreds of process discovery, conformance checking, and model en-
hancement techniques that rely on model representations like Petri nets, directly-
follows graphs, transition systems, process trees, BPMN and statecharts.

Event Data. Event data is represented as an event log which provides a view
on a process from a particular angle. Each event in an event log refers to (i)
a particular process instance (ii) an activity, and (iii) a timestamp. There may
be various other attributes referring to costs, risks, resources, locations, etc.
The XES standard [4] defines a format for storing such event logs. Due to its
widespread use and tooling support, it is a suitable target format for blockchain
logged data, enabling analysts to examine DApps using process mining.

Fig. 1 shows the XES meta-model as specified in [4]. The meta-model is
oriented towards the general notion of logs, traces, and events. A log represents
a process and consists of a sequence of traces which record information about
individual process instances. Each trace contains a sequence of events referring
to activities executed within the process instance. Logs, traces and events are
described by attributes that have a key, a type, and a value. Attributes can also
be nested, i.e., an attribute can contain other attributes. The XES standard does
not prescribe terms for the keys and is thus free of domain semantics. However,
to assign meanings to attribute keys, extensions can be included that define the
meaning and the type associated with specific keys. Moreover, global values can
be specified for any attribute at the event or trace level. Setting the global value
v for the event (trace) attribute a means that if the value of attribute a is not
specified for an event (trace), it implicitly takes value v. Finally, event (trace)
classifiers comprise one or more attributes and each event (trace) with the same
combination of values for these attributes belongs to the same class.

2.2 Ethereum: A Blockchain System

Blockchain. A blockchain is an append-only store of transactions, distributed
across computational nodes and structured as a linked list of blocks, each con-
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taining a set of transactions [14]. Blockchain was introduced as the technology
behind Bitcoin [8]. Its concepts have been generalized to distributed ledger sys-
tems that verify and store any transactions without coins or tokens [11], without
relying on any central trusted authority like traditional banking or payment sys-
tems. Instead, all participants in the network can reach agreement on the states
of transactional data to achieve trust.

A smart contract is a user-defined program that is deployed and executed on
a blockchain system [9,14], which can express triggers, conditions and business
logic [13] to enable complex programmable transactions. Smart contracts can be
deployed and invoked through transactions, and are executed across the block-
chain network by all connected nodes. The signature of the transaction sender
authorizes the data payload of a transaction to create or execute a smart con-
tract. Trust in the correct execution of smart contracts extends directly from
regular transactions, since (i) they are deployed as data in a transaction and are
thus immutable; (ii) all their inputs are through transactions and the current
state; (iii) their code is deterministic; and (iv) the results of transactions are
captured in the state and receipt trees, which are part of the consensus.5

Ethereum. Ethereum is a specific blockchain system that allows users to deploy
and execute smart contracts. We focus on this system as it is the longest-running
blockchain with expressive smart contract capabilities. It provides an interface
to store information in the transaction log. In general, smart contracts can only
write information to the log, but not retrieve information from it. However, appli-
cations connected to an Ethereum node can query the log for information. This
enables the implementation of an event-driven DApp architecture where smart
contracts share information and applications react to published information.

Smart contracts for Ethereum are typically written in Solidity. This language
provides write access to the transaction log via so called events. Events are
specified through their signature including the event’s name and a list of typed
parameters (as of Solidity version 0.5.x only fixed-length types can be used), but
no return type. Events also do not have an implementation. Instead, when an
event is emitted, the event’s signature and parameter values are automatically
written to the transaction log as a structured log entry. There is also a low-level
interface that allows developers to flexibly define the structure of log entries,
but the burden for retrieving those entries is increased. In practice this interface
is rarely used as revealed by our analysis of 21,205 different real-world smart
contracts which we downloaded from Etherscan6, covering a period of 10 months
starting in June 2018. Within these smart contracts, we found more than 300,000
event emissions, but only 127 calls to the low-level interface. Hence, we decided
to focus on extracting log entries whose structure follows that of the Solidity
events and leave the full support for the low-level interface to future work.

The conceptual schema of the data from the transaction log is shown in Fig. 2.
A log entry represents an emitted event. We use the term log entry instead
of event to avoid confusion with XES events (see Section 2.1). A log entry is

5 Summary adapted from [12].
6 http://etherscan.io

http://etherscan.io


Mining Blockchain Processes: Extracting Process Mining Data... 5

Signature

function name : string

Parameter

position : integer

Block

hash : bytes[32]
timestamp : long

Transaction

hash : bytes[32]
sender : string
recipient : string [0..1]
payload : bytes[32] [*]
id : integer

Log Entry

id : integer
Value

SmartContract

address : string

<<enumeration>> 
SolidityType

bool
int
address
bytes[1..32]
string

bytes

bytes[32]

*1
*

1

*
1

* 1

* 1

0..1

 successor

1

 predecessor

1
0..1

1

*

1*

Fig. 2: EVM logging meta-model

associated with its signature, the smart contract that emitted the log entry and
the transaction from which the log entry originated. The id of a log entry is only
unique within the transaction and a smart contract is identified by its address.
The signature contains the function name and a list of parameters defined by
their position and type. Moreover, the transaction log contains the value for each
parameter. For the transaction, we can retrieve its hash, the payload, the sender
of the transaction, and the recipient, if available. Similar to the log entry, the
id of a transaction is unique within the block that included the transaction. For
such a block, we can load the hash and the timestamp as well as the predecessor
and successor (which do not exist for the first and the latest block, respectively).

3 Approach

A high-level overview of our framework for extracting event data from Ethereum’s
transaction log is presented in Fig. 3. The extractor is a rule-based transforma-
tion algorithm that converts a set of log entries from the transaction log into files
containing XES logs. The transformation rules can be flexibly adapted via the
manifest which e.g., specifies which smart contracts to consider, how to filter
events, which timestamps to include and where to find the concept (activity)
name. The extractor can generate XES logs from any smart contract, given a
fitting manifest, and given the required information has been logged in the first
place. The validator supports the creation of a manifest by checking if it fol-
lows the rules of the manifest specification. Moreover, from a given manifest
the generator automatically produces Solidity code for logging, which can then
be integrated into smart contracts. This is particularly useful when using the
feature mentioned in the introduction: compact encoding of data in a bitmap
(details in Section 3.2). Following, we outline the different elements in detail.

IEEE 1849-2016BloXESEthereum

Transaction
Log

XES
Files

Manifest

Smart 
Contractexecute

emit
Extractor

Generator
Validator

Fig. 3: High-level overview of the components
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Algorithm 1: Extraction algorithm

Input: manifest
Output: xesF iles

1 logs = {}
2 foreach smartContractMapping in manifest do
3 logEntries← SelectLogEntries(scm)
4 foreach logEntry in logEntries do
5 foreach logEntryMapping in smartContractMapping do
6 if logEntryMapping.signature = logEntry.signature then
7 forall elementMapping in logEntryMapping do
8 attributeMappings = elementMapping.mappings
9 attributes← Extract(entry, attributeMappings)

10 if isEventMapping(elementMapping) then
11 AddEventAttributes(attributes, logs)
12 else if isTraceMapping(elementMapping) then
13 AddTraceAttributes(attributes, logs)

14 xesF iles← CreateXesFiles(smartContractMapping, xesF iles)

3.1 The Extractor and the Manifest

The extraction algorithm, Algorithm 1, takes the manifest as input and first
initializes an empty set of logs (line 1). This set can be viewed as the root of a
log hierarchy where each child is a log that, according to the XES standard (see
Fig. 1), contains traces and events. Next, the algorithm iterates over the smart
contract mappings from the manifest (lines 2-13) and for each such mapping
selects the log entries from the transaction log (line 3). Information is extracted
from each log entry (lines 4-13) by applying the log entry mappings whose sig-
nature is equal to that of the entry (lines 5-6); the signature can thus be seen as
the head of a mapping rule. Two signatures match if they have the same func-
tion name, the same number and types of parameters in the same order. For all
matching log entry mappings, the algorithm maps the log entry to XES elements
(lines 7-13). As one log entry might contain information for multiple traces or
events, there can be multiple element mappings in a log entry mapping. For each
element mapping (line 7-13) the algorithm extracts the attributes from the log
entry according to the respective attribute mappings (lines 8-9). If the element
mapping is a trace mapping (event mapping) the algorithm adds the attributes
to a new or an existing trace (event) in the log hierarchy (lines 10-13). Lastly,
the algorithm creates the XES files from the logs (line 14) and returns the files.
Below, we describe the steps of the algorithm and explain how the steps can be
configured using the manifest. Further, we discuss exception handling. We also
present a consolidated manifest meta-model and details of the validator.

Selecting Log Entries. For a smart contract mapping, log entries are selected
based on two criteria. First, the log entries must have been written by a transac-
tion that is included in a block from a specified block range [fromBlock, toBlock].
If no block range is defined, the log entries of the 1000 most current blocks are
retrieved. Second, the log entries must have been emitted by a smart contract
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Table 1: Support for casting solidity into XES types (‘+’ = cast supported; ‘!’
= cast supported, runtime exception possible; ‘-’ = cast not supported)

XES Types
Solidity Types int float date string boolean id list

int ! ! ! + - - -
string - - - + + ! -
address - - - + - - -
byte + + - + + - -
bytes - - - + + - -
boolean - - - + + - -
array - - - - - - !

whose address is in a set of predefined addresses and there must be at least one
address. Note that by specifying multiple addresses, a developer can apply the
same transformation rules to different smart contracts. Finally, log entries are
retrieved in the order in which they were written into the transaction log and
the created XES elements follow this ordering.

Extracting Attributes. For every attribute mapping, the developer needs to
specify the attribute’s name and a value builder. A value builder is a function
that (i) takes a log entry, (ii) returns a value, and (iii) is applied to each log entry
the element mapping is executed for. A value builder is configured by specifying
its function name and the return type, an XES type that becomes the type of
the attribute. Moreover, the builder’s parameters, a list of key-value pairs, must
be set. Static parameters have a fixed value, whereas value builder parameters
specify another value builder. We provide the following value builders:

– A static value is a fixed value that is assigned to the attribute. We support
static values for all XES types except lists.

– Parameter casts access a log entry parameter or attributes of the associated
block or transaction identified by their name and cast the value of the respec-
tive Solidity type into the XES type. Table 1 lists the supported type casts.
Some type casts might result in a runtime exception, if the parameter value
violates the range of allowed values, e.g., only string values that represent
UUIDs can be cast into ID attributes [4].

– A string concatenation returns a formatted strings that joins the values of
value builders that return a string, int or id.

– Value dictionaries map the value returned by another value builder to at-
tribute values. Value maps can be specified for arbitrary XES type combi-
nations and must include a default value.

– Bit mappings are used when data from the smart contracts is compressed
before being written into the transaction log. This is typically achieved by
assigning bit ranges of a single log entry parameter to certain variables. We
support the decompression of such bit ranges. To this end, the value of a
specified bit range of length l is at runtime mapped to an integer value p
from the interval [0, 2l). Then, p is converted into a meaningful value based
on a value array with 2l elements from which we return the pth value.
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Table 2: XES extension for identity attributes (name: “Identity”, prefix: “ident”,
URI: “https://www.data61.csiro.au/ident.xesext”)

Key Definition Type Cardinality Element

pid Identifies a particular process string 0-1 event, trace
piid Identifies a particular process instance string 0-1 event, trace
eid Identifies a particular event string 0-1 event

Appending Attributes to the Log Hierarchy. The processing of an element
mapping for a log entry results in a set of attributes which belongs to the same
XES element. We determine the identity of this element, add the attribute set
to it, and integrate it into the log hierarchy in the following way. Each attribute
set is considered to contain identity attributes. In particular, we defined three
identity attributes within our custom ident XES extension (see Table 2). The
ident:pid attribute identifies the process that an event or a trace belongs to and
each distinct pid-value results in a separate log element. The ident:piid attribute
determines the identity of a trace element within a certain log element, i.e., the
global identity of a trace element is determined by its pid and piid-values. Finally,
the ident:eid attribute establishes the identity of an event within a trace, i.e.,
the global identity of an event is given by the pid, piid, and eid-values. If the
extracted attribute set does not include any of the identity attributes, we add
those attributes and set their values to a default value.

We then use these attributes to add the entire attribute set to the log hierar-
chy. First, we select the log element with the respective pid-value. If such a log
element does not exist, we create a new one with the respective pid-value, add
it to the hierarchy, and select it. Next, we look for the trace element with the
respective piid-value within the selected log element. Again, if we cannot find
such an element, we create a new one, add it to the log element, and select it.
If the element mapping is a trace mapping, we append the attribute set to the
trace. Otherwise, we select or create an event element within the selected trace
element based on the specified eid-value and append the attributes to this ele-
ment. Following this strategy, we can integrate log entries from different smart
contracts within the same log hierarchy. If no ident-attributes were specified, the
algorithm generates one log element, containing one trace element and all log
entries are mapped to individual event elements under this trace element.

Creating XES Files. The last step is to create XES files. Here, we create one
XES file per log in the log hierarchy and set the file’s name to the log’s pid-value.
To fully support the XES standard [4] and to relieve developers of having to edit
the generated XES files, we allow users to specify XES extensions, global values
and classifiers within the manifest. Each of these elements can be bound to a
range of pids. If pids are specified for an element, the element is only included
in the XES files corresponding to one of those pids. Otherwise, the element is
added to all XES files. The inclusion of those features requires developers to
adhere to the constraints that they impose on XES attributes. We discuss those
constraints in more detail in the context of the validator (see below).
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Fig. 4: Manifest meta-model

Runtime Exceptions. Some of the operations can result in runtime exceptions.
The first exception type can occur when casting Solidity to XES types and was
already discussed above. The second type refers to situations where the value
of a certain XES attribute is set multiple times. While we restrict developers
to set the value for an attribute only once within an element mapping, the
problem can occur when adding attributes to existing elements. To circumvent
this problem, the user can specify one duplicate handling strategy per attribute
mapping. There are three different strategies: (i) throw an exception, (ii) replace
the old value, and (iii) ignore the new value. Lastly, an extension exception is
thrown in cases where an XES extension attribute is added to the log hierarchy,
but the extension is not defined for the respective pid. Hence, extensions should
only be restricted to certain pid-values, if the pid values are known in advance.

Developers can select one of three exception handling strategies for the entire
manifest: (i) determine the algorithm (default option), (ii) ignore exceptions,
and (iii) write exceptions to the XES logs. When the last option is selected,
exceptions are converted into attributes. In case of a type cast exception and an
extension exception, the algorithm creates a list with the key “error” and adds
it to the attribute set. The exception information is added as a separate string
attribute to the list’s values section and the attribute’s key is set to the key of
the attribute that caused the exception. If there are multiple exceptions when
processing one attribute mapping, the exceptions are grouped in the same error
list. In case of a duplicate handling exception, we also create an error list which
contains a string attribute per exception. In contrast to the other exceptions, we
add the list to the attribute for which the value is set multiple times.

The Manifest. A consolidated view of the manifest which has been introduced
throughout the introduction of the extraction algorithm is presented in Fig. 4.

The Validator. The validation of a manifest is a two-step process. First, we
check whether the manifest’s structure adheres to the meta-model from Fig. 4.
To this end, we ensure that (i) all manifest elements are structured according to
their meta-model type, (ii) the relationships between the model elements adhere
to those specified in the meta-model, (iii) all required elements, relationships
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and attributes are present, and (iv) that specified values have a valid format,
e.g., that the specified Solidity types or XES types are known.

Second, we investigate the definition and usage of attributes as well as log
entry parameters. To this end, we check that all combinations of attribute keys
and types specified in attribute mappings, extensions and global values are con-
sistent. We also verify that for each attribute that contains a prefix there is an
extension that defines this attribute. Following the XES standard [4], we validate
that there is a global value for all attribute keys used within classifier definitions.
Further, we check the validity of the value builder specifications including their
parameters. If a static value is specified, its string representation from the mani-
fest must be castable into the specified type. For parameter casts, we check that
they reference a valid parameter or attribute and that the type cast is supported
(see Table 1). For all other value builders, we recursively verify that the return
type of its child value builders is compatible with the expected input types, e.g.,
the concatenation value builder only allows the use of xs:string, xs:id, and xs:int.

While the validator verifies that the generated XES documents adheres to
the XES standard, it cannot be guaranteed that all log entries can be processed,
as discussed above in the context of runtime exceptions.

3.2 The Generator

We support developers of new smart contracts by generating logging function-
ality from the manifest. First, we use the signatures specified in the log entry
mappings to generate Solidity events. This step is straightforward, as the sig-
nature specification in the manifest corresponds to the representation of events
in Solidity’s contract application binary interface specification, or ABI, the in-
terface specification of smart contracts which is shared with users that want to
interact with the respective smart contracts.

Additionally, we implemented the generation of logging functionality for value
dictionaries or bit mapping builders specified in the manifest. As mentioned in
Section 2.2, smart contract developers can log various information via Solidity’s
event parameters. On the public Ethereum blockchain, there is a cost involved
for emitting smart contract events, which is proportional to the size of event
parameters values being emitted (for example, a parameter of type string may
cost more to log than an int parameter, if the string value is longer than 32
bytes). Therefore, developers can choose to log smart contract event parameters
of a smaller type, such as int, then define a value dictionary in the manifest to
map the Solidity event parameter values to a corresponding description of the
value. In such cases, the generator produces (i) the Solidity event signature, (ii)
an enum of the dictionary values which are mapped to the event parameter, and
(iii) a logging function which accepts an enum value, then emits the Solidity
event with the corresponding parameter value. An example of Solidity code
generated from a manifest value dictionary is provided in Listing 1.1.

Another pattern that developers can use to further reduce the smart contract
event log size is to encode multiple pieces of information into one log entry
parameter with a small type such as int. To do this, they can specify a bitmap
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1 contract XESLogger {

2 event GitCommit(uint authorId , bytes32 sha);

3 enum Author {FIRST , SECOND , THIRD , FOURTH };

4 uint[] enumValsAuthor = [1000, 2000, 3000, 4000];

5 function logCommit(Author author , bytes32 sha) internal {

6 uint authorId = enumValsAuthor[uint8(author)];

7 emit GitCommit(authorId , sha);

8 }

9 }

Listing 1.1: Solidity generated from manifest with value dictionary builder

value builder in the manifest, which maps a subset of consecutive bits in a log
entry parameter to a range of values. This is essentially a generalization of the
bitmapping strategy adopted in earlier works of one author [3,6]. To effectively
encode multiple pieces of information, multiple bitmap value builders can be
defined on separate bit ranges of the same parameter.

As an example, assume we define a manifest for extracting events from Shirt-
Produced log entries, which are emitted each time a new shirt is produced in a
textile factory. Three attributes related to a shirt, Size, Fabric and Quality are
extracted from the same parameter, encodedAttributes. The first 3 bits (offset 0
to 2) are used to encode eight size classifications, bits 3-5 encode six shirt fabric
types, and bits 6-7 represent four quality classes. Table 3 shows the bit mapping
definitions for this example. From the respective value builder, the generator
can produce a Solidity logging function which takes Quality, Fabric and Size
input parameters as enums, and emits an event whose value correctly encodes
the above information according to the mapping defined (see Listing 1.2).

1 contract XESLogger {

2 enum Quality {LOW , NORMAL , HIGH , EXCELLENT };

3 enum Fabric {COTTON , LINEN , WOOL , SILK , POLYESTER , BLEND };

4 enum Size {XXS , XS, S, M, L, XL, XXL , XXL};

5 event ShirtProduced(uint256 shirtId , uint256

encodedAttributes , uint256 batchId);

6 function logShirtProduced(uint256 shirtId , Quality q,

Fabric fabric , Size size , uint256 batchId) internal {

7 uint256 qMask = uint256(q) * (2**(6));

8 uint256 fabricMask = uint256(fabric) * (2**(3));

9 uint256 sizeMask = uint256(size) * (2**(0));

10 uint256 encodedAttributes = qMask | fabricMask |

sizeMask;

11 emit ShirtProduced(shirtId , encodedAttributes , batchId);

12 }

13 }

Listing 1.2: Solidity generated from manifest with bit mapping builders
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Table 3: Encode info in Solidity event parameter with bit mapping builders
Quality - Bit range: 6..7 Fabric - Bit range: 3..5 Size - Bit range: 0..2

Key Value Key Value Key Value

00 low 000 cotton 000 2x small

01 normal 001 linen 001 extra small

10 high 010 wool 010 small

11 excellent 011 silk 011 medium

100 polyester 100 large

101 blend 101 extra large

110 2x large

111 3x large

4 Implementation, Evaluation, and Discussion

4.1 Implementation

We implemented the framework. The extractor and generator have been writ-
ten in JavaScript for node.js, and manifests are specified in JSON format. The
extractor takes several parameters as command line inputs:

– rpc: the URL of the blockchain node to query through the RPC interface

– m: manifest specification

– output: folder for storing extracted XES files

The complexity of the manifest file strongly depends on the complexity of the
analyzed contracts. The manifest for our case study below has approximately
230 lines; the one for the code generation evaluation has about 65 lines.

4.2 Code Generation Evaluation

We tested the generator of logging code with a proof-of-concept demonstration
of the textile factory example from Section 3.2. To this end, we first wrote the
manifest specification, used it to generate logging code, then wrote a simple
smart contract using this logging code and deployed it on a Geth Ethereum
client using Ganache (a test mode that simulates an Ethereum blockchain in
memory, but is otherwise identical in behavior). We then ran a test script against
this Geth client, to ‘produce’ shirts according to a ‘production schedule’ which
generated Solidity logs, and finally used the extractor to extract XES logs.

In this part of the evaluation, we tested the functional correctness of the
generator and the extractor, which we found to be operating as per the design:
the XES logs contained the same data in the same order as the production
schedule. The tests of value and bit mapping functionality were successful as
well: data was encoded as assumed, in 8 bits per shirt.
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1 event Birth(address owner , uint256 kittyId , uint256

matronId , uint256 sireId , uint256 genes);

2 event Transfer(address from , address to , uint256 tokenId);

3 event Pregnant(address owner , uint256 matronId , uint256

sireId , uint256 cooldownEndBlock);

4 event AuctionCreated(uint256 tokenId , uint256 startingPrice ,

uint256 endingPrice , uint256 duration);

5 event AuctionSuccessful(uint256 tokenId , uint256 totalPrice ,

address winner);

6 event AuctionCancelled(uint256 tokenId);

Listing 1.3: Event definitions in the CryptoKittie contract

4.3 Case Study: CryptoKitties

CryptoKitties is “a game centered around breedable, collectible, and oh-so-
adorable creatures we call CryptoKitties”7. While not Ethereum’s most serious
application, it is a well-known example of a DApp (that is primarily based on
smart contracts), has been used heavily at times (likely due some of the kitties
being sold for thousands of dollars), and has been in operation since December
2017. It also was developed without involvement of any of the paper’s authors,
making it a suitable candidate for demonstrating the framework’s applicability.

A CryptoKitty is the Ethereum version of a Tamagotchi. It is a digital asset
owned by an Ethereum account and it can be traded. A CryptoKitty can breed
new CryptoKitties. To this end, the owner can trigger the impregnation of a
cat when having access to a second cat (either by owning it or by having the
permission of the cat’s owner). After a cat becomes pregnant, the owner must
publish a “birth helper request” asking an independent account to trigger the
birth in exchange of a certain amount of Ether. A CryptoKitty is represented by
an identifier and its DNA, from which its features and appearance are derived.
The source code of the CryptoKitties smart contracts is available on etherscan8

and Listing 1.3 summarizes the event definitions from the source code.
We extracted two logs from these smart contracts with our framework and

implementation9. The genesis log stems from the first 3000 blocks after creation
of the smart contract at block 4605167. The everyday log is based on log entries
from a random block range containing 13000 blocks, starting from block 6605100.
In both cases, we only extracted information about the lifecycle process of the
cats. Thus, we grouped all process instances in the same log and the ID of a cat
is used as the process instance ID, i.e., the lifecycle of each cat is viewed as an
independent process instance. Moreover, each log entry is mapped to individual
events. Per auction and transfer-related log entry, we created one event in the
trace of the cat represented by the tokenId. The birth and pregnant log entries

7 https://www.cryptokitties.co/, accessed 30/5/2019
8 https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d#

code, Accessed: 17/05/2019
9 Generated XES files and manifest available under https://doi.org/10.25919/

5d242b0be3384

https://www.cryptokitties.co/
https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d#code
https://etherscan.io/address/0x06012c8cf97bead5deae237070f9587f8e7a266d#code
https://doi.org/10.25919/5d242b0be3384
https://doi.org/10.25919/5d242b0be3384
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(a) Genesis (b) Everyday

Fig. 5: Directly-Follows Graphs (DFGs) generated using ProM from both logs

involve multiple cats (matronId, sireId, kittyId) and are hence mapped to events
in each cat’s lifecycle. Note that choosing the pid, piid and eid-values is critical
and a general concern for process analytics, on blockchain data or otherwise.
For example, in our case study, we take the viewpoint of an individual kitty,
but this may not be suitable for analysing the complete population. To gener-
ate different views, our framework allows analysts to materialize their choice of
identity attributes in the manifest, and for some applications multiple manifests
with different choices might be required to obtain the desired views.

We mined the extracted event flows from both logs as depicted in Fig. 5.
Fig. 5a shows that the developer started with two kitties initially, and bred
them 3000 times for bootstrapping the game. The behavior during the everyday
use (Fig. 5b) shows considerably more variation and includes all types of events.

While we could delve into a deep analysis of kitty behaviour, the purpose
of the case study in this paper was to test if the proposed framework can be
applied to existing smart contracts – which we deem to be the case. We success-
fully extracted event logs, stored them in the XES format, and loaded them for
analysis in both ProM and Disco.

5 Conclusion and Discussion

In this paper, we addressed the problem of applying process mining to smart
contracts and focused on extracting meaningful event data from blockchain sys-
tems, in particular from Ethereum transaction logs. Our proposed framework
includes (i) the manifest specification for defining transformation rules that are
automatically validated; (ii) the extractor that transforms log entries from a
transaction log to XES logs; and (iii) the generator that produces high-level log-
ging functionality for user-defined DApps. We showed that the generator pro-
duces logging functionality adhering to the log entries and data compression
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rules from the manifest. Further, we successfully applied the extractor to logs
created from generated code, as well as logs from a pre-existing, long running
and heavily used DApp, demonstrating its broad applicability.

There are a few limitations that impact the applicability of our framework.
First, we focused on Ethereum and disregarded other blockchain systems which
might use different logging mechanisms, potentially requiring a generalization of
our framework. Second, our framework only offers a certain set of functionality;
e.g., there are currently five types of value builders; complex conditions for fil-
tering attributes and elements are not supported; and we do not fully support
the low-level logging interface. While this emphasizes the need for further gen-
eralization, we also plan to improve the extensibility of the framework and to
release it as open source, enabling users to adapt it to their needs. Further, pro-
cess mining can be used for many purposes; here we only used it for exploration
of the data, to demonstrate the feasibility of our framework. In future work, we
will apply the tool to more use cases and purposes.
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