
EasyChair Preprint
№ 9532

Metaverse in InterPlanet Internet:
Reinforcement Learning Implementation of
Time-Dependent Machine Learning Model to
Make Robots Fit for Space Applications

Poondru Prithvinath Reddy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 3, 2023

*

Metaverse in InterPlanet Internet:

Reinforcement Learning Implementation of

Time-dependent Machine Learning Model

to Make Robots fit for Space Applications

 Poondru Prithvinath Reddy

ABSTRACT

The interplanet internet is a conceived computer network in space,
consisting of a set of network nodes that can communicate with each
other. These nodes are the planet’s orbiters (satellites) and landers (e.g.
robots, autonomous machines, etc.) and the earth ground stations, and
the data can be routed through Earth’s internal internet. As resource
depletion on Earth becomes real, the idea of extracting valuable
elements from asteroids or using space-based resources to build space
habitats becomes more attractive, one of the key technologies for
harvesting resources is robotic space mining(minerals, metals, etc.,) or
robotic building of space settlement. The metaverse is essentially a
simulated digital environment mimicking the real world. The metaverse
would be something very similar to real world planetary activities where
users(space colonies or internet users on Earth) interact with overlaying
objects represented by robots, drones, etc. for real-world planetary
activities like space mining, building space settlements, etc. in a
completely virtual manner. In this paper, we use information about
different time steps as represented by the observation matrix for the
presence of the robots in a planetary environment by encoding the
robots presence as reinforcement learning agent on the site at different
time steps. The reinforcement learning agent uses deep convolutional
neural networks with Q-learning algorithm to approximate the Q-function
and that uses experience replay. The neural network used by the
learning agent is a time dependent encoded AI model and trained with
Reinforcement learning by different methods to make an autonomous
robots to learn how to execute set targets by way of reliable tracking of
the environment for exhibiting a realistic behaviour by robots. The results
of the study simulated on existing internet here on Earth show that the
real individual behaviour on a distant planet can be achieved provided
the interplanet internet is available as pathway communication.

*

Therefore, connected metaverse with different time-dependent encoded
layers of virtual spaces along with deep learning models with learning
agents could be of reality even in interplanet environment.

INTRODUCTION

Inter-planetary exploration, be it Lunar habitation, asteroid mining, Mars
colonization or planetary science/mapping missions of the solar system,
will increase demands for inter-planetary communications. The
movement of people and material throughout the solar system will create
the economic necessity for an information highway to move data
throughout the solar system in support of inter-planetary exploration and
exploitation. The communication capabilities of this interplanet
information highway need to be designed to offer; 1) continuous data, 2)
reliable communications, 3) high bandwidth and 4) accommodate data,
voice and video.

The interplanetary Internet is a conceived computer network in space,
consisting of a set of network nodes that can communicate with each
other. These nodes are the planet's orbiters (satellites) and landers (e.g.,
robots), and the earth ground stations. For example, the orbiters collect
the scientific data from the Landers on Mars through near-Mars
communication links; transmit the data to Earth through direct links from
the Mars orbiters to the Earth ground stations, and finally the data can
be routed through Earth's internal internet. Interplanetary communication
is greatly delayed by interplanetary distances, so a new set of protocols
and technology that are tolerant to large delays and errors are required.
The interplanetary Internet is a store and forward network of internets
that is often disconnected, has a wireless backbone fraught with error-
prone links and delays ranging from tens of minutes to even hours, even
when there is a connection. In the core implementation of Interplanetary
Internet, satellites orbiting a planet communicate to other planet's
satellites. Simultaneously, these planets revolve around the Sun with
long distances, and thus many challenges face the communications. The
reasons and the resultant challenges are: The interplanetary
communication is greatly delayed due to the interplanet distances and
the motion of the planets. The interplanetary communication also
suspends due to the solar conjunction, when the sun's radiation hinders
the direct communication between the planets. As such, the
communication characterizes lossy links and intermittent link
connectivity.

*

The graph of participating nodes in a specific planet to a specific planet
communication, keeps changing over time, due to the constant motion.
The routes of the planet-to-planet communication are planned and
scheduled rather than being fluctuating. The Interplanetary Internet
design must address these challenges to operate successfully and
achieve good communication with other planets.

NETWORK ARCHITECTURE

A Computer Network Architecture is a design in which all computers
in a computer network are organized. An architecture defines how the
computers should get connected to get the maximum advantages of a
computer network such as better response time, security, scalability, etc.

Network architecture refers to the way network devices and services are
structured to serve the connectivity needs of client devices.

 Network devices typically include switches and routers.
 Types of services include DHCP and DNS.
 Client devices comprise end-user devices, servers, and

smart things.

We give below the architecture of network on the planet Mars or the
Earth’s Moon is as shown in below figure:-

 Orbiter

 Lander

 Gateway Router

Planet Web Services Cloud Services

 Applications Server Data Centre

 LAN

 LAN

 Local Area Network

An Internet is a “network of networks” in which routers move data among
a multiplicity of networks with multiple admin. domains.

Smart Things

*

The main aim of networks is to connect remote endpoints with end-to-
end principle and network should provide only those services that cannot
be provided effectively by endpoints.

The interplanetary internet is a conceived networks of nodes and these
nodes are space station, planet’s orbiters (satellites), planet’s landers,
robots (drones, autonomous machines, etc.), earth ground stations and
earth’s internal internet.

METHODOLOGY

Outer space contains a vast amount of resources that offer virtually
unlimited wealth to the humans that can access and use them for
commercial purposes. One of the key technologies for harvesting these
resources is robotic mining of minerals, metals, etc. The harsh
environment and vast distances create challenges that are handled best
by robotic machines working in collaboration with human explorers.
Humans will visit outposts and mining camps as required for exploration,
and scientific research, but a continuous presence is most likely to be
provided by robotic mining machines that are remotely controlled by
humans either from Earth or from local space habitat.

Future Moon(or Mars) bases will likely be constructed using resources
mined from the surface of the Moon/Mars. The difficulty of maintaining a
human workforce on the Moon(or Mars) and communications lag with
Earth means that mining will need to be conducted using collaborative
robots with a high degree of autonomy. Therefore, the utility of
autonomous collaborative robotics(with thousands of robots in
operation) towards addressing several major challenges in autonomous
mining in the lunar(Martian) environment with lack of satellite
communication systems, navigation in hazardous terrain, and delicate
robot interactions to achieve effective collaboration between robots and
long-lasting operation.

Collaborative Robotics

Robots can be shaped to perform specific tasks. Robots have been
designed and shaped in such a way that they can walk, swim, push
pellets, carry payloads, carry shoveling and work together in a group to
aggregate debris scattered along the surface into neat piles or possibly,
to build a space settlement. They can survive for long-time without
recharge and heal themselves after any damage/confusion. The shape

*

of a robot's body, and its distribution of legs and structure are
automatically designed in simulation to perform a specific task, using a
process of trial and error.

The methodology is essentially fundamental for getting the space robots
as autonomous as possible and the aim is to represent surroundings
and their markings from robot in space. Therefore, we use feature
extraction from the environment to update the position of the robot.
Landmarks are the features that can easily be observed and
distinguished from the environment and these are used to localize the
robot.

The methodology primarily consists of following parts:-

1. Selecting and deciding on the landmarks (Materials, location, etc.).
2. Extracting landmarks from input of robot sensors/cameras at each

time step.
3. Based on time step, get the current position of the robot on the

basis of landmark data.
4. Carryout landmark data association with the location of the robot

by matching with the landmarks data in the database.
5. Introducing learning agent (Reinforcement Learning) in the robot

that uses deep neural network with Q-learning algorithm and that
uses experience replay

6. The neural network used by the learning agent will be trained
with reinforcement learning by using different methods.

7. Measuring the outcome with optimization steps

Single-agent Reinforcement Learning

Agents

An agent: “it is a computer system situated in some environment, and
capable of autonomous action in this environment in order to meet its
design objectives”, goals that it tries to reach. Indeed, we can distinguish
between two key characteristics of an agent: its reactivity, its ability to
perceive the environment and to respond to changes in it, and its
proactivity, its ability to take initiatives and act towards its goal.

Reinforcement Learning

In machine learning, we distinguish between three types of learning:
supervised, unsupervised and reinforcement learning. The distinction is
usually made by the feedback the agent receives.

*

 In between these two cases of supervised and unsupervised learning
stands reinforcement learning where the feedback exists but does not
indicate whether the action taken was the right one. After acting, the
agent gets a feedback, an immediate reward that can be either positive
or negative. It is up to the agent, and thus the learning algorithm, to use
and interpret this reward. Reinforcement learning can be seen as a trial
and error approach. As the agent is not explicitly told which action to
take, it can only evaluate the actions with the rewards it received. For
this evaluation to be efficient, the agent has to continually interact with
the environment and adapt its strategy with regard to the rewards it gets.

Q-Learning

This value iteration algorithm uses explicitly the state transition
probability function T and the reward function R of the MDP(Markov
Decision Process) . However, it is usually assumed that the model,
which consists of knowledge of T and R, is unknown. In this case, we
distinguish between two approaches. Model-based algorithms attempt to
learn the model and use the estimate of the model to compute an
optimal policy while model-free methods focus on learning the state
value function and use these estimates to get an optimal policy. Such
methods are generally known as temporal difference methods.
The Q-learning algorithm is one of the most popular reinforcement
learning techniques. It is a model-free value iteration algorithm.
We define the action-value function, or Q-function, Qπ : S × A → R as

the expected return of a state-action pair given by the policy π . The

optimal Q-function is then defined as Q∗(s, a) = max Qπ(s, a).

 π

Deep Reinforcement Learning

Deep learning is defined as “a class of machine learning techniques that
exploit many layers of non-linear information processing for supervised
or unsupervised feature extraction and transformation, and for pattern
analysis and classification”. Other definitions are given but we can
observe the same two key concepts across all these definitions as such,
complex neural networks fit in this definition.
Deep Reinforcement Learning refers to the usage of deep learning in a
reinforcement learning setting.

Deep Q-Networks

The deep reinforcement learning field’s popularity started with the
introduction of Deep Q-Networks (DQNs) (Mnih et al., 2015). DQNs are
deep learning models that combine deep convolutional neural networks

*

with the Q-learning algorithm. Before this, using a nonlinear function
such as a neural network as a function approximation for the Q-function
was known to be unstable. An important contribution made by DQNs is
the use of experience replay and a target network to stabilize the training
of the Q action value function approximation with deep neural networks.
Q-network thus refers to a neural network function approximation of the
Q-function: Q(s,a;θ) ≈ Q∗(s,a) Where θ is the weights of the network.

Deep Q-Learning

The deep Q-learning algorithm uses experience replay. An agent’s
experience at a time step t is denoted by et and is a tuple (st,at,rt,st+1)
consisting of the current state st, the chosen action at, the reward rt and
the next state st+1. The experiences for all the time steps are stored in a
replay memory, over many episodes. We then apply minibatches
updates to samples of experiences.
Since the network serves as an approximator for the Q-function, each
output neuron of this network corresponds to one valid action, and every
action is mapped to an output neuron. Thus, after a feedforward pass of
that network, the outputs are the estimated Q-values of the state-action
pair defined by the input and the output’s corresponding action.

Multi-Agent Systems

A multi-agent system, subsequently referred to as MAS, is a system

composed of numerous agents and the environment in which they

interact (Wooldridge, 2002).

A MAS is essentially a distributed approach (e.g. robots teams, traffic
light networks, electricity grids, etc.). The complexity of multi-agent
systems often means that we do not always know what action an agent
should have taken. We can, however, determine when an action was
good, whether it led to an optimal situation or just a better one. This
knowledge should help the learning of the agents and corresponds to
the reinforcement learning approach.

ARCHITECTURE

Agents – Attributes

We opt for the agents and they have the attributes: the sight and the
goal. While the goal is chosen randomly when an agent arrives on the
location, the sight is always fixed to the some value. The other
noticeable fact is that our learning agents do not have a desired speed.
We define the autonomous robots as entities whose primary concern is
to avoid failure; they should consequently not exhibit any preference for

*

a certain speed as long as they are working safely. Furthermore, we add
an attribute ϵ to these learning agents; this is their probability of
choosing a random action at each time step.
Rewards

We need to define the reward function R; there are three different final
states the agents can be in. First, they can reach their goal. Second,
they can miss their goal. Finally, they can collapse. Hence, we define the
following rewards:

• ρω , the reward received by the agent when it reached its goal
• ρω¯ , the reward received by the agent when it failed to

reach its goal
• ρf , the reward received by the agent when it collapsed

Since reaching the goal and collapsing are completely opposite
outcomes, we define ρω = - ρf . Moreover, since missing the goal but not
collapsing is preferable but is a less desirable outcome than reaching
the goal, the value of this reward should be smaller, such that ρf = −ρω
< ρω¯ < ρω. The agent gets these final rewards at the time step that
effectively ends its run on the site. For all the other previous time steps,
it receives a default reward that is always equal to 0. However, the agent
receives another reward ρ0, a small penalty, when the agent’s speed is
0; our environment is a time bound activity and robots should not be still.
Agents as workmen

Given that we define learning agents the same way as the type of
workers, we can seamlessly add them at the location. The only
difference is how they will choose an action: by using their learning
model, a neural network. We can therefore adapt the site’s time step’s
algorithm to take the learning agent into account for the observation
step. To decide what action it should take, the reinforcement learning
agent uses a neural network to approximate the Q-function. Thus, at
every time step t, the agent c observes its state sc,t; this state is then
processed in some way so that it can be passed to a neural network
whose outputs correspond to all the possible actions. The values of
these outputs are the estimated Q-values, Q(sc,t, a); as it is using a
neural network θ, we denote the Q-function approximated with that
network by Q(s,t;θ). The agent then uses an ϵ-greedy strategy to choose
the action ac,t.
The neural network used by the learning agent will be trained with
reinforcement learning by using different methods.
Neural Network Models

Presently different neural network models are available that we will use
to train our autonomous robots. These models define what information
the learning agents use and how they are encoded as inputs to the

*

neural networks. Before we start with our model, we need to define the
building structure; how these neural networks are used by the learning
agents. We use a feedforward neural network whose outputs
correspond to the possible actions. Our models define different ways of
using information about the agent’s current state. Thus, they either
encode different information or encode the same information differently
to produce the inputs.
Required Information

We start by defining the minimum amount of information that an
autonomous robot should have. Consequently, the model that we design
will possess these pieces of information. They are:

- The goal of the agent/robot
- What the robot sees, Materials & location
- The current location that the agent is in
- The current speed of the agent
- Real Simulation for Task Execution

Task Execution (Simulation)

- Generating actual materials(how materials arrive at the site)
- Robots arrive in the environment (speed and goal)
- Task Execution(Simulation Steps), is updated as the work

process progresses in line with the simulation
- Task execution performance and to make a realistic system, we

would like to see how well it performs and mirrors real world
execution(Artificial Intelligence with Reinforcement learning)

- Implementation of Graphical Version of the Task Execution

Reddy’s Encoding Model

The model is based on the idea as the robot presence at different time
steps; we use information about the previous time step (the robots’
presence represented by the observation matrix O). This time, the
observation matrix of the previous time step t−1, denoted Ot−1, is not
additional inputs, but it forms, along with the current observation matrix,
a 3-dimensional matrix with time as the third dimension. We then pass
this matrix through a 3-dimensional convolutional neural network . We
also keep decreasing the number of inputs by including the learning
agent itself in its observation matrix. Figure 1 illustrates this model that
we call reddy’s encoding model of time-step, as it encodes the robots’
presence at different time steps. The learning agent is shown in red
while materials in its field of view are in blue. All the input vectors are
concatenated and passed to the network.

*

 A) Agent/Robot Sight at Time Step (t)

 (Materials) (Location)

3D Convolutional 3D Convolutional

Layers Layers

 Outputs Outputs

 B) Agent/Robot Sight at Time Step (t + 1)

 (Materials) (Location)

3D Convolutional 3D Convolutional

Layers Layers

 Outputs Outputs

Fig 1. Model encoding of an agent/robot with a goal.

3 0 1 2

2 0 0 0

0 2 0 2

1 0 1 1

1 0 0 0

0 1 0 1

2 1 0 3

1 0 0 2

0 1 0 0

1 1 0 1

1 0 0 1

0 1 0 0

*

Our first step is the basic information regarding the robot vision and it’s
location. We define the model with each input as either 0 or 1 and
information regarding the field of view of the agent/robot can only be 1 if
there is something , or 0 if there is nothing. The agent/robot only knows
whether there is a material to be used in some position and its location
with respect to materials identified.

We have represented this model as matrix with encoded values with
possible values for each of these attributes.

Deep Reinforcement Learning

Single-Agent Setting

We first train autonomous robots in a single-agent environment; there is
only one learning agent on the location of site, other robots are our
simulated workmen. The model was implemented in Python with
TensorFlow as back-end.
Training - Training Scheme

Now that we have defined our neural network model and the work
process, it is time to tackle our main problem: making an autonomous
robot learn how to work.
The training environment set up for our learning agent is divided into
episodes. One episode consists of a full run, or simulation, of the agent
on the location.
First, as the agent could potentially stay still indefinitely, if it always
chooses to stay at the speed zero, we need to guarantee that its run on
the site will come to an end. We thus define a maximum number of steps
T max ; if the agent’s run on the location reaches this upper bound, we
consider the run over and introduce another reward, denoted ρT , for this
new outcome: the overtime outcome. Furthermore, the value of T max
must be chosen wisely. The bound must not be too low or too great. As
the time required for an agent to leave the site depends on the size of
the locational site, we need to define the overtime bound based on this
value. We could then use twice that value, 2×X, but it means that the
agent could potential stay still half of the time and still finish its work.
Finally, we define arbitrarily T max as 2×X −10; we want the agent to
actually work more often than it is not moving.
Second, we perform an arbitrary number of location time step updates,
usually 10, before adding the agent in the system. Then, we randomly
initialize the attributes – speed v and location y – of the agent and add it
on the locational site.

*

Finally, we use experience replay to train the network in an online
fashion; at each time step, we sample a batch of experiences from the
memory and train the network with it.
The training of the neural network –is done by the module with the
weights updates. Also the model was composed with the stochastic
gradient descent optimizer and the mean squared error loss function.
To train the network, module needs inputs for this network as well as the
wanted target outputs of these inputs. Thus, we need to define these
target outputs according to the chosen action. To do that, we define the
target outputs as the outputs that we get from the network except for the
chosen action. For this particular output, we set its target value to the
newly estimated Q-value. That is, if the new state is final, the immediate
reward rt received; otherwise, the immediate reward and the discounted
best possible future reward as estimated by the network. In short, when
an agent in state sk performs action ak that yields the immediate reward
rk and arrives in the next state sk+1 , we define the target outputs y as:
Q(sk, a; θ) if a ≠ak

rk + γ max Q(sk+1, a
j; θ) if a = ak

 aj

Where Q(sk+1,a;θ) is equal to 0 for every action a when sk+1 is final.
This whole process is formalized in below Algorithm.
Algorithm : Single-agent training algorithm Initialize replay memory

D of length M

for episode = 1, ..., N do

Initialize location L according to fixed locational

parameters

 for t = 1, ..., 10 do

 Perform one time step update of the location L

 end

 Initialize learning agent c with a fixed sight φc
+ and s

Choose randomly location y at which to add the agent,

 and speed v of the agent

 Add the learning agent c on the site

 for t = 1, ..., T max do

 Perform one time step update of the location L

 /* Experience replay */

*

 Observe the state st, action at and reward rt of the

agent for that time step, and the next state st+1

 Store experience (st, at, rt, st+1) in D

 if replay memory D is full then

 Sample minibatch of size B from experience

memory D

 Initialize batch training buffer of size B

 for experience (sk, ak, rk, sk+1) in minibatch

do

 Get network outputs y according to

Q(sk, a; θ)

 Set yak = rk if state sk+1 is final

 Set yak = rk + γ max Q(sk+1, a
j
; θ) if state sk+1 is not final

 aj

 Store (sk, y) in batch training buffer

 end

Train network θ against batch training

buffer

 end

 end

 end

Training Parameters

A training experiment is defined by numerous parameters; first, all the
parameters regarding the learning agent and the training algorithm.
These parameters are:

• φc+ , the sight of the learning agent

 • s, the agent’s probability of choosing a random action

• R, the reward function; which corresponds to defining the different rewards ρω,
 ρω¯ , ρf , ρ0 and ρT

• µc, the neural network model used by the agent
• γ, the discount factor as defined for the MDP
• α, the learning rate for the neural network training
• N , the number of training episodes
• M , the size of the experience memory buffer

*

• B, the size of the batches of experiences

Moreover, the hidden structure of the neural network model µc can also
be chosen; this includes the number of hidden layers, the number of
neurons in these layers, their activation function, and the dropout rate δc
(0 if we do not want to use dropout) to apply to each layer. Finally, if the
chosen model is a CNN one, the structure of the convolutional networks
can also be set: the number of convolutional layers with their stride and
the number and size of the filters.
Learning – sampling batches of experiences to update the network’s
weights – starts once the experience memory buffer is full: after
encountering M experiences.
Experiments

For our experiments, we train the model we presented earlier.
Moreover, we also repeat the same experiments we trained our model
with and We also considered different possible hidden structures for the
neural networks.
Settings

For our experiments, most of the parameters are fixed. We present them
in Table 1. The structure of the CNNs for the time-step model are also
fixed with two convolutional layers, and the reward system of our
learning agent is fixed, and the values are shown in Table 2.

RESULTS

Table 1: Single-
agent training’s
fixed parameters

Learning parameters

Number of episodes N 100

Batch size B 10

Experience memory size M 40

Learning rate α 0.01

Discount factor γ 0.9

Agent’s sight φ
+

c 6

Agent’s s 0.05

*

Table 2: Single-agent training’s reward

The system with different configurations for the hidden structures of the
networks:

• 2 hidden layers: the first with 30 neurons and a tanh
activation function; the second with 15 neurons and a linear
activation fucntion. No dropout.

• 2 hidden layers: the first with 30 neurons and a tanh
activation function; the second with 15 neurons and a linear
activation fucntion. Dropout rate of 0.5.

The dropout rate of 0.5 has been chosen because it seems to be optimal
for a wide range of networks.
The results for our CNN based model – time-step model – The
networks that do not use dropout seem to learn well. The percentage of
goal reached for the networks (without dropout) is high.
Although we only have partial results, we can make the following
observations: the networks that do not use dropout seem to learn well,
while the network using dropout does not; it either learns very slowly or
just converges to very low level of goal reached.

CONCLUSION

The interplanetary computer network in space is a set of computer

nodes that can communicate with each other. We proposed a network

architecture with planet’s orbiters, landers (robots, etc.), as well as the

earth ground stations and linked through Earth’s internal internet, and

consisted of complex information routing through relay satellites to

address direct planet-to-planet communication. As we know, the

metaverse will be very different from the internet of today due to massive

parallelism, three-dimensional (3D) virtual space and multiple real-world

spaces like space mining, building space habitats, etc. This paper

presents a time dependent observation matrix at different time steps

along with autonomous learning agent in a planetary environment for

layering the presence of robots and tracking the environment that use

encoded model, AI and Reinforcement learning mimicking the real world

execution by space robots. For this 3-dimensional matrix with time as

 Reward ρ Value

Goal ρω +1

Missed goal ρω̄ -0.15

Collapse ρf -1

No speed penalty ρ0 -0.01

Overtime ρT -0.4

*

third dimension and AI- deep convolutional network with Q-learning

algorithm that uses experience replay have been presented along to

create a simulated realistic world and the results show that the real

individual behaviour on a distant planet can be achieved provided the

interplanet internet is available as pathway communication.

REFERENCE

1. Poondru Prithvinath Reddy: “Metaverse in InterPlanet

Internet: Modeling, Validation, and Experimental

Implementation ”, Google Scholar

