
EasyChair Preprint
№ 3785

Parkinson’s Disease Diagnosis: Towards
Grammar-based Explainable Artificial Intelligence

Federica Cavaliere, Antonio Della Cioppa, Angelo Marcelli,
Antonio Parziale and Rosa Senatore

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 7, 2020

Parkinson’s Disease Diagnosis: Towards
Grammar-based Explainable Artificial Intelligence

F. Cavaliere, A. Della Cioppa, A. Marcelli, A. Parziale, R. Senatore
NCLab, DIEM, University of Salerno

Salerno, ITALY

Abstract—The basic technology that reinvents ma-
chines to personalize human experiences is Machine
Learning (ML), a branch of Artificial Intelligence (AI)
and a strong buzzword in today’s digital world. Despite
its success, the most significant limitation of ML is
the lack of transparency behind its behavior, which
leaves users with a poor understanding of how it makes
decisions, such it is the case for Deep Learning models.
If the final user does not trust a model, he will not
use it. This is especially true in medical diagnosis
practice: physicians cannot simply use the predictions
of the model but must trust the results it provides.
This work focuses on the automatic early detection
of Parkinson’s disease (PD), whose impact on both
the individual’s quality of life and social well-being is
constantly increasing with the aging of the population.
To this end, we propose an explainable approach based
on Genetic Programming, called Grammar Evolution
(GE). This technique uses context-free grammar to
describe the language of the programs to be generated
and evolved. In this case, the generated programs are
the explicit classification rules for the diagnosis of the
subjects. The results of the experiments obtained on
the publicly available HandPD data set show GE’s high
expressive power and performance comparable to those
of several ML models that have been proposed in the
literature.

Index Terms—Explainable Artificial Intelligence,
Grammatical Evolution, Parkinson’s Disease, Super-
vised Learning by Classification, e-Health.

I. Introduction
Machine Learning (ML), a branch of Artificial

Intelligence (AI), has gained increasing interest from the
scientific community, since it allows to support humans
in the decision-making processes regarding several fields.
However, despite their success, ML based approaches
have some limitations and disadvantages [1]. Among
them, the poor explainability of ML complex models
has hampered their extensive application in those fields
where the impact of the decision is critical, as it is
the case for medical application. Indeed, the more a
decision can influence people’s lives, the more important
it is to understand which are the factors that lead to
that particular decision. Physicians cannot simply use the
predictions of the model but should also trust the results
obtained. To trust them, physicians have to understand
how and why these decisions were made and compare
these reasons with their previous domain knowledge.
Consequently, the black-box approach implemented by

most of ML classification systems, which do not clearly
indicate the adopted decision rules, has hampered their
use by clinicians.
In order to tackle this issue, here we adopted an

evolutionary technique based on Genetic Programming
(GP), called Grammatical Evolution (GE)[2], which allows
to derive automatically the explicit rules exploited for
pattern classification in a decision tree form, that makes
them highly interpretable.
We applied GE for the automatic diagnosis of

Parkinson’s disease(PD) through handwriting analysis.
In particular, we evaluated the GE approach on a
publicly available dataset, the HandPD [3], which contains
handwriting samples drawn by healthy subjects and PD
patients. Therefore, the aim of this work is two-fold:
evaluate whether the GE approach is able to ensure
good classification performance while providing explicit
decision rules, and provide some insights for the design
of a non-invasive, inexpensive and quick-to-administer
diagnostic tool for the diagnosis of PD.
PD affects millions of people around the world, and

one of its main symptoms is the impairment of the
motor abilities. Mostly used diagnostic tools include
psychometric tests, neuroimaging, and cerebrospinal fluid
examination, though these methods are time-consuming,
expensive and invasive, respectively.
Handwriting production, being a motor task that

involves skilled control of complex movements, is
influenced by the activity of the basal ganglia [4], which
is compromised in people affected by the disease [5]. The
analysis of handwriting in people with PD has led to a
greater understanding of the motor processes occurring in
pathological and physiological conditions [6, 7, 8, 9, 10].
Furthermore, the use of handwriting analysis for

supporting the diagnosis or assessing the stage of
the disease is receiving increasing interest in the last
decades[11]. Several ML techniques have been exploited
for the automatic classification of handwriting samples
contained in the HandPD dataset. Most of previous
work have applied standard ML classification approaches
(such as Gaussian Naive Bayes, K-Nearest Neighborhood,
Support Vector Machine, Decision Tree, and AdaBoost
Classifier) [3, 12], exploited Deep or Convolutional
Neural Network[13, 14]. and combined feature selection
algorithms to the classification methods [15, 16]. However,

the classification techniques adopted in previous work
are characterized by reduced level of interpretability of
the exploited classification rules. In previous work we
have already afforded the explainability problem related
to the standard ML approaches, and investigated the
performance of another GP approach, called Cartesian
Genetic Programming (CGP), which allows to both
classify handwriting samples and obtain explicitly the
classification criteria adopted [17, 18].

With the same aim, here we have investigated the
performance of the GE approach, combined with the
use of Automatically Defined Functions (ADFs) [19],
trying to manage the trade-off between performance and
explainability once the design is guided by the latter.

The remainder of the work is organized as follows.
Section II-A describes the GE technique, discusses the
ADF’s concept and reports the design of the grammars
chosen to solve the problem under consideration. Section
III describes the parameter configuration of GE and the
data set used in the experiments, reports the achieved
performance, and discuss obtained results. Eventually,
section IV draws the conclusions and sketches some future
steps of this work.

II. Method
A. Grammatical Evolution

Grammatical Evolution is a population-based
evolutionary algorithm that allows the automatic
generation of programs by exploiting the principles from
molecular biology to the representational power of formal
grammars [2]. It is a grammar-based form of Genetic
Programming [20] that adopts a genotype-to-phenotype
mapping process in order to generate the output programs.

GE does not perform the evolutionary process on
the actual programs, which are explicitly encoded by
individuals as in the case of Genetic Programming,
but rather on variable-length binary strings representing
the individuals of population. The construction of a
syntactically correct program from a binary string is
guided by the aim of maximizing a fitness function.

The mapping process requires the definition of a Backus
Naur Form (BNF) grammar in order to evolve code in any
language, and ensures its syntactic correctness.It allows to
express grammar of a language in the form of production
rules [21]. In BNF a grammar is represented by the tuple
{N, T, P, S}, where N is the set of nonterminals, T is the
set of terminals, P is the set of production rules that maps
the elements of N to T and S is the starting nonterminal
symbol. The selection of an appropriate production rule is
executed starting from the 8-bits codons of the genome,
which are represented by integer values. In particular, a
rule is selected by using the eq. (1):

R = |RNT |%Ci (1)

where R is the chosen production rule, |RNT | is the
number of rules for current non-terminal, % is the symbol

of modulo operation, Ci is the codon non-negative integer
value, i.e. an element of chromosome array C.
Each time a production rule has to be selected to

map from a nonterminal, another codon is read. In this
way, the system traverses the genome and the starting
chromosome (array) is transformed into a grammatically
correct function. During the genotype-phenotype mapping
process it is possible that individuals run out of codons and
in this case, individual is wrapped and codons are reused.
This processing draws inspiration from the phenomenon of
gene overlap, which has been observed in many organisms.
In GE, every time the same codon is expressed, it will
always generate the same integer value, but depending
on the current non-terminal to which it is applied, it
can involve the selection of a different production rule.
Nevertheless, the process guarantees that every time the
genotype of an individual is mapped to its phenotype, the
same output is generated.
The automatic generated program that perform better

in term of a fitness function has a greater chance
of transmitting its DNA to the next generation of
chromosomes. From this point of view, GE does not
differ much from other evolutionary algorithms, since the
chromosomes are crossed and mutated to generate the next
generation of chromosomes, which are then mapped on the
grammar and tested with respect to the fitness function.

B. Automatically Defined Functions
A common strategy adopted for solving complex

problems is the divide-et-impera approach: the original
problem is splitted in smaller and more easy to solve tasks
whose solutions are combined hierarchically to solve the
problem as a whole [22].
Automatically Defined Functions are the tool adopted

in GP to allow the decomposition of large problems into
modules [19]. It has been shown that GP equipped with
ADFs outperforms standard GP on many problems [23].
The adoption of ADFs for GE allows the evolution of

both the functions and the main program that calls the
evolving functions. ADFs allow a dynamic grammatical
approach: multiple functions are defined and they are
created dynamically with a variable number of arguments.
A grammar can be further deepened by allowing ADFs
to recursively call themselves or other ADFs in order to
increase their expressiveness.

C. Classification Rule
The aim of this paper is to define a classifier for the

diagnosis of Parkinson’s disease that is easily explainable
and highly performing. A general, simple and performing
classification rule produces a binary diagnosis f as linear
combination of simpler binary classifiers adf , each of which
evaluates a single feature x. Equation 2 synthesizes the
classification rule f weighting the effect of each feature:

f = a1·adf1(x1)+a2·adf2(x2)+...+aN ·adfN (xN) > T (2)

where f is the overall binary diagnosis (if true, the subject
is classified as parkinsonian, otherwise as healthy), N is
the number of features, x1, ..., xN are the features, T is a
positive threshold, a1, ..., aN are weights of each feature’s
function and adf1, ..., adfN are binary diagnoses taken on
each feature.

D. Grammar design
Each individual of the population is a decision rule

that has explicitly defined the weights, the functions and
the threshold. It follows that, as the population evolves
from generation to generation, the internal structure of
the functions, the weights and the threshold value are
optimized during the evolution with the aim of maximizing
the fitness function. In particular, we chose as fitness
function the accuracy of the classifier.

The way individuals evolve depends on how the
grammar was designed and a great attention was paid
to the complexity of the internal structure of the ADFs.
We have defined two grammars that are able to produce
instances of the general classification rule described by
eq. 2) whose difference is in the design of the ADFs. For
both grammars, ADFs have a tree structure similar to a
decision tree so that they could be easily understood by
humans. In particular, each function has a tree structure
consisting of a recursive chain of if-else constructs and
return declarations. What really changes between the
two grammars is, for each ADF, the maximum depth of
each tree and the complexity of the conditions of the
constructs inside the tree. The grammar based on deeper
and complex ADF was named Full while the other one,
based upon ADF with simpler constructs was named
Reduced. Both the grammars share the set of production
rules reported in Fig. 1 while Fig. 3 and Fig. 2 report the
production rules for the Reduced and the Full grammar,
respectively. The comparison of performance of both the
grammars is helpful to understand if a tradeoff exists
between performance and interpretability.

The Reduced grammar limits the nesting of if-else
constructs to a maximum of 5 and, therefore, it defines the
maximum depth reachable by each ADF. The constructs of
such trees consist only of conditions of comparison between
the pure values of the features (already non-negative
numbers) and non-negative numbers.

The Full grammar doesn’t limit the maximum depth
that can be reached by a tree. In this way, evolution may
bring out trees with a depth greater than five if they lead
to more performing solutions. Furthermore, the constructs
of such trees consist only of conditions of comparison
between the values of the characteristics or functions of
them and non-negative numbers.

III. Experimental setup and results
A. GE implementation

The GE was implemented using PonyGE2 [24].
Table I reports the value of the parameters used in

〈p〉 ::= 〈defp〉{::}〈callp〉
〈defp〉 ::= def p():{:{::} 〈defadf0 〉 {::} 〈defadf1 〉

{::} 〈defadf2 〉 {::} 〈defadf3 〉 {::} 〈defadf4 〉
{::} 〈defadf5 〉 {::} 〈defadf6 〉 {::} 〈defadf7 〉 {::}
〈defadf8 〉 {::} 〈codep〉:}

〈callp〉 ::= result=p()
〈defadf0 〉 ::= def adf0(index):{:{::}〈code〉{::}:}
〈defadf1 〉 ::= def adf1(index):{:{::}〈code〉{::}:}
〈defadf2 〉 ::= def adf2(index):{:{::}〈code〉{::}:}
〈defadf3 〉 ::= def adf3(index):{:{::}〈code〉{::}:}
〈defadf4 〉 ::= def adf4(index):{:{::}〈code〉{::}:}
〈defadf5 〉 ::= def adf5(index):{:{::}〈code〉{::}:}
〈defadf6 〉 ::= def adf6(index):{:{::}〈code〉{::}:}
〈defadf7 〉 ::= def adf7(index):{:{::}〈code〉{::}:}
〈defadf8 〉 ::= def adf8(index):{:{::}〈code〉{::}:}
〈f 〉 ::= 〈sign〉〈a〉*adf0(0) 〈sign〉〈a〉*adf1(1)
〈sign〉〈a〉*adf2(2) 〈sign〉〈a〉*adf3(3)
〈sign〉〈a〉*adf4(4) 〈sign〉〈a〉*adf5(5)
〈sign〉〈a〉*adf6(6) 〈sign〉〈a〉*adf7(7)
〈sign〉〈a〉*adf8(8)

〈codep〉 ::= return 〈f 〉 > 〈number〉
〈sign〉 ::= + | -
〈bool〉 ::= True | False
〈c〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Fig. 1: Production rules belonging to both the Reduced
and the Full Grammar.

〈code〉 ::= 〈if-else〉 | if 〈cond〉:{:return 〈bool〉:}
{::}else:{:return 〈bool〉:}

〈if-else〉 ::= if 〈cond〉 :{:{::} 〈code〉 {::} return
〈bool〉 :}{::} else:{:{::}〈code〉{::} return
〈bool〉:}

〈cond〉 ::= 〈arg〉>〈sign〉〈number〉 |
〈arg〉<〈sign〉〈number〉 | 〈arg〉==〈sign〉〈number〉

〈arg〉 ::= 〈fun〉(x[index]) | x[index]
〈fun〉 ::= sin | cos | tanh | sigmoid | rlog | psqrt
〈number〉 ::= 〈c〉〈c〉〈c〉〈c〉〈c〉〈c〉.〈c〉〈c〉〈c〉〈c〉
〈a〉 ::= 〈c〉〈c〉〈c〉.〈c〉〈c〉〈c〉

Fig. 2: Production rules belonging only to Full Grammar.

the experiments. The parameters that influence the
genotype-phenotype mapping process are the maximum
value assumed by a genome element (the Codon size),
and the maximum genome size (Max Genome Length).
The choice of these parameters depends directly on the
grammar chosen. The codon size depends on the maximum
number of choices, i.e. the production activities. Since we
set that the value of the maximum number of choices
to 10, and considering that the maximum codon size

〈code〉 ::= 〈p0 〉 | 〈p1 〉 | 〈p2 〉 | 〈p3 〉 | 〈p4 〉
〈p0 〉 ::= if 〈cond〉 :{: return 〈bool〉 :}{::} else :{:

return 〈bool〉 :}
〈p1 〉 ::= if 〈cond〉 :{: 〈p0 〉 :}{::} else :{: 〈p0 〉:}
〈p2 〉 ::= if 〈cond〉 :{: 〈p1 〉 :}{::} else :{: 〈p1 〉:}
〈p3 〉 ::= if 〈cond〉 :{: 〈p2 〉 :}{::} else :{: 〈p2 〉:}
〈p4 〉 ::= if 〈cond〉 :{: 〈p3 〉 :}{::} else :{: 〈p3 〉:}
〈cond〉 ::= x[index] > 〈number〉 | x[index] <

〈number〉 | x[index]==〈number〉
〈number〉 ::= 〈c〉〈c〉〈c〉〈c〉〈c〉.〈c〉〈c〉〈c〉〈c〉〈c〉
〈a〉 ::= 〈c〉〈c〉.〈c〉〈c〉

Fig. 3: Production rules belonging only to Reduced
Grammar.

TABLE I: Parameters Value.

Parameter Value
Population size 500
Codon size 100
Crossover probability 0.75
Generations (Reduced grammar) 500
Generations (Full grammar) 2000
Maximum Genome Length 500
Maximum Initial Tree Depth 10
Maximum Tree Depth 90
Selection Tournament
Tournament size 2

should not be much larger, we choose 100 as the value
for the maximum codon size. As regarding the maximum
genome size, higher values could cause the generation of
more complex rules (i.e. many nested if-else constructs in
the ADFs), with the consequence that such rules could
not emerge during the evolution. On the other hand,
reduced values of the maximum genome size could limit
the possibility of improving the fitness of the population
during the evolution, since it could cause the generation
of offspring made up of many invalid individuals (i.e.
individuals with incomplete mapping). Consequently, we
have evaluated a set of starting values, and different
increase amounts, adapting to the evolutionary process
(adaptive maximum genome size), and observed that
using a starting value of 500 for the maximum genome
size provides the best performance on the training test.
Furthermore, best performance is achieved for a size
increase of 15 every 50 generations of evolution stagnation,
or 50 generations in which an individual shows better
fitness compared to the last best.

B. Dataset

The experimentation has been performed using the
HandPD dataset [25]. HandPD is a public dataset that
consists of images extracted from handwriting samples of

TABLE II: Features description of the dataset used. HT:
handwritten trace, ET: exam template.
Feature Description
x0 RMS of the difference between HT and ET radius:

√
1
n

∑n
i=1(ri

HT − ri
ET)2

x1 Maximum difference between HT and ET radius: ∆max = argmaxi(|ri
HT − ri

ET |)
x2 Minimum difference between HT and ET radius:

∆min = argmini(|ri
HT − ri

ET |)
x3 Standard Deviation of the difference between HT and ET radius
x4 Mean Relative Tremor: 1

n−10
∑n

i=1(|ri
HT − ri−9

ET |)
x5 Maximum HT radius
x6 Minimum HT radius
x7 Standard Deviation of HT radius
x8 Number of times the difference between HT and ET radius changes sign

92 individuals: 18 healthy people (Healthy Group) and 74
affected by Parkinson’s disease (Patients Group).
Each individual was asked to draw four spirals and

four meanders. In particular, each individual received a
form with printed templates of spirals and meanders (ET)
and had to trace over them with a pencil producing
handwritten traces (HT). The dataset also contains the
features extracted for each image. In particular, each
spiral or meander image was represented by the 9 features
described in Table II and computed by comparing the
template image with the handwritten trace.

C. Protocol
The performance of the two proposed grammars were

evaluated by adopting a stratified k-fold cross-validation.
This method guarantees that the division in training and
test sets was done by preserving the sample distribution
in each class. In particular, we evaluated the performance
by choosing different values of k: 3, 7 and 10.
The stratified k-fold cross-validation was repeated 5

times by initializing the GE with 5 different seeds.
The GE was interrupted before the maximum number

of generation was reached if one of the following events
occurred: the accuracy of the best individual over the
training set was greater or equal than 90%, or a stagnation
of the evolution for more than 250 generations in case
of Reduced grammar and more than 1000 in case of the
Full one. In particular, the first condition is introduced for
avoiding the overfitting.

D. Results
Table III reports the results obtained by evolving

the Reduced and the Full grammars following the
protocol described above. The performance are computed
by evaluating spirals and meanders separately and by
averaging over the 5 repetitions of the stratified k-fold
cross-validation.
Table IV reports the ML approaches investigated in

other work for automatically classify the handwriting
samples of the HandPD dataset. For each work, the
set of applied ML approaches and the best performing
one is reported, with the corresponding mean accuracy
obtained in classifying spirals and meanders samples and
the number of features provided to the classifier. In [15]
a chi-squared procedure has been applied for feature

TABLE III: Results obtained with both the grammars as the number k of folders varies.

Reduced Full
Number of folders (k) Spirals Meanders Spirals Meanders

3 78.74± 0.26 79.10± 0.61 78.00 ±4.96 75.77± 0.00
7 78.85± 0.28 79.78± 0.50 77.99 ±4.96 75.77± 0.00
10 78.94± 0.44 79.77± 0.40 75.77 ±0.00 75.77± 0.00

selection on the set of features defined in [3]. In [13]
2048 features have been extracted using ResNet-50 and
used for classification. In [18] feature reduction has been
automatically performed by the CGP approach, and thus
6 out of 9 features were included in the classification
rules explicitly provided by the CGP. With the exception
of the approach exploited in [18], other work used ML
approaches that do not allow to explicitly extract the rules
employed for obtaining the classification. Indeed, one of
the key features of evaluating the performance of GE is
the possibility of obtaining also some insights into the
rationale behind the classification process, that could be
used for providing efficient guidelines for the diagnosis
of the disease. Furthermore, in terms of classification
performance, the GE approach outperforms most of
previous work, with the exception of [13]. It is noteworthy
that the number of features exploited in this approach is
much higher and makes the classification criteria hard to
interpret, and the method is characterized by a low level
of explainability.

IV. Conclusions
We have presented an approach to discriminate between

healthy subjects and PD patients by analysing their
handwriting production. The design was aimed at
developing a method capable of providing classification
rules that could be easily interpreted by the clinicians,
as it is intended to help them in the early diagnosis of
this type of neurodegenerative diseases. To achieve this
aim, we have adopted GE for building the classifiers, as
it provides classification rules in terms of chains of if-then
rules, thus mimicking very closely the diagnostic process
commonly adopted by clinicians. As it is widely recognized
that there exists a trade-off between explainability and
performance, we have designed a set of experiments for
comparing the performance of our approach with the
current state-of-the art on the HandPD dataset, which
was adopted in previous work. The results reported in the
previous section show that, when the same set of features
is adopted, our approach exhibits better performance than
its competitors, whose explainability is much lower. Only
one of the method proposed in the literature performs
better, but it works with a much larger set of features, and
its explainability is much lower in comparison to GE. The
experimental results also show that, differently from the
other methods proposed in the literature, our approach
does not exhibit significant difference in performance
depending on the type of handwriting (either spirals

or meanders) that is considered. By looking at the
best decision rule provided by our approach during the
k-fold cross validation (that are not reported here for
space limitation) we observed that the most discriminant
features for meanders are x2 and x0 that together are
capable of correctly discriminating more than 84% of the
samples. Moreover, the feature x0 is the most discriminant
feature for spiral and it correctly discriminates more
than 78% of samples. The ability to encode the direction
of movements aimed at reaching a sequence of targets
involves the correct functioning of the basal ganglia, which
is known to be impaired in people affected by PD. Here
we found that, both in drawing spirals and meanders, the
features that encode this ability are more discriminant
than the others. Consequently, these results suggest that
tests based on the analysis of handwriting production
should include tasks that are specifically designed to
test this ability, while tasks designed to highlight other
features, such as the ability to keep the line of writing
roughly horizontal or the presence of micrographia, may
not be as effective as the former in discriminating PD
from other neurodegenerative diseases or other conditions,
such as stress and depression that affect handwriting
production. As with regards to the two implementations
of our approach, the experimental results suggest that
the Reduced grammar achieves slightly better performance
than the Full one on both spirals and meanders. As the
former limits the depth of the tree, and therefore the
length of the chain of rules leading to the diagnosis,
this is a remarkable results, as it suggests that the
most explainable classifier is also the top performing one,
thus contradicting the general assumption that better
performance requires more complex, and therefore less
explainable, decision rules. Our current investigation is
therefore focused on this issue to verify whether there are
other paradigms based on evolutionary computation that
exhibits this enjoyable characteristics.

References
[1] D. Mengnan, L. Ninghao, and Xia H. “Techniques

for Interpretable Machine Learning”. In:
Communications of the ACM 63 (1 2020), pp. 68–77.

[2] M. O’Neill and C. Ryan. “Grammatical evolution”.
In: IEEE Transactions on Evolutionary Computation
4.5 (2001), pp. 349–358.

TABLE IV: Performance results obtained with other ML approaches.

Spirals Meanders
Work ML Approaches Best Classifier # of features Mean Accuracy (%) Best Classifier # of features Mean Accuracy (%)

[15] Gaussian Naïve Bayes, DT AdaBoost 2 72.46 AdaBoost 8 76.44KNN, SVM, AdaBoost

[13] ResNet-50, SVM OPF 2048 96.71 OPF 2048 96.31Bayes, OPF
[3] Naïve Bayes, SVM, OPF Naïve Bayes 9 64.23 SVM 9 66.72
[18] CGP CGP 9 57.51 CGP 9 76.60

[3] C. R. Pereira et al. “A new computer vision-based
approach to aid the diagnosis of Parkinson’s
disease”. In: Computer Methods and Programs in
Biomedicine 136 (2016), pp. 79–88.

[4] R. Senatore and A. Marcelli. “A neural scheme
for procedural motor learning of handwriting”.
In: International Conference on Frontiers in
Handwriting Recognition. 2012, pp. 655–660.

[5] M.R. DeLong and T. Wichmann. “Circuits and
Circuit Disorders of the Basal Ganglia”. In: Archives
of Neurology 64.1 (2007), pp. 20–24.

[6] J. E. McLennan et al. “Micrographia in Parkinson’s
disease”. In: Journal of the Neurological Sciences
15.2 (1972), pp. 141–152.

[7] H.L. Teulings and G.E. Stelmach. “Control of stroke
size, peak acceleration, and stroke duration in
Parkinsonian handwriting”. In: Human Movement
Science 10.2-3 (1991), pp. 315–334.

[8] A. Van Gemmert et al. “Parkinson’s disease and
the control of size and speed in handwriting”. In:
Neuropsychologia 37 (1999), pp. 685–694.

[9] M. P. Broderick et al. “Hypometria and bradykinesia
during drawing movements in individuals with
Parkinson’s disease”. In: Experimental Brain
Research 197.3 (2009), pp. 223–233.

[10] R. Senatore and A. Marcelli. “A paradigm for
emulating the early learning stage of handwriting:
Performance comparison between healthy controls
and Parkinson’s disease patients in drawing loop
shapes”. In: Human Movement Science 65 (2019),
pp. 89–101.

[11] G. Vessio. “Dynamic Handwriting Analysis for
Neurodegenerative Disease Assessment: A Literary
Review”. In: Applied Sciences 9.21 (Nov. 2019),
p. 4666.

[12] A. Parziale et al. “A decision tree for automatic
diagnosis of parkinson’s disease from offline
drawing samples: experiments and findings”. In:
International Conference on Image Analysis and
Processing. Springer. 2019, pp. 196–206.

[13] L. A. Passos et al. “Parkinson Disease Identification
Using Residual Networks and Optimum-Path
Forest”. In: IEEE 12th International Symposium on
Applied Computational Intelligence and Informatics.
2018, pp. 325–330.

[14] C. R. Pereira et al. “Deep Learning-Aided
Parkinson’s Disease Diagnosis from Handwritten
Dynamics”. In: 29th Conference on Graphics,
Patterns and Images. 2016, pp. 340–346.

[15] L. Ali et al. “Reliable Parkinson’s Disease Detection
by Analyzing Handwritten Drawings: Construction
of an Unbiased Cascaded Learning System Based on
Feature Selection and Adaptive Boosting Model”. In:
IEEE Access 7 (2019), pp. 116480–116489.

[16] P. Sharma et al. “Diagnosis of Parkinson’s disease
using modified grey wolf optimization”. In: Cognitive
Systems Research 54 (2019), pp. 100–115.

[17] R. Senatore, A. Della Cioppa, and A. Marcelli.
“Automatic diagnosis of Parkinson disease
through handwriting analysis: A cartesian genetic
programming approach”. In: IEEE Symp. on
Computer-Based Medical Syst. 2019, pp. 312–317.

[18] R. Senatore, A. Della Cioppa, and A. Marcelli.
“Automatic Diagnosis of Neurodegenerative
Diseases: An evolutionary approach for facing
the interpretability problem”. In: Information
(Switzerland) 10.30 (2019).

[19] E. Hemberg, M. O’Neill, and A. Brabazon. “An
investigation into automatically defined function
representations in Grammatical Evolution.” In:
Mendel (2009).

[20] J.R. Koza. Genetic programming: on the
programming of computers by means of natural
selection. Cambridge, MA, USA: MIT Press, 1992.

[21] Peter Naur et al. “Revised report on the algorithmic
language Algol 60”. In: Communications of the ACM
6.1 (1963), pp. 1–17.

[22] A. Newell, H. A. Simon, et al. Human problem
solving. Prentice-Hall, NJ, 1972.

[23] John R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA,
USA: MIT Press, 1994.

[24] M. Fenton et al. “PonyGE2: Grammatical Evolution
in Python”. In: GECCO Conference. ACM, 2017,
pp. 1194–1201.

[25] C.R. Pereira et al. “A Step Towards the Automated
Diagnosis of Parkinson’s Disease: Analyzing
Handwriting Movements”. In: 28th IEEE Int.
Symposium on Computer-Based Medical Systems.
2015, pp. 171–176.

