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ABSTRACT 

The interplanet internet is a conceived computer network in space, 
consisting of a set of network nodes that can communicate with each 
other. These nodes are the planet’s orbiters (satellites) and landers (e.g. 
robots, autonomous machines, etc.) and the earth ground stations, and 
the data can be routed through Earth’s internal internet. As resource 
depletion on Earth becomes real, the idea of extracting valuable 
elements from asteroids or using space-based resources to build space 
habitats becomes more attractive, one of the key technologies for 
harvesting resources is robotic space mining( minerals, metals, etc.,) or 
robotic building of space settlement. The metaverse is essentially a 
simulated digital environment mimicking the real world. The metaverse 
would be something very similar to real world planetary activities where 
users( space colonies or internet users on Earth) interact with overlaying 
objects represented by robots, drones, etc. for real-world planetary 
activities like space mining, building space settlements, etc. in a 
completely virtual manner. In this paper, we use information about 
different time steps as represented by the observation matrix for the 
presence of the robots in a planetary environment by  encoding the 
robots presence as reinforcement learning agent on the site at different 
time steps. The reinforcement learning agent uses deep convolutional 
neural networks with Q-learning algorithm to approximate the Q-function 
and that uses experience replay. The neural network used by the 
learning agent is a time dependent encoded AI model and trained with 
Reinforcement learning by different methods to make an autonomous 
robots to learn how to execute set targets by way of  reliable tracking of  
the environment for exhibiting a realistic behaviour by robots. The results 
of the study simulated on existing  internet here on Earth show that the 
real individual  behaviour on a distant planet can be achieved  provided 
the interplanet internet is available as pathway communication. 
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Therefore, connected metaverse with different time-dependent encoded 
layers of virtual spaces along with deep learning models with learning 
agents could be of reality even in interplanet environment. 

 

INTRODUCTION 

Inter-planetary exploration, be it Lunar habitation, asteroid mining, Mars 
colonization or planetary science/mapping missions of the solar system, 
will increase demands for inter-planetary communications. The 
movement of people and material throughout the solar system will create 
the economic necessity for an information highway to move data 
throughout the solar system in support of inter-planetary exploration and 
exploitation. The communication capabilities of this interplanet 
information highway need to be designed to offer; 1) continuous data, 2) 
reliable communications, 3) high bandwidth and 4) accommodate data, 
voice and video.   

The interplanetary Internet is a conceived computer network in space, 
consisting of a set of network nodes that can communicate with each 
other. These nodes are the planet's orbiters (satellites) and landers (e.g., 
robots), and the earth ground stations. For example, the orbiters collect 
the scientific data from the Landers on Mars through near-Mars 
communication links; transmit the data to Earth through direct links from 
the Mars orbiters to the Earth ground stations, and finally the data can 
be routed through Earth's internal internet. Interplanetary communication 
is greatly delayed by interplanetary distances, so a new set of protocols 
and technology that are tolerant to large delays and errors are required. 
The interplanetary Internet is a store and forward network of internets 
that is often disconnected, has a wireless backbone fraught with error-
prone links and delays ranging from tens of minutes to even hours, even 
when there is a connection. In the core implementation of Interplanetary 
Internet, satellites orbiting a planet communicate to other planet's 
satellites. Simultaneously, these planets revolve around the Sun with 
long distances, and thus many challenges face the communications. The 
reasons and the resultant challenges are: The interplanetary 
communication is greatly delayed due to the interplanet distances and 
the motion of the planets. The interplanetary communication also 
suspends due to the solar conjunction, when the sun's radiation hinders 
the direct communication between the planets. As such, the 
communication characterizes lossy links and intermittent link 
connectivity.   
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The graph of participating nodes in a specific planet to a specific planet 
communication, keeps changing over time, due to the constant motion. 
The routes of the planet-to-planet communication are planned and 
scheduled rather than being fluctuating. The Interplanetary Internet 
design must address these challenges to operate successfully and 
achieve good communication with other planets.  

NETWORK ARCHITECTURE 

A Computer Network Architecture is a design in which all computers 
in a computer network are organized. An architecture defines how the 
computers should get connected to get the maximum advantages of a 
computer network such as better response time, security, scalability, etc. 

Network architecture refers to the way network devices and services are 
structured to serve the connectivity needs of client devices. 

 Network devices typically include switches and routers. 
 Types of services include DHCP and DNS. 
 Client devices comprise end-user devices, servers, and 

smart things. 

We give below the architecture of network on the planet Mars or the 
Earth’s Moon is as shown in below figure:- 

 Orbiter 

 

 Lander 

 Gateway Router 

Planet Web Services  Cloud Services 

          Applications Server Data Centre 

 

 

                       LAN 

                                    LAN 

                                              Local Area Network 

An Internet is a “network of networks” in which routers move data among 
a multiplicity of networks with multiple admin. domains.  

Smart Things 
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The main aim of networks is to connect remote endpoints with end-to-
end principle and network should provide only those services that cannot 
be provided effectively by endpoints. 

The interplanetary internet is a conceived networks of nodes and these 
nodes are space station, planet’s orbiters ( satellites ), planet’s landers, 
robots ( drones, autonomous machines, etc. ), earth ground stations and 
earth’s internal internet. 

 

METHODOLOGY 

Outer space contains a vast amount of resources that offer virtually 
unlimited wealth to the humans that can access and use them for 
commercial purposes. One of the key technologies for harvesting these 
resources is robotic mining of  minerals, metals, etc. The harsh 
environment and vast distances create challenges that are handled best 
by robotic machines working in collaboration with human explorers. 
Humans will visit outposts and mining camps as required for exploration, 
and scientific research, but a continuous presence is most likely to be 
provided by robotic mining machines that are remotely controlled by 
humans either from Earth or from local space habitat. 

Future Moon( or Mars ) bases will likely be constructed using resources 
mined from the surface of the Moon/Mars. The difficulty of maintaining a 
human workforce on the Moon( or Mars ) and communications lag with 
Earth means that mining will need to be conducted using collaborative 
robots with a high degree of autonomy. Therefore, the utility of 
autonomous collaborative  robotics( with thousands of robots in 
operation ) towards addressing several major challenges in autonomous 
mining in the lunar( Martian ) environment with lack of satellite 
communication systems, navigation in hazardous terrain, and delicate 
robot interactions to achieve effective collaboration between robots and 
long-lasting operation.  

Collaborative Robotics 

Robots can be shaped to perform specific tasks. Robots have been 
designed and shaped in such a way that they can walk, swim, push 
pellets, carry payloads, carry shoveling and work together in a group to 
aggregate debris scattered along the surface  into neat piles or possibly, 
to build a space settlement. They can survive for long-time without 
recharge and heal themselves after any damage/confusion. The shape 
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of a robot's body, and its distribution of legs and structure are 
automatically designed in simulation to perform a specific task, using a 
process of trial and error. 

The methodology is essentially fundamental for getting the space robots 
as autonomous as possible and the aim is to represent surroundings 
and their markings from robot in space. Therefore, we use feature 
extraction from the environment to update the position of the robot. 
Landmarks are the features that can easily be observed and 
distinguished from the environment and these are used to localize the 
robot. 

The methodology primarily consists of following parts:- 

1. Selecting and deciding on the landmarks (Materials, location, etc.). 
2. Extracting landmarks from input of robot sensors/cameras at each 

time step. 
3. Based on time step, get the current position of  the robot  on the 

basis of landmark data.  
4. Carryout landmark data association with the location of the robot 

by matching with the landmarks data in the database. 
5. Introducing learning agent ( Reinforcement Learning ) in the robot 

that uses deep neural network with Q-learning algorithm and that 
uses experience replay 

6. The neural network used by the learning agent will be trained 
with reinforcement learning by using different methods. 

7. Measuring the outcome with optimization steps 

 

Single-agent Reinforcement Learning 

Agents 

An agent: “it is a computer system situated in some environment, and 
capable of autonomous action in this environment in order to meet its 
design objectives”, goals that it tries to reach. Indeed, we can distinguish 
between two key characteristics of an agent: its reactivity, its ability to 
perceive the environment and to respond to changes in it, and its 
proactivity, its ability to take initiatives and act towards its goal.   

Reinforcement Learning 

In machine learning, we distinguish between three types of learning: 
supervised, unsupervised and reinforcement learning. The distinction is 
usually made by the feedback the agent receives. 
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 In between these two cases of supervised and unsupervised learning 
stands reinforcement learning where the feedback exists but does not 
indicate whether the action taken was the right one. After acting, the 
agent gets a feedback, an immediate reward that can be either positive 
or negative. It is up to the agent, and thus the learning algorithm, to use 
and interpret this reward. Reinforcement learning can be seen as a trial 
and error approach. As the agent is not explicitly told which action to 
take, it can only evaluate the actions with the rewards it received. For 
this evaluation to be efficient, the agent has to continually interact with 
the environment and adapt its strategy with regard to the rewards it gets.  

Q-Learning  

This value iteration algorithm uses explicitly the state transition 
probability function T and the reward function R of the MDP( Markov 
Decision Process ) . However, it is usually assumed that the model, 
which consists of knowledge of T and R, is unknown. In this case, we 
distinguish between two approaches. Model-based algorithms attempt to 
learn the model and use the estimate of the model to compute an 
optimal policy while model-free methods focus on learning the state 
value function and use these estimates to get an optimal policy. Such 
methods are generally known as temporal difference methods. 
The Q-learning algorithm is one of the most popular reinforcement 
learning techniques. It is a model-free value iteration algorithm. 
We define the action-value function, or Q-function, Qπ : S × A → R as 

the expected return of a state-action pair given by the policy π . The 

optimal Q-function is then defined as Q∗(s, a) = max Qπ(s, a). 

                                                                              π 

Deep Reinforcement Learning 

Deep learning is defined as “a class of machine learning techniques that 
exploit many layers of non-linear information processing for supervised 
or unsupervised feature extraction and transformation, and for pattern 
analysis and classification”. Other definitions are given but we can 
observe the same two key concepts across all these definitions as such, 
complex neural networks fit in this definition. 
Deep Reinforcement Learning refers to the usage of deep learning in a 
reinforcement learning setting. 

Deep Q-Networks 

The deep reinforcement learning field’s popularity started with the 
introduction of Deep Q-Networks (DQNs) (Mnih et al., 2015). DQNs are 
deep learning models that combine deep convolutional neural networks 
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with the Q-learning algorithm. Before this, using a nonlinear function 
such as a neural network as a function approximation for the Q-function 
was known to be unstable. An important contribution made by DQNs is 
the use of experience replay and a target network to stabilize the training 
of the Q action value function approximation with deep neural networks. 
Q-network thus refers to a neural network function approximation of the 
Q-function: Q(s,a;θ) ≈ Q∗(s,a) Where θ is the weights of the network. 

Deep Q-Learning 

The deep Q-learning algorithm uses experience replay. An agent’s 
experience at a time step t is denoted by et and is a tuple (st,at,rt,st+1) 
consisting of the current state st, the chosen action at, the reward rt and 
the next state st+1. The experiences for all the time steps are stored in a 
replay memory, over many episodes. We then apply minibatches 
updates to samples of experiences.  
Since the network serves as an approximator for the Q-function, each 
output neuron of this network corresponds to one valid action, and every 
action is mapped to an output neuron. Thus, after a feedforward pass of 
that network, the outputs are the estimated Q-values of the state-action 
pair defined by the input and the output’s corresponding action. 

Multi-Agent Systems 

A multi-agent system, subsequently referred to as MAS, is a system 

composed of numerous agents and the environment in which they 

interact (Wooldridge, 2002).  

A MAS is essentially a distributed approach (e.g. robots teams, traffic 
light networks, electricity grids, etc.). The complexity of multi-agent 
systems often means that we do not always know what action an agent 
should have taken. We can, however, determine when an action was 
good, whether it led to an optimal situation or just a better one. This 
knowledge should help the learning of the agents and corresponds to 
the reinforcement learning approach.  
 

ARCHITECTURE 

Agents – Attributes 

We opt for the agents and they have  the  attributes: the sight and the 
goal. While the goal is chosen randomly when an agent arrives on the 
location, the sight is always fixed to the some value. The other 
noticeable fact is that our learning agents do not have a desired speed. 
We define the autonomous robots as entities whose primary concern is 
to avoid failure; they should consequently not exhibit any preference for 
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a certain speed as long as they are working safely. Furthermore, we add 
an attribute ϵ to these learning agents; this is their probability of 
choosing a random action at each time step. 
Rewards 

We need to define the reward function R; there are three different final 
states the agents can be in. First, they can reach their goal. Second, 
they can miss their goal. Finally, they can collapse. Hence, we define the 
following rewards:  

•  ρω , the reward received by the agent when it reached its goal 
•  ρω¯ ,  the  reward  received  by  the  agent  when  it  failed  to  

reach  its  goal  
•  ρf , the reward received by the agent when it collapsed 

Since reaching the goal and collapsing are completely opposite 
outcomes, we define  ρω = - ρf . Moreover, since missing the goal but not 
collapsing is preferable but is a less desirable outcome than reaching 
the goal, the value of this reward should be smaller, such that  ρf  = −ρω 
< ρω¯ < ρω. The agent gets these final rewards at the time step that 
effectively ends its run on the site. For all the other previous time steps, 
it receives a default reward that is always equal to 0. However, the agent 
receives another reward ρ0, a small penalty, when the agent’s speed is 
0; our environment is a time bound activity and robots should not be still. 
Agents as workmen 

Given that we define learning agents the same way as the type of 
workers, we can seamlessly add them at the location. The only 
difference is how they will choose an action: by using their learning 
model, a neural network. We can therefore adapt the site’s time step’s 
algorithm  to take the learning agent into account for the observation 
step. To decide what action it should take, the reinforcement learning 
agent uses a neural network to approximate the Q-function. Thus, at 
every time step t, the agent c observes its state sc,t; this state is then 
processed in some way so that it can be passed to a neural network 
whose outputs correspond to all the possible actions. The values of 
these outputs are the estimated Q-values, Q(sc,t, a ); as it is using a 
neural network θ, we denote the Q-function approximated with that 
network by Q(s,t;θ). The agent then uses an ϵ-greedy strategy to choose 
the action  ac,t. 
The neural network used by the learning agent will be trained with 
reinforcement learning by using different methods. 
Neural Network Models 

Presently different neural network models are available that we will use 
to train our autonomous robots. These models define what information 
the learning agents use and how they are encoded as inputs to the 
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neural networks. Before we start with our model, we need to define the 
building structure; how these neural networks are used by the learning 
agents. We use a feedforward neural network  whose outputs 
correspond to the possible actions. Our models define different ways of 
using information about the agent’s current state. Thus, they either 
encode different information or encode the same information differently 
to produce the inputs.  
Required Information 

We  start by defining the minimum amount of information that  an 
autonomous robot should have. Consequently, the model that we design 
will possess these pieces of information. They are: 

- The goal of the agent/robot 
- What the robot sees, Materials & location 
- The current location that the agent is in 
- The current speed of the agent 
- Real Simulation for Task Execution 

Task Execution ( Simulation )  

- Generating actual materials( how materials arrive at the site) 
- Robots arrive in the environment ( speed and goal ) 
- Task Execution( Simulation Steps ), is updated as the work 

process progresses in line with the simulation 
- Task execution performance and to make a realistic system, we 

would like to see how well it performs and mirrors real world 
execution( Artificial Intelligence with Reinforcement learning ) 

- Implementation of Graphical Version of the Task Execution 

Reddy’s Encoding Model  

The  model is based on the idea as the robot presence at different time 
steps; we use information about the previous time step (the robots’ 
presence represented by the observation matrix O). This time, the 
observation matrix of the previous time step t−1, denoted Ot−1, is not 
additional inputs, but it forms, along with the current observation matrix, 
a 3-dimensional matrix with time as the third dimension. We then pass 
this matrix through a 3-dimensional convolutional neural network . We 
also keep decreasing the number of inputs by including the learning 
agent itself in its observation matrix. Figure 1 illustrates this model that 
we call reddy’s encoding model of  time-step, as it encodes the robots’ 
presence at different time steps. The learning agent is shown in red 
while materials in its field of view are in blue. All the input vectors are 
concatenated and passed to the network. 
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Fig 1. Model encoding of an agent/robot with a goal. 
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Our first step is the basic information regarding the robot vision and it’s 
location. We define the model with each input as either 0 or 1 and 
information regarding the field of view of the agent/robot can only be 1 if 
there is something , or 0 if there is nothing. The agent/robot only knows 
whether there is a material to be used in some position and its location 
with respect to materials identified. 
 
We have represented this model as matrix with encoded values with 
possible values for each of these attributes. 
 

Deep Reinforcement Learning 

Single-Agent Setting 

We first train autonomous robots in a single-agent environment; there is 
only one learning agent on the location of site, other robots are our 
simulated workmen. The model  was implemented in Python with 
TensorFlow as back-end. 
Training - Training Scheme 

Now that we have defined  our neural network model and the work 
process, it is time to tackle our main problem: making an autonomous 
robot learn how to work. 
The training environment  set up for our learning agent is divided into 
episodes. One episode consists of a full run, or simulation, of the agent 
on the location. 
First, as the agent could potentially stay still indefinitely, if it always 
chooses to stay at the speed zero, we need to guarantee that its run on 
the site will come to an end. We thus define a maximum number of steps  
T max ; if the agent’s run on the location reaches this upper bound, we 
consider the run over and introduce another reward, denoted ρT , for this 
new outcome: the overtime outcome. Furthermore, the value of  T max 
must be chosen wisely. The bound must not be too low or too great. As 
the time required for an agent to leave the site depends on the size of 
the locational site, we need to define the overtime bound based on this 
value. We could then use twice that value, 2×X, but it means that the 
agent could potential stay still half of the time and still finish its work. 
Finally, we define arbitrarily    T max as 2×X −10; we want the agent to 
actually work more often than it is not moving. 
Second, we perform an arbitrary number of location time step updates, 
usually 10, before adding the agent in the system. Then, we randomly 
initialize the attributes – speed v and location y – of the agent and add it 
on the locational site.  
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Finally, we use experience replay  to train the network in an online 
fashion; at each time step, we sample a batch of experiences from the 
memory and train the network with it.  
The training of the neural network –is done by the module with the 
weights updates. Also the model was composed with the stochastic 
gradient descent optimizer and the mean squared error loss function. 
To train the network, module needs inputs for this network as well as the 
wanted  target outputs of these inputs. Thus, we need to define these 
target outputs according to the chosen action. To do that, we define the 
target outputs as the outputs that we get from the network except for the 
chosen action. For this particular output, we set its target value to the 
newly estimated Q-value. That is, if the new state is final, the immediate 
reward rt  received; otherwise, the immediate reward and the discounted 
best possible future reward as estimated by the network. In short, when 
an agent in state  sk performs action ak  that yields the immediate reward 
rk and arrives in the next state sk+1 , we define the target outputs y as: 
Q(sk, a; θ)               if a ≠ak 

rk + γ max Q(sk+1, a
j; θ) if a = ak 

           aj                                         

Where Q(sk+1,a;θ) is equal to 0 for every action a when sk+1 is final. 
This whole process is formalized in below Algorithm. 
Algorithm : Single-agent training algorithm Initialize replay memory 

D of length M 

for episode = 1, ..., N do 

Initialize location L according to fixed locational      

parameters 

                  for t = 1, ..., 10 do 

                              Perform one time step update of the location L 

                  end 

                  Initialize learning agent c with a fixed sight φc
+ and s 

Choose randomly location y at which to add the agent,       

 and speed v  of the agent 

                  Add the learning agent c on the site 

                 for t = 1, ..., T max do 

                               Perform one time step update of the location L 

                               /* Experience replay */ 
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     Observe the state st, action at and reward rt of   the 

agent for that time step, and the next state st+1 

                               Store experience (st, at, rt, st+1) in D 

                                if replay memory D is full then 

    Sample minibatch of size B from  experience  

memory D 

                                        Initialize batch training buffer of size B   

 for experience (sk, ak, rk, sk+1) in minibatch      

do 

    Get network outputs y according to 

Q(sk, a; θ) 

                                           

 

                                                Set yak       =      rk   if state sk+1 is final 

        Set yak    =  rk + γ max Q(sk+1, a
j
; θ)  if state sk+1   is not final                                       

                                                                 aj 

                                                    Store (sk, y) in batch training buffer 

                                            end 

Train network θ against batch training      

buffer                   

                                    end 

                        end 

         end 

Training Parameters 

A training experiment is defined by numerous parameters; first, all the 
parameters regarding the learning agent and the training algorithm. 
These parameters are: 

• φc+ ,   the sight of the learning agent  
 
        • s, the agent’s probability of choosing a random action 

• R, the reward function; which corresponds to defining the different rewards ρω, 
             ρω¯ , ρf , ρ0 and ρT 

• µc, the neural network model used by the agent 
• γ, the discount factor as defined for the MDP 
• α, the learning rate for the neural network training 
• N , the number of training episodes 
• M , the size of the experience memory buffer 
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• B, the size of the batches of experiences 
 

Moreover, the hidden structure of the neural network model µc can also 
be chosen; this includes the number of hidden layers, the number of 
neurons in these layers, their activation function, and the dropout rate δc 
(0 if we do not want to use dropout) to apply to each layer. Finally, if the 
chosen model is a CNN one, the structure of the convolutional networks 
can also be set: the number of convolutional layers with their stride and 
the number and size of the filters. 
Learning – sampling batches of experiences to update the network’s 
weights – starts once the experience memory buffer is full: after 
encountering M experiences. 
Experiments  

For our experiments, we  train  the  model we presented earlier. 
Moreover, we also repeat the same experiments we trained our model 
with  and We also considered different possible hidden structures for the 
neural networks. 
Settings 

For our experiments, most of the parameters are fixed. We present them 
in Table 1. The structure of the CNNs for the  time-step model are also 
fixed with two convolutional layers, and the reward system of our 
learning agent is fixed, and the values are shown in Table 2. 
 
RESULTS 
 

  
 

 

Table 1: Single-
agent training’s 
fixed parameters 

 
 
 
 
 
 

 
 
 
 
 

Learning parameters 

Number of episodes N 100 

Batch size B 10 

Experience memory size M 40 

Learning rate α 0.01 

Discount factor γ 0.9 

Agent’s sight φ
+
 
c 6 

Agent’s s 0.05 
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Table 2: Single-agent training’s reward 
 
 

The system with different configurations for the hidden structures of the 
networks: 
 

• 2 hidden layers: the first with 30 neurons and a tanh 
activation function; the second with 15 neurons and a linear 
activation fucntion. No dropout. 

 

• 2 hidden layers: the first with 30 neurons and a tanh 
activation function; the second with 15 neurons and a linear 
activation fucntion. Dropout rate of 0.5. 

 

The dropout rate of 0.5 has been chosen because it seems to be optimal 
for a wide range of networks. 
The results for our CNN based model –  time-step model –  The 
networks that do not use dropout seem to learn well.  The percentage of 
goal reached for the  networks (without dropout) is high. 
Although we only have partial results, we can make the following 
observations: the networks that do not use dropout  seem to learn well, 
while the network using dropout does not; it either learns very slowly or 
just converges to very low level of goal reached. 

 

 

CONCLUSION 

The interplanetary computer network in space is a set of computer 

nodes that can communicate with each other. We proposed a network 

architecture with planet’s orbiters, landers (robots, etc.), as well as the 

earth ground stations and linked through Earth’s internal internet, and 

consisted of complex information routing through relay satellites to 

address direct planet-to-planet communication. As we know, the 

metaverse will be very different from the internet of today due to massive 

parallelism, three-dimensional (3D) virtual space and multiple real-world 

spaces like space mining, building space habitats, etc. This paper 

presents a time dependent observation matrix at different time steps 

along with autonomous learning agent in a planetary environment for 

layering the presence of robots and tracking the environment that use 

encoded model, AI and Reinforcement learning mimicking the real world 

execution by space robots. For this 3-dimensional matrix with time as 

 Reward ρ Value 

Goal ρω +1 

Missed goal ρω̄ -0.15 

Collapse ρf -1 

No speed penalty ρ0 -0.01 

Overtime ρT -0.4 
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third dimension and AI- deep convolutional network with Q-learning 

algorithm that uses experience replay have been presented along to 

create a simulated realistic world and the results show that the real 

individual  behaviour on a distant planet can be achieved provided the 

interplanet internet  is available as pathway communication. 
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